首页 > 文章中心 > 废电池回收的原因

废电池回收的原因

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇废电池回收的原因范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

废电池回收的原因

废电池回收的原因范文第1篇

关键词电动汽车;电池回收;环境保护;排队论;Anylogic

中图分类号X705;TP391文献标识码A文章编号1002-2104(2013)06-0169-08doi:103969/jissn1002-2104201306025

汽车产业是国民经济的重要支柱产业,进入21世纪以来,我国已经成为世界上的汽车拥有量大国。根据公安部的统计消息,截止到2012年6月底,全国汽车保有量为1.14亿辆。但是能源紧张和环境问题也随之而来:目前,我国原油对外依存度接近50%,原油消费中一半以上是交通用油;我国已成为全球第二大CO2排放国,我国环境监测数据表明空气中污染物总量的超过60%来自汽车。中国走低碳经济道路就必须大力发展低碳工业,电动汽车凭借使用清洁能源和减少排放总量的优势,成为提高汽车产业竞争力,保障能源安全和发展低碳经济的新目标。同时,国务院印发了《节能与新能源汽车产业发展规划(2012-2020)》。未来十年,甚至几十年内将是电动汽车研发与产业化的战略机遇期。但是电动汽车(本文指纯电动汽车)的发展也会面临一些问题,尤其是在电池(本文指铅酸蓄电池)报废周期,废旧电池中含有铅、镍、钴、锂等金属材料和电解液,废旧电池一旦不能得到有效的处理,不仅造成资源的浪费,对环境的污染也尤为严重。Wen等指出随着电动汽车的普及,大量的报废蓄电池会给我们的生活环境带来巨大的压力[1];Zdeněk和Notter等认为蓄电池的生产会产生大量CO2[2-3],因此废旧电池的处理成为发展电动汽车产业的当务之急。而回收废旧电池可以减少对金属能源的开采,降低电池的生产成本[4-6]等,同时鉴于国家相关法令、社会责任、经济利益以及人们环境和资源保护意识,合理的废旧电池回收处理方式就被提上日程。不可否认,未来电池回收利用链条将得到强劲地发展。如何管理好电池回收工作,更重要的是哪些环节和因素会影响电池回收以及它们对电池回收的影响程度,将成为关系着未来电动汽车产业发展,乃至环境保护问题的重要问题。但目前研究也存在一些不足,特别是对于电池回收影响因素的数量分析,还缺少系统的的定义和研究,因此,本文基于排队论理论,从仿真的角度, 对电池回收系统中的主要对象汽车、电池以及汽车电池匹配进行模拟,应用Anylogic仿真平台,搭建电动汽车电池回收的排队论模型,进而研究电池回收问题,分析汽车、电池生产速率,汽车、电池寿命,电池更新次数以及电池翻新率等对电动汽车电池回收整体的影响程度,最后得出相关政策建议。

宫大庆等:基于排队论的电动汽车电池回收建模与仿真研究

中国人口·资源与环境2013年第6期

1文献回顾

随着电动汽车数量的增长,废旧电池将大量产生。废旧电池的回收原因可归结为三个方面:一是保护环境。电动汽车用动力蓄电池中含有铅、镍、钴、锂等金属材料和电解液,如果废旧电池得不到有效回收处理,会造成资源浪费和环境污染[1-3];二是节约资源。使用回收过的蓄电池材料可减少对金属矿产的开采,节约对金属矿产的使用[4-5];三是降低成本。对回收的蓄电池进行充分利用可降低蓄电池的生产成本[6]。

基于电池回收的重要作用,大量文献对此进行了研究。电动汽车电池回收从更大的概念上讲,包含在废旧电子产品回收和固体废弃物回收诸多概念之中,废旧电池与其他废旧产品回收面临类似的问题。通过对大量文献的梳理,现有研究主要包括回收过程研究、回收方法和模式总结、回收影响因素探索以及回收敏感性分析等。

回收过程研究是研究的基础。Ishihara等认为锂电池生命周期主要包括生产、使用、回收和翻新等过程[7];鉴于处理、回收、翻新、重新使用组成的电池回收的闭环物流系统,Kannan等建立了多阶段、多周期、多产品的数学模型,并且运用遗传算法分析回收系统的经济性[8];Hischier等从废旧电子产品回收角度,运用物流分析方法(MFA)和生命周期评估方法(LCA),评价回收过程对环境的影响[9]。

基于对回收过程的分析,会产生不同的回收方法和模式。Ploog和Spengler等通过数学模型和lingo程序评价某种回收模式[10];Sodhi和Reimer系统地介绍了整体回收、分解回收、融化回收几种不同的回收方法,并且基于不同的回收模式,建立以成本收益为目标函数的数学模型,阐述电池回收问题[11];Nagurney和Toyasaki同样采用数学方法论证了废旧资源、回收者、处理者、消费者和需求市场组成的电子产品回收处理模式的可行性[12]。Savaskan等将废旧产品的回收活动分为“制造商自营回收”、“零售商负责回收”以及“第三方委托回收”三种组织模式,通过对这三种分散化模式进行比较,认为零售商负责回收效率最高[13]。

不同的回收模式下存在共同的影响因素。Wen等调查分析了回收率在电子产品回收中的重要作用[1];Vyrynen和Salminen运用统计方法指出,随着电动汽车的发展,提高回收率来增加电池使用寿命是蓄电池产业可持续发展的必要条件[14];进而,Sidiquea等基于面板数据,分析了影响回收率的因素(消费情况/回收工艺/收入状况/人口特征)[15]。Schaik和Reuter从系统动力学角度分析了产品设计对回收和环境的影响[16]。Zackrisson等运用生命周期评估方法,认为通过提高电池技术来延长电池的使用周期,可以减少电池使用过程中对环境造成的影响[17]。

不难发现,现有研究围绕废旧产品回收,从不同角度进行了研究和探讨,同时对影响回收的具体因素分析,特别是这些因素对回收整体的影响程度等,即敏感性分析(whatif)[18],也正日益引起人们的关注。Schiffer等提出了一个生命周期模型,这个模型可以比较不同的运行条件,不同的系统规模,不同的电池技术对电池寿命的影响[19]。同时系统动力学被引入这种定量分析中,Dyson和Chang应用系统动力学,研究固体废弃物产生的不同条件[20];Georgiadis和Besiou基于闭环物流思想,建立了废旧电子产品的系统动力学模型,进一步进行敏感性分析,讨论不同因素对经济发展和环境可持续发展的影响作用[21]。

