前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇控制技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
[关键词]PLC技术发展现状发展趋势
中图分类号:TP3文献标识码:A文章编号:1671-7597(2009)1210064-01
一、PLC技术的概念
PLC即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。在1987年国际电工委员会(International
Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义:“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。”
二、PLC技术的发展历史
1968年,通用汽车对外公开招标,寻求新的电气控制装置,1969年,美国数字设备公司制成的首台plc,1971年日本从美国引进了PLC技术加以消化,由日本公司研制成功了日本的第一台PLC。从70年代初开始,不到三十年时间里,PLC生产发展成了一个巨大的产业,据不完全统计,现在世界上生产PLC及其网络的厂家有二百多家,生产大约有400多个品种的PLC产品。其中在美国注册的厂超过100家,生产大约二百个品种;日本有60~70家PLC厂商,也生产200多个品种的PLC产品;在欧洲注册的也有几十家,生产几十个品种的PLC产品PLC产品的产量、销量及用量在所有工业控制装置中居首位,市场对其需求仍在稳步上升。进入二十世纪九十年代以来,全世界PLC年销售额以达百亿美元而且一直保持15%的年增长的势头。
三、我国PLC技术的发展现状
我国研究PLC技术起步较晚,但发展速度较快。中国电力科学研究院自1997年开始研究PLC技术,主要考虑PLC技术用于低压抄表系统,传输速率较低。1998年开发出样机,并通过了试验室功能测试,1999年在现场进行试运行,获得了产品登记许可。1999年5月开始进行PLC系统的研究开发工作。主要对我国低压配电网络的传输特性进行了测试,并对测试结果进行了数据处理和分析,基本取得了我国低压配电网传输特性和参数,为进行深入研究和系统开发提供依据。2000年开始引进国外的PLC芯片,研制了2Mbps的样机,2001年下半年在沈阳供电公司进行了小规模现场试验,实验效果良好,并于6月20日在沈阳通过验收。验收委员会通过现场检测认为,该实验从中国配电网的实际传播特性出发,对电力线通信技术的理论、实际应用和工程技术进行了开创性研究,在国内率先研制成功2Mbps和14Mbps高速电力线通信系统,建立了我国第一个电力线宽带接入实验网络;实现了自家庭至配电开关柜的高速电力线数据通信,并将办公自动化系统延伸至家庭。该实验的成功标志着我国已经全面掌握了高速电力线通信的核心技术,具备了研制生产这种技术实用化设备的能力。据悉,今年年底以前将建成200户的试验网络。
我国工业控制自动化的发展道路,大多是在引进成套设备的同时进行消化吸收,然后进行二次开发和应用。目前我国工业控制自动化技术、产业和应用都有了很大的发展,我国工业计算机系统行业已经形成。工业控制自动化技术正在向智能化、网络化和集成化方向发展。
四、PLC的未来发展趋势
1.功能向增强化和专业化地方向发展,针对不同行业的应用特点,开发出专业化的PLC产品,以此来提高产品的性能和降低产品的成本,提高产品的易用性和专业化水平。
2.规模向小型化和大型化的方向发展,小型化是指提高系统可靠性基础上,产品的体积越来越小,功能越来越强;大型化是指应用在工业过程控制领域较大的应用市场,应用的规模从几十点扩展到上千点,应用功能从单一的逻辑运算扩展几乎能满足所有的用户要求。
3.系统向标准化和开放化方向发展,以个人计算机为基础,在Windows平台上开发符合全新一体化开放体系结构的PLC。通过提供标准化和开放化的接口,可以很方便地将PLC接入其它系统。
五、PLC技术的特点
1.配套齐全,功能完善,适用性强:PLC发展到今天,可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制,CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。
2.系统的设计、建造工作量小,维护方便,容易改造:PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造周期大为缩短,同时维护变得容易起来。更重要的是可以使同一设备经过改变程序改变生产过程。
3.体积小,重量轻,能耗低:以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。
六、PLC应用中应注意的问题
PLC是专门为工业生产服务的控制装置,通常不需要采取什么措施,就可以直接在工业环境中使用。但是,当生产环境过于恶劣时,就不能保证plc的正常运行,因此在使用中应注意以下环境问题。
1.温度:PLC要求环境温度在0-55℃,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大,基本单元和扩展单元之间要有30mm以上间隔;开关柜上、下部应有通风的百叶窗,防止太阳光直接照射;如果周围环境超过55℃,要安装电风扇强迫通风。
2.湿度:为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。
3.震动:应使PLC远离强烈的震动源,防止振动频率为10-55hz的频繁或连续振动。当使用环境不可避免震动时,必须采取减震措施,如采用减震胶等。
4.空气:避免有腐蚀和易燃的气体,例如氯化氢、硫化氢等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中,并安装空气净化装置。
参考文献:
[1]钟肇新,可编程控制器原理与应用[M].广州:华南理工大学出版社,2000.