通过对文献的梳理,本文发现关于电池回收的影响因素数量分析,还缺少统一的定义和研究,同时系统动力学方法作为连续系统建模仿真方法中的一种,适用于面向具体问题建模分析, 是一种定性与定量相结合、系统的方法,该方法的不足之处是对个体的同质性假设。因此,本文基于排队论理论,从仿真的角度,研究汽车、电池生产速率,汽车、电池寿命,电池更新次数以及电池翻新率等对电动汽车电池回收整体的影响程度。

2电动汽车电池回收概念模型

本文研究的前提是“零售商负责回收”模式以及整体回收方法。电动汽车电池回收模型研究车和电池匹配行为,分析影响电动汽车电池回收的影响因素(汽车数量、汽车寿命、电池寿命、电池翻新率以及电池更新次数等),以及这些影响因素对电动汽车电池回收(报废车比例、报废电池比例以及汽车重复使用电池比例等)的影响程度等,为行业政策制定提供参考。本文研究的主体包括电动汽车、电池以及实现电动汽车电池匹配的消息模型,根据资料整理,电动汽车生命周期包括生产、正常行驶、更换电池和汽车报废四种状态,电池生命周期则需要经过等待使用、使用中、电池更换、翻新和报废一系列循环过程,外部环境考虑的主要是国家电动汽车电池回收政策。因此本文设置的电动汽车电池回收概念模型如图1所示。

图1概念模型

Fig.1The concept model

3简单排队论模型

考虑电动汽车的不同状态、电池的一系列循环过程以及电动汽车和电池的匹配行为,结合排队论理论的研究过程,因此本文用排队论方法建模。

参照胡运权等[25],一个电动汽车生产运行过程可以看成是一个排队系统中的生灭过程。“生”表示汽车或者电池的生产,“灭”表示汽车或者电池的报废。

令N(t)表示t时刻排队系统中的汽车或者电池数量。

假设N(t)=n,(n=0,1,2…)则从时刻t起到下一个汽车或者电池到达时刻止的时间服从参数为λn的负指数分布(或其它分布)。

假设N(t)=n,(n=0,1,2…)则从时刻t起到下一个汽车或者电池处理完的时间服从参数为μn的负指数分布(或其它分布)。

当系统达到平稳状态后的状态分布,记为pn(n=0,1,2…)。

根据相关原理,可以求平稳状态的分布为:

pn=Cnp0(n=1,2,…),

其中Cn=λn-1λn-2…λ0μnμn-1…μ1,(n=1,2,…);

p0=11+∑∞n=1Cn,其中∑∞n=1Cn收敛。

汽车或者电池排队论模型类似于共享资源服务模型M/M/S/∞,其是指,汽车或者电池按照一定分布(负指数分布)到达,系统服务资源数为S个(无穷大)。

则平均服务队长:

记pn=p(N=n)(n=0,1,2…)为系统达到平稳状态后的队长N的概率分布;

依据排队论可以实现不同车和电池的匹配行为,并且报废车数量、报废电池数量、车总量以及电池总量等都可以依据排队论的基本结论,如平均队长等计算出来。

4基于Anylogic的仿真模型

依据概念模型,电动汽车电池回收模型主要包括消息模型、电池模型以及汽车模型等。文章建模所采用的平台为AnyLogic 6 University版,采用的编程语言为Java。

4.1配对模型

汽车和电池之间的配对,需要一定的机制来实现,本文使用类模式完成,包括汽车类(carID(汽车ID)、carPD(汽车生产时间)、carLT(汽车生命周期))、电池类(batID(电池ID)、round(循环次数))以及汽车电池类(carmsg(汽车类信息)、batmsg(电池类信息))。类模式在保障汽车、电池相互独立情况下,可以实现电池安装、电池更换以及汽车报废后的电池处理等行为。

4.2电池模型

电池使用过程中,需要考虑许多因素,比如电池寿命、电池翻新率以及电池更新次数等。

4.2.1电池寿命

电池在运行过程中,首先会受到其最大寿命Lifemax的影响,只有当Life(battery,batID)≤Lifemax时候,电池才处于系统循环中。考虑电池翻新次数K(K≥1),因此电池的实际使用寿命可以扩展,即Life(battery,batID)≤K*Lifemax。

4.2.2翻新率

电池在超过其寿命Lifemax时候,即Life(battery,batID)>Lifemax,电池通过经销商回收系统得以翻新重新使用。电池报废翻新的分布情况F可以直接影响重新进行系统的电池数量,我们假设其分布为伯努利分布,即F=Bernoulli(α)其中,α为翻新因子(以下称翻新率),表示回收的电池以α的概率方式进行翻新,以1-α的概率方式直接报废掉。

4.2.3翻新次数

同样,电池在超过其寿命Lifemax时候,即Life(battery,batID)>Lifemax,电池可以翻新重新进行系统中去。但翻新次数K有上限M的限制,只有K

4.3电动汽车模型

电池使用过程中,同样需要考虑汽车情况,比如汽车的需求状况直接决定电池的产量,汽车的生命周期影响电池状态的变化等。因此用一个三元组来表示汽车:cars(carID,carPopulation,carLife),其中:carID 表示汽车ID,carPopulation表示汽车数量,carLife表示汽车寿命。

4.3.1汽车数量

电池生产量Y的多少,很大程度上取决于汽车生产的数量X,即Y=F(X),并且只要能保障汽车正常运行的电池数量,即是最优的电池数量,即MinY。因此电池数量不应该很多,否则容易造成资源浪费,环境污染,同时也不能很少,容易引起汽车产业的发展滞后。

4.3.2汽车寿命

在一个汽车寿命周期内Life(car,carID),汽车的生命周期的长短会影响电池需要更换的次数,在电池寿命稳定情况下,汽车寿命越长,电池需要更新次数K1越多,即K1=C* F(carLife),其中C为大于0的正数,F为汽车寿命函数。

基于上述模型,本文设置的电动汽车电池回收仿真模型如图2所示。

在图2中,汽车(carManu)和电池(batManu))按照一定的速率生产,分别进入排队系统(queue和queue1),之后进入电动汽车电池组装阶段(combine),组装好的电动汽车,经过又一个排队系统(queue2)进入电动汽车运行状态(delayPowerOut),汽车经过一个电池生命周期,将逐渐(queue3)进入电池更换状态(split),待汽车逐步(queue5)安装好新的电池后(combine1),只要满足汽车寿命要求(selectOutput),电池汽车开始新一轮运行(queue2)否则电动汽车将经过排队(queue7)、卸下电池(split1)、排队(queue8),从而最终报废(sink)。在这一排队系统中,还有两条排队是同时进行的:其一是,电动汽车更换的电池和分解的电池将同时得到回收处理(queue4),当电池未达到其翻新次数上限情况下(selectOutput2),会以概率的形式(selectOutput1)进行翻新处理,重新进入排队系统(delay1),等待重新使用(queue6),否则,回收的电池直接被废弃掉(sink1);其二是,电动汽车在安装新电池开始新一轮运行情况下,包括两个路径可以选择(queue6、queue9)。