关键词:软弱围岩、变形开裂、支护参数、控制措施
中图分类号:U45 文献标识码:A 文章编号:
前言
根据新奥法理论, 为了充分发挥围岩自身的承载能力, 在隧道开挖以后, 围岩会有一定程度的变形, 借助围岩自身的承载力, 减小支护结构上的荷载。怎么避免围岩的失稳破坏, 保证隧道安全、经济、快速施工, 是隧道施工安全控制面临的重要课题。
工程概况
该隧道工程全长19055m(单延米),设计有6个无轨斜井,2个有轨斜井,属于极高风险隧道,本文以其中一个斜井的正洞施工段为主要研究对象,斜井长度为1025m,承担正洞施工任务左右线各2100m。隧道地层条件复杂,该段地层主要为二叠系下统板岩夹炭质板岩,灰色-深灰色,变余泥质、钙质结构,薄层板状构造,石质较软,岩层走向与正洞大角度相交,岩体受地质构造影响,节理裂隙较发育,岩体较破碎,呈层状、板状结构,含泥化夹层,含少量裂隙水,处于高地应力地段,隧道最大埋深约395m,最大开挖跨度为10.5m。
变形开裂特征分析
本工程采用“三台阶七步开挖法”进行施工,通过日常围岩量测数据收集和历次变形开裂发生、发展过程分析,我们对变形与各道工序和时间之间的关系以及施工工序间距对变形的影响进行深入细致的研究,进一步弄清了隧道变形开裂发生的特征。
1、变形与工序的关系
(1)变形与开挖的关系:中、下导坑落底时,拱部的变形最大,一般在5cm~13cm;挖仰拱时初支的变形相对缓和,收敛量一般在2cm~4cm左右。
(2)变形与喷射混凝土的关系:累计变形量达12cm~15cm,喷射混凝土表面可见裂缝 (中导坑最为明显);15cm~18cm时,局部剥落;18 cm~22cm以上时,大块剥落。
(3) 变形与初支的关系:使用单层20b#型钢钢架支护,累计变形量达18cm时钢架局部变形,22cm时钢架局部扭曲(如图1所示),35cm以上时钢架局部折断、墙部收敛值大于拱顶下沉值;使用单层22b#型钢钢架,累计变形量达20cm时钢架局部变形,25cm时钢架局部扭曲,40cm以上时钢架局部折断(如图2所示)、墙部收敛值大于拱顶下沉值;使用双层22b#型钢或单层200#H型钢钢架支护,累计变形量达30cm时,钢架局部变形凸起,无钢架扭曲和折断现象。
图1钢架局部扭曲 图2钢架局部折断
(4) 变形与时间的关系:初支完成后,若17d内不及时施作二衬,初支变形面积将随时间延伸不断扩大而造成侵限,大多需要拆除重做。
2、施工工序间距对变形的影响
变形数据的统计分析得知,施工中各个阶段的变形情况大致情况如下:
①上台阶开挖当天累计变形量为2cm~4cm,初期支护施工完毕后为1cm/d~2cm/d;
②下台阶开挖当天,水平收敛较大,累计达到3cm~5cm左右,初期支护施工完毕后保持在1 cm/d~2cm/d;
③仰拱开挖当天变形在3cm左右,仰拱混凝土完成后保持在5mm/d~8mm/d。
(1)仰拱与下台阶间距对变形的影响
仰拱封闭成环后,初期支护形成整体受力结构,抵抗围岩变形的能力大大增强,由仰拱成环前的每天变形1cm~2cm减少到仰拱成环后的每天5cm~8cm。也就是说,如果提前1d 将仰拱封闭成环,则每天可将围岩初期支护的变形减少一半(10cm)左右。
(2)上、下台阶工序的间距对变形的影响
上、下台阶的施工间距对于围岩变形的影响主要表现在能否及时进行下台阶的施工,以及能否及时将仰拱施工完毕后形成封闭的整体受力结构。
(3)二衬与掌子面间距对变形的影响