汽车和电池之间的配对,本文基于类模式,具体运用排队形式完成。系统中存在三条队,汽车队、电池队以及安装电池后的汽车电池队,通过三条队的合并与分离,如图1所示,queue,queue5和queue8表示汽车队,queue1,queue4,queue6和queue9代表电池队,queue2,queue3和queue7表示汽车电池队,因此汽车和电池就完成了配对,电池可以不断循环,汽车可以周而复始正常运行,直至汽车、电池报废。

基于仿真模型,本文进一步做仿真实验分析。

5仿真实验分析

因为AnyLogic 6 University是基于JAVA编写的,仿真程序可以编译生成Java Applets,支持Web页面上运行,因此,文章仿真所采用的平台为AnyLogic 6 University版。

在AnyLogic 6 University版中新建7个统计变量分别统计汽车总量、电池总量、报废汽车数量、报废电池数量、汽车重复使用二/三/四次电池数量,从而度量电动汽车电池回收情况进而得到报废车比例、报废电池比例以及二/三/四手电池使用比例。

仿真过程不考虑汽车电池更换时间以及电池从翻新到重新使用的时间,回收率设为1,其他设置与说明具体见表1。

电动汽车的发展目前还处于起步阶段,相关数据比较少。因此,本文在参考《电动汽车科技发展“十二五”专项规划》[23]以及《新能源汽车动力电池行业深度研究》[24]数据的基础上做模拟仿真研究,仿真研究可以清楚发现各个

参量之间的数量关系。

5.1仿真实验

5.1.1仿真实验1:改变电池生产速率

取模型30次仿真结果的平均值(其它参数设置见表2)得到图3-a。

仿真结果的T检验(当电池生产速率为1,报废车数量为38,以此为例进行T检验):

根据大数定律,样本量为30情况下,可以认为样本服从正态分布。根据样本的T检验置信区间(置信度为95%):

(X—-t(α/2,df)Sn,X—+tα/2,dfSn)

其中,X—为样本均值,t为统计值,α为风险,df为自由度,S为样本标准差,n为样本数量。

则其置信区间为[36,39]。说明,模型95%的仿真结果位于区间[36,39]中,文章取均值X—=38做为模型仿真的最终值(下同)。

图3-a显示出,电池生产速率4的情况下,处在各种变化的分水岭上,报废车比例会处于最低点,而报废电池比例等其它指标情况会处于相对稳定的状态下;与此同时,电池速率从1变为2时候,对整体影响较大,报废车比例会迅速下降约10%,其它指标则会平均增加5%。

5.1.2仿真实验2:改变电动汽车生产速率

根据实验1中1∶4的生产比例(下同),研究汽车生产速率对整体的影响程度。取模型30次仿真结果的平均值,具体见图3-b(其它参数设置见表1)。

从图3-b可以看出,只要按照电动汽车生产速率:电池生产速率为1∶4比例安排生产,不管电动汽车生产速率如何变化,报废车比例、报废电池比例以及重复使用电池比例都会处于一个稳定的状态。

5.1.3仿真实验3:改变电池寿命

取模型30次仿真结果的平均值,具体见图3-c(其它参数设置见表1)。

从图3-c看出,报废电池比例和重复使用电池比例,会在电池寿命初始阶段变化明显:当电池寿命由12个月增加到24个月时候,报废电池降低12%左右,重复使用电池比例则平均降低4%左右;当其寿命增加到一定程度时候,如48、60个月情况下,各项指标虽然仍然处于下降状态,但变动不明显。另外,发现一个现象就是,报废车比例会随着电池寿命的变化而变化,其实这只是个假象。

5.1.4仿真实验4:改变汽车寿命

取模型30次仿真结果的平均值,具体见图3-d(其它参数设置见表1)。

图3-d可以发现,以汽车寿命120个月为基准,当汽车寿命变化增加60个月时候,报废车比例迅速下降约10%,而当汽车寿命减少60个月时候, 报废车比例则会增加20%之多;另外,报废电池比例以及重复使用电池比例变动不明显。

5.1.5仿真实验5:改变电池更新次数

取模型30次仿真结果的平均值,具体见图3-e(其它参数设置见表1)。

图3-e发现,电池更新次数从1增加到2情况下:报废电池比例会迅速下降15%,随着电池更新次数的增加,报废电池比例会缓慢下降,直到更新次数为4的时候,报废电池比例达到最低点;三手电池使用比例急剧增加20%左右,但随着更新次数增加保持不变。电池更新次数从2增加到3情况下:四手电池使用比例快速增长7%左右,也随着更新次数增加而保持不变。二手电池使用比例则会一直维持在50%左右。电池更新次数对报废车比例影响较小。

5.1.6仿真实验6:改变电池翻新率

取模型30次仿真结果的平均值,具体见图3-f(其它参数设置见表1)。

图3-f不难看出,当翻新率从0.5增加到0.9时候,报废电池比例会从70%左右迅速下降到只有16%之多,二/三/四手电池使用比例,则分别从43%提高到78%左右、17%提高到31%上下、6%提高到11%左右,几乎都是提高了一倍;与此同时,报废车的比例几乎没有发生变化。

5.2仿真结论

从以上仿真实验发现,电池和电动汽车生产速率、电池寿命、汽车寿命、电池翻新次数以及电池翻新率等因素对报废车比例、报废电池比例以及汽车重复使用电池比例等的影响程度差异比较明显,具体的:

5.2.1电池生产速率

实验1发现,电池生产速率4的情况为最优生产比例,因为电池生产速率4的情况下的报废车比例则会处于最低位,同时报废电池比例也不会出现高位的情况。电池生产速率在区间[1,2]变化对仿真结果的影响相对较大,分析原因是:电池生产速率对仿真结果的影响程度,会受到电池和汽车的相对寿命RL的约束(RL= Life(car,carID)) / Life(battery,batID)。在一个汽车生命周期内,RL越大(电池翻新次数固定),电池循环使用的次数越多,电池生产速率对仿真结果影响越大;反之,则反之。同时随着电池生产速率的持续增加,各项仿真结果变化不大,其原因也是电池和汽车的相对寿命RL的影响,此时RL=1。