二衬与掌子面距离主要是控制变形的时间长短。距离越远,则变形时间越长,总变形量就越大;距离越短,则变形时间就越短,总变形量就越小。但是混凝土施工太早,与掌子面距离很近,对施工干扰较大,施工速度就会降低;而且二次衬砌混凝土承受的围岩压力也越大,对混凝土结构就越不利,见下图3。
图3二衬紧跟掌子面施工
软弱围岩隧道变形控制
1、科学开挖方法的选择
在软弱围岩地层中开挖隧道一般采用施工方法有: 环形开挖留核心土法、双侧壁导洞法、CD法、CRD法等。综合考虑梁家院子隧道具体情况, 采用环形开挖预留核心土法, 其施工工艺流程及隧道开挖围岩变形三维示意图见下图 4、5。
图4施工工艺流程
图4隧道开挖围岩变形三维示意图
2、合理支护时间的确定
运用Burgers模型, 采用位移反分析方法对隧道流变变形规律进行研究, 得出软岩隧道合理的支护时间, 从而理论上确定超短台阶法台阶的合理长度。
式中: p=Z;1,2为粘性参数; E1, E2为弹性模量; R0为圆形巷道半径; r为岩体内任意点到圆形巷道的中心距离;
为蠕变损伤变量。
为方便计算, 将隧道开挖断面理想化为圆形断面, R0取4m,= 22kN/m3,Z=30m,稳定变形速率u(t)= 0.033mm/h,其他参数选取方法见文献[3],E1=1.5,104MPa,E2=2.4,104MPa,1=2106MPa h,2=7.89,105MPa h,代入公式计算得最佳二衬支护时间大约为开挖后 30d。据实际施工速度, 确定上台阶长度30d为宜。
3、软弱围岩变形控制工艺措施
软弱围岩隧道施工安全的核心是控制变形、防止坍方,参考上文反演分析及监控量测结果,提出以下变形控制工艺措施。
(1)核心土。根据掌子面的自稳情况调整核心土大小,核心土面积不小于掌子面面积的50%,长度为3~5m。利用核心土稳定掌子面,然后开挖两侧边墙、中部核心土,最后开挖仰拱。
(2)超短台阶。采用超短台阶可以有效缩小初期支护成环闭合的时间,控制支护结构体系的整体变形。上台阶长度控制在15m范围内。
(3)锁脚。在软弱地层隧道中,加强锁脚能够有效减少基底弱化而引起的上台阶支护下沉和下台阶开挖初期支护的悬空引起的下沉。每级台阶采用8根注浆超前小导管锁脚。
(4)垫块、槽钢。其作用类似于扩大基础,并使工字钢不悬空,提高了拱脚的竖向承载力,达到控制变形的目的。
(5)超前支护。常用的超前支护方式有超前小导管和超前管棚。超前支护起到支护前方围岩的作用,并进行注浆,加固周边地层,松散地段采用双层小导管,扩大加固圈范围。
(6)上下台阶均衡推进。科学管理,提高工效,做到上下台阶均衡推进,使初期支护在15d内封闭成环,并及时施做仰拱, 从而有效地控制了支护结构过度变形。
(7)临时仰拱(横撑)。对于变形非常大地段,及时闭合极其重要,闭合成环后,提高了结构的承载能力,从而有效地控制变形、避免坍方。
结语
按照软弱围岩变形规律,合理选择支护时间,保证围岩的蠕变变形未达到加速蠕变阶段,则能够有效防止围岩失稳遭到破坏。围岩变形主要是围岩的流变属性导致的, 围岩变形、初支与二衬间的接触压力、围岩压力都随时间而发生变化, 从而导致支护结构内力随时间的变化而变化, 所以设计软弱围岩隧道支护结构时, 必须要对围岩的流变作用加以考虑。
参考文献:
[1] 张端良 王剑 张运良:《软弱围岩隧道变形规律与施工安全控制技术》,《公路工程》, 2011年02期[2] 帅建兵:《软弱围岩区域隧道变形开裂的研究分析与控制技术》,《建筑工程》, 2012年03期
[3] 杨林德. 岩土工程问题的反演理论与工程实践 [ M ]. 北京: 科学出版社, 1999.