5.2.2电动汽车生产速率

实验2的前提是,电动汽车生产速率与电池生产速率按照1∶4,2∶8,5∶20,10∶40以及20∶80的比例进行生产,由此导致结果的一致性,这样说明模型是可信的。

5.2.3电池寿命

从实验3可以看出,报废车的数量基本处于稳定状态,也说明了系统的可信性;电池寿命在区间[12,24][24,36]之间变化对仿真结果影响较大,分析原因也是电池和汽车的相对寿命RL的影响;报废车比例会随着电池寿命的变化而变化,原因是排队现象的产生,而排队情况的发生则根源来自于电池和汽车的相对寿命RL,当RL比较大时,需要大量的电池,RL比较小时,则需要少量的电池,本实验中报废车的数量是确定的,而排队进入系统的车会随着电池寿命的不断增加而逐渐减少,由此导致报废车比例出现下降趋势。

5.2.4汽车寿命

从实验4中可以看出电池的各种指标数值基本处于稳定状态,同样说明了系统的可信性;相对于区间[120,180],区间[60,120]对电池各项指标影响稍微大一些,从绝对数量上看,后者对仿真结果的影响会更加明显,其原因与实验1和3相同,汽车寿命对仿真结果的影响同样受到电池和汽车的相对寿命RL的约束;另外从仿真结果还可发现,报废汽车数量及其比例直接受汽车寿命的影响。

5.2.5电池更新次数

实验5中,汽车的各种指标数值基本处于稳定状态,同样说明了系统的可信性;对于电池更新次数在区间[1,2]变化时,报废电池比例变化比较明显的原因同样是电池与汽车的相对寿命RL的影响;另外从仿真结果还可发现,电池更新次数越多,报废电池比例都会不同程度降低,综合考虑各种情况以及本实验的条件,当更新次数为4的情况下,系统处于最优状态。

5.2.6电池翻新率

实验6中,汽车的各种指标数值同样处于稳定状态,也说明了系统的可信性;同时从仿真结果总结出,电池翻新率对仿真结果的影响是数量级的,同时,随着翻新率的提高,这样影响会越来越大。

6研究结论

传统汽车行业对产业结构调整和环境保护,都提出了严俊挑战,发展电动汽车是提升汽车产业竞争力、保障能源安全和发展低碳经济的重要途径。但是,随着电动汽车产业发展,将来会产生大量电池,如何去回收处理电池必将是一个人们迟早要面对的问题,这就要求人们从总体上把握电池回收的机制,清楚哪些因素会影响电池回收以及这些因素对回收的影响程度等。

本文基于排队论,应用Anylogic仿真平台研究电池回收问题。研究得出了许多重要结论,如电动汽车生产速率与电池生产速率生产比例应为1∶4;电池更新次数为4次等。因此,人们需要:

(1)在实际生产中,我们应该按照电动汽车、电池生产比例进行生产,这样既可以减少报废电池和报废车的比例,更重要的是可以增加循环使用的电池数量及其比例,节省资源和保护环境;根据电池和电池汽车相对寿命情况,合理安排电动汽车和电池的生产速率,科学计算电池翻新次数等问题。

(2)在可以延长电池寿命的情况下,应该大力提倡这种技术,从根源上解决废旧电池的污染回收问题,节省生产电池的材料成本。但同时我们要衡量技术的投入产出问题,在不能延长电池寿命情况下,可以增加汽车重复使用电池比例,这样也可以减少电池生产量。只有对技术的投入产出做出准确度量,才能提供电动汽车产业持续发展的动力。汽车寿命面临同样的问题。

(3)在实际运营中,应该大力发展电池翻新技术,最大程度的实现电池的重复利用,节省材料投入,保护环境。

总之,本文的相关研究结论可以帮助人们在发展电动汽车产业同时,清楚哪些环节,哪些因素对电动汽车电池回收工作影响深远,实现电动汽车产业的可持续发展。

参考文献(References)

[1]

Wen L, Lin C H, Lee S C. Review of Recycling Performance Indicators: A Study on Collection Rate in Taiwan[J]. Waste Management, 2009, 29(8): 2248-2256.

[2]Zdenek C, Pavel M. Electric, Hybrid Electric and Combustion Engine Driven Cars and their impact on Environment[C]. Birmingham: Proceedings of the 2011-14th European Conference on Power Electronics and Applications, 2011: 1-5.

[3]Notter D A, Gauch M, Widmer R, et al. Contribution of LiIon Batteries to the Environmental Impact of Electric Vehicles[J]. Environ. Sci. Technol, 2010, 44: 6550-6556.

[4]Kushnir D, Sandén B A. The Time Dimension and Lithium Resource Constraints for Electric Vehicles[J]. Resources Policy, 2012, 37(1): 93-103.

[5]Gaines L, Sullivan J, Burnham A, et al. LifeCycle Analysis for LithiumIon Battery Production and Recycling[C]. Washington DC: The 90th Annual Meeting of the Transportation Research, 2010: 1-16.

[6]Neubauer J, Pesaran A, Howell D. Secondary Use of PHEV and EV BatteriesOpportunities & Challenges[R]. Orlando: NREL, 2010.

[7]Ishihara K, Kihira N, Terada N, et al. Environmental Burdens of Large LithiumIon Batteries Developed in a Japanese National Project[R]. Tokyo: Central Research Institute of Electric Power Industry, 2002.

[8]Kannan G, Sasikumar P, Devika K. A Genetic Algorithm Approach for Solving a Closed Loop Supply Chain Model: A Case of Battery Recycling[J]. Applied Mathematical Modelling, 2010, 34(3): 655-670.

[9]Hischier R, Wager P, Gauglhofer J. Does WEEE Recycling Make Sense from an Environmental PerspEctive? The Environmental Impacts of the Swiss Takeback and Recycling Systems for Waste Electrical and Electronic Equipment(WEEE)[J]. Environmental Impact Assessment Review, 2005, 25(5) : 525-539.

[10]Ploog M, Spengler T. Integrated Planning of Electronic Scrap Disassembly and Bulk Recycling[C]. San Francisco: 2002 IEEE International Symposium on Electronics and the Environment, 2002: 263-268.

[11]Sodhi M S, Reimer B. Models for Recycling Electronics Endoflife Products[J]. OR Spektrum, 2001, 23(1): 97-115.

[12]Nagurney A, Toyasaki F. Reverse Supply Chain Management and Electronic Waste Recycling: A Multitiered Network Equilibrium Framework for Ecycling[J]. Transportation Research Part E: Logistics and Transportation Review, 2005, 41(1): 1-28.

[13]Savaskan R C, Bhattacharya S, Wassenhove L N V. ClosedLoop Supply ChainModels with Product Remanufacturing[J]. Management Science, 2004, 50(2): 239-252.

[14]Vyrynen A, Salminen J. Lithium Ion Battery Production[J]. The Journal of Chemical Thermodynamics, 2012, 46: 80-85.

[15]Sidiquea S F, Joshi S V, Lupi F. Factors Influencing the Rate of Recycling: An Analysis of Minnesota Counties[J]. Resources, Conservation and Recycling, 2010, 54(4): 242-249.

[16]Schaik V A, Reuter M A. Dynamic Modeling of Ewaste Recycling System Performance Based on Product Design[J]. Minerals Engineering, 2010, 23(3): 192-210.

[17]Zackrisson M, Avellán L, Orlenius J. Life Cycle Assessment of Lithiumion Batteries for Plugin Hybrid Electric Vehicles: Critical Issues[J]. Journal of Cleaner Production, 2010, 18 (15): 1519-1529.

[18]Vlachos D, Georgiadis P, Iakovou E. A System Dynamics Model for Dynamic Capacity Planning of Remanufacturing in Closedloop Supply Chains[J]. Computers & Operations Research, 2007, 34(2): 367-394.

[19]Schiffer J, Sauer D U, Bindner H, et al. Model Prediction for Ranking Leadacid Batteries According to Expected Lifetime in Renewable Energy Systems and Autonomous PowerSupply Systems[J]. Journal of Power Sources,2007, 168(1): 66-78.

[20]Dyson B, Chang N B. Forecasting Municipal Solid Waste Generation in a Fastgrowing Urban Region with System Dynamics Modeling[J]. Waste Management, 2005, 25(7): 669-679.

[21]Georgiadis P, Besiou M. Environmental and Economical Sustainability of WEEE Closedloop Supply Chains with Recycling: A System Dynamics Analysis[J]. The International Journal of Advanced Manufacturing Technology, 2010, 47(5-8): 475-493.

[22]胡运权, 郭耀煌. 运筹学教程[M]. 北京:清华大学出版社,2007:325-333.[Hu Yunquan, Guo Yaohuang. Operations Research Tutorials[M]. Beijing: Tsinghua University Press, 2007: 325-333.]

废电池回收的原因范文第2篇

【摘要】随着电池工业的发展,废旧电池的回收处理无论是从资源循环利用方面还是从保护环境及人类健康方面来说都有重要意义。开发废旧电池回收处理技术刻不容缓,需要加深对其研究和了解,从而使废旧电池的回收处理系统化、规范化、科学化,从根本上解决废旧电池污染环境的问题。针对这一现象,文章从废旧电池的危害和我国废旧电池的回收状况入手,分析了我国废旧电池的回收处理面临的主要问题,并从政府、企业和个人的角度探讨了可能的解决方案。

【关键词】回收 废旧电池 现状 对策

1.废旧电池的危害

废旧电池无论是对人体本身还是对周边的环境的污染都是不可估计的。无论是普通的干电 池,还是电子表中的纽扣电池, 里面都含有多种化学物质。电池一旦废弃, 它的危害是持久而巨大的,不论将废电池深埋在地下, 还是在大气中,废电池中的重金属都会随渗液一起流出,造成对土壤、水的再污染。这种污染对人类健康的危害极大。

2.我国废旧电池回收中存在的问题

2.1我国的法律体制不健全。长期以来,由于我国缺乏废电池回收的相关法律体制,使得生产者、使用者和管理者之间各自应承担的责任仍不明确。其回收利用的过程必然会产生更为严重的环境问题。一些不正规的小企业由于缺乏必要的技术支持和处理设备,不但很难有效回收利用, 反而还会造成更为严重的二次污染。

2.2我国的回收体系缺乏系统化。我国的废旧电池回收网络相当分散,个体从业人员走街穿巷回收为主,还包括废旧电池经营企业直接回收、生产厂家通过以旧换新回、环保部门从生活垃圾中回收等。目前废旧电池的回收网络基本上是组织、个人自发编织而成的,虽宣传力度较大,但是个人的能力所限, 形成不了规模, 经过几年的努力,收集的数量也仅仅是销售量的沧海一粟。

2.3企业的回收处理技术不够完善,各种经济因素制约着废旧电池处理产业的发展。由于宣传教育力度不够, 居民对于废旧电池的危害缺乏认识, 环保意识淡薄, 不能积极主动 的参与废旧电池回收处理。人们在购买电池时也 并不考虑其是否符合环保标准。很多设置的废旧 电池回收箱, 被当作垃圾箱, 形同虚设。

3.我国废旧电池回收的合理化措施

3.1针对政府的措施。我国政府应通过立法并制定实施细则,强制规定废旧电池必须回收, 禁止随意丢入生活垃圾中,对积极参与回收利用的科研单位和企业要给予政策和资金倾斜,确保投资者资本的增值和处理所得产品的优先推广。其次,国家应建立有效的废旧电池回收管理体系,明确管理废电池回收利用的职能部门,制定回收再生利用实施细则,构建一套完善有效的回收网络体系。

3.2针对地方政府和行业协会的措施。针对地方政府和行业协会的措施各地政府可以根据地方的不同制定与其相适。可以允许相应的行业协会成立,进行更为全面,更为专业的管理。这样就可以对具体的措施进行运用到最好,可以将回收的意识更好的传给群众,同时也可以将企业的回收方式做得更完善。加大宣传力度,充分利用媒体、科普活动、强行标识等多种形式,宣传废旧电池对人类健康和自然环境的危害及回收利用的意义。动员全社会的一切力量,使更多的人树立 废旧电池必须回收利用的观念,从而自觉参与回收活动。

3.3针对企业的措施。制造企业是产品的生产者,它在回收物流合理化中是一个关键环节,如果能解决好制造企业的问题,就能促使回收物流的合理化。生产或制造商品企业的生产原料可采用原物 料、再生物料,制造过程中采用可再用的工具或器械,生产过程剩余的废弃品或物料可以进行适当的资源回收,并在生产时就要注意到产品的回收问题,尽量做到绿色生产, 从源头上提高物品的回收活性。以立法的形式明确制造企业承担废旧家电回收利用的责任。与此同时,国内的一些科研单位和企业也已经研发出来相关的技术,如河南省新乡电池厂已经有科技人员设计出了废旧电池回收再利用的成套技术和生产设备;辽宁省鞍山市开发成功了废旧电池回收再生资源及无害化处理工艺,这些技术完全可以互相借鉴,择优推广。