关键词:汽车 排放物 控制
随着世界各国对汽车排放污染的法律法规越来越严格,汽车排放性能已作为汽车重要的综合性能指标之一。笔者认为,要使汽车尾气排放达到要求,排放控制系统必须和整车的其他系统一起进行统一设计。
目前,降低排放措施一般分机燃烧前控制和燃烧后控制两种。燃烧前排放控制主要是预防或限制发动机生成污染物的系统;燃烧后排放控制主要是净化处理已经燃烧但还未从排气管排出的废气。笔者主要介绍当前常用的汽车排放控制技术及其装置。
一、电控燃油喷射
在实际生活中,汽车运行工况多变,时而停车起步,时而上坡下坡,速度时快时慢,速度变化频繁。而发动机在不同运行工况下,对混合气浓度及点火时刻的要求均是不一样的,如在满负荷工况下,要求发动机输出较大的扭矩,需求功率混合气并适当推迟点火;在部分负荷工况下,要求经济混合气并适当提前点火,这样,就要求发动机根据运行工况及时调整可燃混合气的空燃比及其点火时刻。电控燃油喷射系统能根据发动机的转速和空气量直接或和间接测量出发动机在该工况下的基本喷油量和基本点火提前角,再根据各种传感器(如空气流量计、节气门位置传感器、水温传感器、进气温度传感器、转速传感器、氧传感器和爆震传感器等)送来的信号,输入电子控制装置(ECU),进行运算、处理、修正,确定最佳喷油量和最佳点火提前角,以达到降低有害物的排放。
二、燃油蒸气挥发净化控制
为了防止汽车油箱向大气排放燃油蒸气,我们可在发动机控制系统中采用发动机ECU控制活性炭罐蒸发污染控制装置。活性炭具有极强的吸附燃油的作用,当环境气温升高或大气压力降低时,燃油箱中形成的油蒸气经过燃油管,进入活性炭罐中,被活性炭所吸收。发动机工作时,ECU根据发动机转速、温度、空气流量等信号,控制炭罐电磁阀的开闭,当打开时,空气从活性炭罐大气入口处吸进炭罐,冲洗活性炭罐,延长活性炭罐使用寿命,并与燃油蒸气混合送至发动机燃烧。此时发动机工作时的燃油量包括喷油器喷油量和来自燃油器蒸发控制燃油蒸气。
三、曲轴箱强制通风系统
该系统用于防止曲轴箱内的窜气进入大气中,使漏入曲轴箱内的窜缸混合气经专门通道,流回进气歧管,重新进入汽缸燃烧,以减少曲轴箱窜气排入大气的量。曲轴箱窜气中的主要污染物是碳氢化合物,因而采用曲轴箱强制通风系统能减少汽车碳氢化合物的排放。曲轴箱强制通风装置(PCV)主要是利用发动机工作时产生的真空将新鲜空气引入曲轴箱,并将曲轴箱中的燃油蒸气或燃油混合气排出,新鲜空气通过空气滤清气或独立的PVC空气滤清器进入曲轴箱,并通过PCV阀(单向阀)的控制,将曲轴箱的气体引入进气歧管,使之重新进入汽缸参与燃烧,阻止进入进气歧管的混合气返流至曲轴箱。
四、废气再循环装置(EGR)
废气再循环装置可将发动机的有害物质氮氧化物控制在最低程度,当汽车由怠速、加速到正常速度时,氮氧化物的排量往往较高,废气再循环装置把少量的废气与空气燃油混合气混合在一起,由于废气呈‘惰性’几乎不含氧,既不能参加化学反应也不能被燃烧,使进入每个汽缸的混合气相对‘稀释’和可燃成分下降,从而降低发动机内部燃烧的瞬间高温,起到减少氮氧化物生成的作用。另外,从排气歧管进入进气歧管参加循环的废气有一定的温度,将使进气歧管中的空气燃油混合气受热扩张,使吸入发动机每个汽缸的有效燃烧物减少,以至点火时不能产生很高的温度,从而降低氮氧化物的排放。但当废气量被吸入过多,将影响发动机的功率输出,因此EGR必须在计算机的控制下才能达到最佳效果。
五、三元催化器
三元催化器是一种燃烧后排放控制装置,目的是将已经燃烧但还未从排气管排出的废气进行催化转换,以减少碳氢化合物、一氧化碳和氮氧化物的排放。三元催化转换装置通常位于排气歧管与消声器之间的管路上,三元催化转换的催化元素是钯(Pd)、铂(Pt)和铑(Rh),把它们涂敷在催化装置内部交叉状或蜂窝状的陶瓷上,它具有氧化还原功能。当废气通过该装置时,经过其氧化还原作用使一氧化碳、氮氧化物和碳氢化合物等有害气体得到明显的下降。它的转换效力与发动机的空气燃油混合比例有关,当空气燃油混合比接近理想值14.7∶1时,转换效力最高。发动机电脑根据氧传感器的信号电压进行喷油量的调节,使空气燃油混合比仅可能的控制在理想值附近,使催化转换装置的转换效力保持在较高水平,减小污染物排放。
六、二次空气喷射
二次空气喷射也是燃烧后排放控制装置。它将一定量的空气引入排气管中,使废气中残存的可燃气体与新鲜空气结合而得到进一步燃烧,减小汽车一氧化碳(CO)和碳氢化合物(HC)的排放。
七、废气涡轮增压与中冷技术
废气涡轮增压技术是使发动机轻量化、提高输出功率的有效措施。发动机进气经废气涡轮增压后,进气温度提高,滞燃期缩短,混合气适当变稀,这将使CO和HC排放以及油耗都有所降低。但是,进气温度上升将使NOx增多,空气密度也因温升而下降,使进气量不能达到期望水平。于是,出现了将增压后空气再进行冷却的中冷技术,使进气温度降低,循环进气量更大,NOx排放下降而功率进一步增加。实践证明:采用废气涡轮增压与中冷技术,可使柴油机体积功率提高200% ,NOx降低80%,微粒减少90%,耗油量降低16%。
八、燃油喷射高压化和多次喷射技术
柴油机传统的泵喷嘴系统的喷油压力比较低,一般不超过50MPa,而现代燃油喷射系统除泵喷嘴外,还有新型的共轨系统,喷油压力普遍提高,其喷油压力可达140MPa。柴油机喷油压力越高,燃油和空气的混合就越好,排烟就越少。与此同时,将电子技术应用于燃油喷射过程也是一个发展方向。有些厂商已将电子技术应用到燃油喷射的控制上,非常精确地控制喷油量和喷油时间,以适应不同的道路工况,并且有的还具有自适应能力,可以补偿零件磨损和零件制造偏差引起的变化,以取得NOx、微粒排放量和燃油经济性之间的最佳配合。采用燃油多次喷射技术可以实现柔和燃烧,亦可减少柴油机碳烟与颗粒的排放。
以上是目前汽车上较通用的几种排放控制措施。随着人们环保意识的提高和科技的发展,今后将会有更多、更先进的汽车排放控制技术应用于汽车领域。汽车排放控制将是未来汽车技术发展的一项综合课题,不仅要求研发机构深化和改进发动机设计,提高控制系统精确性,研制有效的废气净化装置,还要求石油化工领域不断提高燃油品质,以满足新型发动机和净化装置的切实要求。
参考文献:
[1]王建昕等.汽车排气污染治理及催化转换器[M].北京:化学工业出版社,2004.