3.4针对公众的措施。应增强家电用户的环保意识,使其认识到随便丢弃废旧电池的危害性。既造成环境污染,又造成资源的浪费。消费者从一定程度上影响着制造企业在原料选择和制造方式中的取向,如果对消费者的购物意向能进行合理引导, 也是为我国回收物流趋于合理化的有效途径。为提高废弃物的回收活性, 消费者还可采用正确的废弃物分类,一方面可增 加资源的复生效率, 另一方面也可减少废弃物对 于环境的污染。除此之外,公众要加强自我的回收意识,要注意废弃物的分类,这样便于废弃物的再转手处理,便于分类和回收再利用。只要大家一起努力,肯定会将废旧电池的回收处理的更好。这样废旧电池的污染就不会那么大了,我们的人体的伤害会变得很小再者环境也会受到保护。

3.5实现循环经济,打造资源节约型社会是历史的必然选择

首先,从保护环境角度讲,即便到了一次性干电池都已实现无汞化,废旧电池的循环再利用也必须坚持做好。更何况目前电池无汞化进程并不乐观,规模较大的电池生产企业能做到低汞、无汞化,而大量小企业由于资金、技术、成本等原因,其生产的电池仍存在高汞现象。

其次,从节约资源的角度讲,更要作好回收处理工作。有统计资料表明,我国每年用于生产干电池要消耗锌12万t;二氧化锰20万;铜2万t;汞数十吨,还有相当多的氯 化锌、石墨、沥青、不锈钢等,这些资源需要经过采矿、选矿、冶炼等过程获得。大量一次性废旧电池不回收,不但污染环境,还浪费了宝贵的金属资源,这些都是不可再生资源,这不符合科学发展观要求。目前我国资源、能源短缺日趋严重,环境污染形势日益严峻,搞好废旧电池的回收处理,是落实科学发展观,实现循环经济,打造Y源节约型社会的必然选择。发达国家在废旧电池回收利用方面已有很多成功经验和模式可予借鉴。

参考文献:

[1]邓志新.中小外贸企业服务外包模式探索[J].特区经济,2012

[2]刘娟.小额跨境外贸电子商务的兴起与发展问题探讨―后金融危机时代的电子商务及物流服务创新[J].对外经贸实务,2012

废电池回收的原因范文第3篇

Pb+PbO2+2H2SO4充电放电2PbSO4+2H2O,写出放电时的电极反应。

解析铅蓄电池放电是一个原电池,还原剂Pb在负极上失去电子,产物为PbSO4,氧化剂PbO2在正极上得电子,产物是PbSO4及H2O。

负极:Pb+SO2-4-2e-PbSO4

正极:PbO2+4H++SO2-4+2e-

PbSO4+2H2O两个电极反应相加可以得到总反应式。

例2某碱性蓄电池充电和放电时发生的反应为:

Fe+NiO2+2H2O充电放电Fe(OH)2+Ni(OH)2,写出放电时的负极和充电时的阴极反应。

解析放电时的负极和充电时的阴极反应:Fe+NiO2+2H2OFe(OH)2+Ni(OH)2,还原剂Fe在负极上失去电子,

产物是Fe(OH)2,OH-参与负极反应,即负极:

Fe+2OH--2e-Fe(OH)2。

充电时是电解池,反应为:Fe(OH)2+Ni(OH)2电解

Fe+NiO2+2H2O,氧化剂Fe(OH)2在阴极上得电子,产物为Fe,即阴极:Fe(OH)2+2e-Fe+2OH-。

在碱性电池中,书写电极反应式及总反应式时,不能出现H+。

例3几年前我国首创的以Al―空气―海水电池作为新型海水标志灯的电源,这种电池以海水为电解液,靠空气中的氧气不断氧化Al产生电流,只要把这种灯放入海水数分钟,就可发出耀眼

的光,其能量比干电池高20倍~50倍。请运用所学

知识推测这种新型电池两极上发生的电极反应。

解析原电池是由活动性不同的两个电极及与两极相接触的电解质溶液构成。该海水电池负极显然为不断氧化的Al,电解质溶液为海水,正极材料应为具有导电性和活动性比Al差的材料,通常为石墨棒,氧化剂O2在正极上获得电子,即

负极:Al-3e-Al3+

正极:O2+2H2O+4e-4OH

-

例4熔融盐燃料电池具有高发电效率,因而受到重视,可用Li2CO3和Na2CO3的熔融盐混合物为阴极助燃气,制得在650℃下工作的燃烧电池,阳极反应式为:2CO+

2CO2-3

4CO2+4e-。则阴极反应式为

;总电池反应式为。

解析原电池的负极即为阳极,正极即阴极,电池工作时是以CO为燃气(还原剂),空气、CO2的混合气为助燃气,显然空气中O2为氧化剂。因此总反应式为:2CO+O2

2CO2,

氧化剂O2在阴极(正极)上得到电子,产物是CO2-3,即阴极反应为:O2+2CO2+4e-

2CO2-3。

例5(2015年新课标全国卷Ⅱ)酸性锌锰干电池是一种一次性电池,外壳为金属锌,中间是碳棒,其周围是由碳粉、MnO2、ZnCl2和NH4Cl等组成的糊状填充物。该电池放电过程产生MnOOH。回收处理该废电池可得到多种化工原料。有关数据如表1所示:

回答下列问题:

(1)该电池的正极反应式为,电池反应的离子方程式为。

(2)维持电流强度0.5A,电池工作5分钟,理论上消耗锌g。(已知F=96500 C・mol-1)

(3)废电池糊状填充物加水处理后,过滤,滤液中主要有ZnCl2和NH4Cl,二者可通过分离回收;滤渣的主要成分是MnO2、和,欲从中得到较纯的MnO2,最简便的方法是,其原理是。

(4)用废电池的锌皮制备ZnSO4・7H2O的过程中,需除去锌皮中的少量杂质铁,其方法是:加稀H2SO4和H2O溶解,铁变为,加碱调节至pH为时,铁刚好沉淀完全(离子浓度小于1×10-5mol・L-1时,即可认为该离子沉淀完全);继续加碱至pH为时,锌开始沉淀(假定Zn2+浓度为0.1mol・L-1)。若上述过程不加

H2O2后果是,原因是。

解析(1)该电池为酸性电池,正极发生还原反应,电极反应式为:MnO2+H++e-MnOOH;电池反应为Zn与MnO2在酸性条件下的反应,生成Zn2+和MnOOH。即应顺填:MnO2+H++e-

MnOOH;2MnO2+Zn+2H+2MnOOH+Zn2+。

(2)电池工作5 min,电池中的总电荷量Q=It=0.5×5×60C=150C,则转移电子的物质的量为15096500mol,1mol Zn失去2 mol电子,则此过程中消耗锌的质量m(Zn)=65×12×15096500g=0.05 g。即应填:0.05。

(3)从表1数据看出,相同温度下,ZnCl2的溶解度远远大于NH4Cl的溶解度,则可采用加热浓缩、冷却结晶的方法分离二者。即应顺填:加热浓缩、冷却结晶;碳粉,MnOOH;空气中加热;碳粉转变为CO2,MnOOH氧化为MnO2。

废电池回收的原因范文第4篇

活动目标

1 在操作中感知电动玩具的共同特征――有电源才会动。

2 初步了解正确使用电池的方法。

3 进一步激发对电动玩具的好奇心,发展探索的兴趣。

活动准备

孩子自带一种或两种电动玩具,各种型号的电池若干,受潮的电池5~6节,废电池若干,大盘子五个,安装电路图一张,电动霸王龙一只,关于电池污染环境的报道,废旧电池回收箱一只,小恐龙粘纸若干。

活动过程

一、师:教室里有这么多电动玩具,我们来开一个电动玩具运动会吧。

1 幼儿各自选一个电动玩具,让它动起来。

设问:你的玩具动起来了吗?你是怎样让它动起来的?(幼儿自由回答)

2 出现问题:许多小朋友说打开开关就动起来了,可是为什么有些小朋友的电动玩具开关打开了还是没有动起来?

3 解决问题:使不动的玩具动起来。

(1)打开下面的“肚子”看看里面有什么?(有的有两节电池,有的只有一节电池,还有的没有电池)得出结论1:有两节电池的一打开开关玩具就动了。

(2)少了一节电池怎么办?(幼:再装上一节)

(3)有了两节电池还是不会动,为什么呢?(幼:电池的大小不一样。)得出结论2:装上两节一样大小的电池,打开开关玩具就会动了。

二、师:运动会真热闹,吸引了另外一些电动玩具来参加运动会。请小朋友也帮它们动起来。

1 幼儿分组操作教师投放的玩具。

2 出现问题:有的会动,有的又不会动了,为什么呢?

3 探索问题:打开“肚子”看一看,都有两节相同的电池,为什么有的会动,有的不会动?

4 比较电池的安装方法:方向不一样。

5 解决问题:学习正确安装电池的方法。

(1)幼儿自由发表意见。

(2)出示电路图:平平的尾巴对着弹簧,突出的嘴巴对准平平的尾巴。

(3)幼儿对不会动的玩具进行改装,理解正确的安装方法。

6 玩具总动员――正确操作电动玩具。

三、师:热闹的运动会引来了霸王龙,谁来帮它动起来?

1 出现问题:装对了电池,打开了开关还是不会动,为什么?(幼:电池有皱纹)师:我看见有人把电池掉在地上,拖地时弄湿了。

2 找到原因:电池受潮,漏电了。

3 解决的办法:换新电池,保护电池不受潮。

4 师:怎样爱护电池?(幼:不用的时候关掉,节约电源;不让电池受潮;不摔电动玩具……)

5 师:我还有一个好办法,不用时拿出电池存放到瓶子里,可以延长电池的寿命。

四 师:换上新电池,霸王龙真的动起来了。它带来了许多小奖品,想搞个有奖竞猜,谁来回答?

1 问题:废旧的电池怎么处理比较好?(幼儿自由回答,并当场奖励恐龙粘纸)

2 请幼儿听一听《钱江晚报》上的报道《从身边做起――收集废旧电池》。

3 出示环保回收箱,请幼儿把废旧电池放入回收箱。

废电池回收的原因范文第5篇

[关键词]防爆蓄电池 主要危害因素 应对措施

中图分类号:TD64 文献标识码:A 文章编号:1009-914X(2016)21-0335-01

1 引言

目前井下蓄电池车辆动力源主要有铅酸蓄电池和磷酸铁锂蓄电池两种.,由于在铅酸蓄电池的装配过程中涉及到铅中毒、易燃、易爆等危险特性,因而确保铅酸蓄电池的安全生产十分重要。目前,铅酸蓄电池已被列入《危险化学品名录》,我国也一直重视铅酸蓄电池的安全生产,加强了对蓄电池生产装配的安全防范措施,制定了《铅作业安全生生规程》等规范标准。

2 防爆蓄电池的主要危害因素分析

2.1 防爆蓄电池自身危害分析

废电池污染及其处理已经成为目前社会最为关注的环保焦点之一。国家环保总局科技标准司有关人士认为,随着我国电池的种类、生产量和使用量的不断扩大,废旧电池的数量和种类也在不断增加。废旧电池含有汞、铅、镉、镍等重金属及酸、碱等电解质溶液,对人体及生态环境有不同程度的危害。据了解,其中对人体健康和生态环境危害较大、列入危险废物控制名录的废电池主要有:含汞电池,主要是氧化汞电池;铅酸蓄电池;含镉电池,主要是镍镉电池。有关资料显示,一节一号电池烂在地里,能使1平方米的土壤永久失去利用价值;一粒纽扣电池可使600吨水受到污染,相当于一个人一生的饮水量。

人体一旦吸收这些重金属以后,会出现哪些病症呢?据有关专家介绍,汞是一种毒性很强的重金属,对人体中枢神经的破坏力很大。目前我国生产的含汞碱性干电池的汞含量达1%-5%,中性干电池的汞含量为0.025%,我国电池生产消耗的汞每年就达几十吨之多。镉在人体内极易引起慢性中毒,主要病症是肺气肿、骨质软化、贫血,很可能使人体瘫痪。而铅进入人体后最难排泄,它干扰肾功能。

专家们认为,由于电池污染具有周期长、隐蔽性大等特点,其潜在危害相当严重,处理不当还会造成二次污染。据相关研究发现,我国一些职工在回收铅酸蓄电池中的铅时,因为回收处理不当,把含有铅和硫酸的废液倒掉,不仅造成了铅中毒,而且使当地农作物无法生长。如何及时安全地回收和处理废电池,已日益突出地摆在人们面前。