在奇瑞应用的系统中,包括了乘员门模块、驾驶员侧门模块、温控模块、安全气囊模块、仪表盘模块、后备箱门模块等等,在整车电器控制技术方面的研发在国内处于前列。国内的各高校在相关方面也进行了研究和开发,有代表性的主要有清华大学的智能电器系统,大连理工大学的车身电器控制系统,天津大学的基于CAN总线的车身智能控制系统等等。在清华大学的汽车电气系统中,各个智能电器、信息网、供电网络都是独立存在的,不管是全车电器的故障诊断,还是网络操作,或者是报警,都有很好的实现效果。大连理工大学的研发主要应用于小型客车,对车辆的安保系统、远程解锁、车辆定位、后视镜控制、座椅、照明以及车窗等方面实现了电器控制。
目前,人们尝试着从飞机控制系统进行延伸研究,提出一种线控网络技术,应用到汽车控制中,如电控制动(Brake-by-Wire)、电控转向(Steering-by-Wire)等,这类总线控制技术提高了汽车通信系统的可靠性指标,加强了汽车的容错能力。在很大程度上弥补了CAN总线的缺陷。
为了提高汽车的自诊断功能,汽车中的微控制器采用多个网络进行连接,为了实现个汽车系统之间,包括生产工具和服务工具,通过蓝牙技术实现双向通信,这种无线通讯的数据传输非常快,可以随时下载最近软件,以适应人们的需求,包括语音、图像等娱乐服务。为了满足人们日益提高的需求,DVD、MP4等多种多媒体设备播放器开始应用到汽车中来,也产生了用于汽车制造业的专用网络标准,这种多媒体光纤网络的传输率较蓝牙技术更快,性能更好,成本更低。
自然传播:空气中的病菌分生孢子可随风传播,土壤中的菌丝和分生孢子可随雨水或地表径流传播。人为传播:杂交竹枯萎病原菌尖孢镰刀菌以菌丝、孢子在土壤中或受病组织中越冬,可随带病的竹苗及繁殖材料长距离运输。在病枝或病根组织的病原菌在运输中其生存不受影响,存活率较高。
杂交竹枯萎病原———尖孢镰刀菌的适生条件
杂交竹枯萎的病原真菌———尖孢镰刀菌,在国内大多数地区气候条件适合其生存,适应生存的地域广泛。目前该病原菌的寄主植物———杂交竹,在我国华南及西南地区种植,这些地区由于寄主的存在及适宜的气候条件,成为杂交竹枯萎病原菌潜在的适生区。
杂交竹枯萎病的检验鉴定与防治
杂交竹枯萎病症状一旦出现,取病株保湿培养7~10d或组织分离培养10d,可获得其营养体和繁殖体,从病菌的营养菌丝及其大型分生孢子和小型分生孢子的大小、形态特征等即可鉴定病害,鉴定难度不大。杂交竹枯萎病是一种新发现的系统侵染性病害,前人对该病防治药剂的研究目前也仅停留在室内毒力方面[7],竹子一旦发病,传染速度快,没有专门的特效药可以救治,防治困难。因此,防治技术主要是病害的预防,如培育无病壮苗,竹林地消毒以控制病原菌群的数量和传播,不使用带病的苗木造林,调运的苗木中发现有病苗时及时焚毁处理,幼竹一旦被害,拔除烧毁。
杂交竹枯萎病综合控制技术
杂交竹枯萎病是一种毁灭性真菌病害,一旦发生,发展迅速,危害损失较大。因此,杂交竹产区必须高度重视枯萎病的防治工作。
加强营林技术措施,提高寄主的抗性
具体措施有:①开沟排水。据观察,土壤黏重、脊薄、酸性过大、低洼积水、排水不良的地方,病害易发生,凡是在地下水位高或土壤黏重、降雨时易积水的竹林地,必须挖1m深的沟进行排水,使竹鞭处于通气条件下生长。②留养个大、粗壮的中期笋。③强抚育管理,多施有机肥,增强树势,提高杂交竹的抗病能力。
发病期防治措施