2.2 防爆蓄电池装配过程中的主要危害因素分析

铅酸蓄电池装配过程中可能产生的危险、危害主要是中毒、火灾、爆炸,以及高温灼烫、机械伤害、腐蚀伤害等。限于篇幅,仅对中毒、火灾和爆炸3种因素进行分析。

称片、包片区,存在着大量的铅尘,属于铅的重污染区,易发生慢性铅中毒。铅中毒对人体的危害主要集中在消化系统和神经系统,在蓄电池厂工作的操作工患职业性慢性铅中毒的比例高达25%~30%。更为严重的是,铅中毒不仅局限在蓄电池厂里的成年操作工铅中毒反应,甚至周边许多儿童也出现了铅中毒的反应。

引起中毒事故的原因主要有厂区内缺乏必要的排风环保设备,有的厂家虽然有,但是工作期间不开启,形同虚设,工人缺少必要的劳保用品以及工人的自我保护意识不强等。称片、 包片是引起铅中毒的重点部位,必须有完善的防护措施和排风系统。

根据工艺要求,焊接区使用的乙炔、液化石油气火灾危险为甲类,氧气火灾危险为乙类。乙炔在空气中的爆炸极限为2.1%~80.0%,引燃温度在305℃左右;液化石油在空气中的爆炸极限为2.25%~9.65%,引燃熳度在426~537℃左右。因此,生产过程中最大危险因素是火灾和爆炸,如果在焊接极群和极柱过程中操作不当,剧烈碰撞或离明火过近,温度太高等都可能引起火灾、爆炸。

根据铅酸蓄电池工作原理,铅酸蓄电正极活性物质是二氧化铅,负极活性物质是海绵铅,电解液是稀硫酸溶液,当充电到70%~80%电量时,正极开始产生氧气,当充电基本完成约90%时,负极开始产生氢气。氢气是易燃易爆的甲类物质,在空气中的爆炸极限为4.1%~74.1%,引燃温度在450℃左右,因此充电室内氢气浓度极易达到爆炸极限,一遇火源就会生产燃爆。

3 安全预防措施与建议

通过上述分析可知,防爆蓄电池装配过程中存在的主要危害因素为中毒、火灾、爆炸等。为确保安全生产建议采取以下安全措施:

(1)厂址选择与周围居民及公共设施保持必要的安全防护距离,同时必须满足《建筑设计防火规范》,《铅作业安全卫生规程》,《工业企业设计卫生标准》和《使用有毒物品作业场所劳动保护条例》的要求。

(2)在作业前尽可能先将操作环境湿润,防止铅尘飞扬;作业时工人除穿戴相应的工作服、防尘口罩外,必须使用能保证新鲜空气供给的通风设施;操作台上清出的铅粉尘,必须放置在专用容器内,不得与其他垃圾等堆放在一起;作业后,工人必须洗澡,并将工作服和防尘口罩在厂内集中洗涤;同时作业场所所应禁止吸烟,饮食等;班中喝水前必须洗手,洗脸及漱口,严禁穿工作服进食堂,出厂。

此外,为防止杂质侵入和水分蒸发,采用了仅有极桩外露的全封闭式外壳。

为防止蓄电池损坏和爆炸,在密封式壳体上设有排气孔和安全阀。安全阀中装有催化剂,可使氢气与氧气合成为水蒸气,冷却后再返回电解液内。为有效防止外来火花造成危害,在其内部还装有火花捕捉器。

免维护蓄电池的工作原理与普通铅蓄电池相同。放电时,正极板上的二氧化铅和负极板上的海绵状铅与电解液内的硫酸反应生成硫酸铅和水,硫酸铅分别沉积在正、负极板上,而水则留在电解液内;充电时,正、负极板上的硫酸铅又分别还原成二氢化铅和海绵状铅。

普通铅蓄电池,在充电接近终了时,其充电电流除了用来使正、负极板的硫酸铅还原成二氧化铅和海绵状铅外,还有一部分电流被用在水的分解上,致使蓄电池内产生根多气泡。特别是充电终了时产生和外逸的气泡就更多,从而造成电解液内水分大量散失。

免维护蓄电池,由于其负极板上的硫酸铅含量比正极板上多,因此,充足电时正极板的硫酸铅全部转变成了二氧化铅,而负极板上仍有一部分硫酸铅残留。这样,过充电时,充电电流只在正极板上用来产生氧气,而在负极板上则被用于使多余的硫酸铅转变成海绵状铅。同时,在正极板上所产生的氧气也不会外逸,而是迅速与负极板上的活性物质(海绵状铅)发生反应生成二氧化铅,再与电解液中的硫酸反应变成硫酸铅和水。

由此可见,免维护蓄电池在过充电时,其负极板上的硫酸铅永远不会消失,即负极板上不会产生氢气。即从理论上讲,免维护蓄电池即使在过充电时,其电解液中的水也不会散失。

(3)车间内的气体钢瓶不得随意堆放或不同气体钢瓶混放。虽然乙炔、液化石油气及氧气用最较少,但气体钢瓶仍需单独存放。存放处应在生产车间外墙处用砖墙和预制板砌两间作为石油液化气和氧气的中间仓库,选用下端带百页窗的门,两侧墙留通风口,并安装钢丝网,保持良好的通风。门开在车间外面,并在醒目位置贴上禁止明火和吸烟的标志。根据《建筑设计防火规范》的规定,该存放处只能作为车间中间库房,且乙炔的存放数量不应超过25m3(标准状态下),。液化石油气的存放数量不应超过50m3(标准状态下)。氧气和乙炔的保管和使用要设专人负责,严禁超压使用和人为加热气瓶,严禁用带油污的手套开启氧气瓶阀门;操作人员作业前必须先检查软管与焊接的连接处是否牢固,软管是否有打结处。

(4)充电区应保持良好的通风,必要时应增加防爆型通风设备,同时设置可燃气体浓度检漏报警装置,并达到《火灾自动报警系统设计规范》的相关要求。充电区不准使用不防爆的电器设备(如开关、插座、熔断及灯具等),严禁在充电区吸烟,用明火照明或取暖;不准在室内动火作业。室内各电气线路应穿管敷设,电气连接处应接触良好、牢靠,不得松动,避免产生火花放电。不冷穿化纤服装进入充电区,以免摩擦产生放电。

4 结语

蓄电池作为一种方便适用的直流电源广泛用于发电厂,工矿企业变配电所和各类机动车。由于在铅酸蓄电池的装配过程中涉及到铅中毒、易燃、易爆等危险特性,因而确保铅酸蓄电池的安全生产十分重要。

相关期刊更多

湿法冶金

北大期刊 审核时间1-3个月

中国核工业集团有限公司

资源再生

部级期刊 审核时间1个月内

中国有色金属工业协会

化工环保

北大期刊 审核时间1-3个月

中国石油化工集团公司