首页 > 文章中心 > 神经网络的实现过程

神经网络的实现过程

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇神经网络的实现过程范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

神经网络的实现过程

神经网络的实现过程范文第1篇

关键词: 神经网络知识库 多神经网络集成 方法研究

随着我国科学技术的不断发展,神经网络技术已经获得广泛的应用,在我国的多个领域中使用,且已经小有成就。但是在使用的过程中还不成熟,仍存在很大的不足和问题,这就需要工作人员进行反复的试验和计算,以获得有关于神经网络的模型。神经网络模型在使用的过程中,会受到操作人员的影响,因此结果表现出来的也就不同。神经网络在实际使用的过程中,操作人员多是缺乏专业知识水平的普通工作人员,这就导致神经网络模型的使用效果得不到保障,因此需要系统的、可靠的神经网络模型操作的应用体系。

一、多神经网络集成方法

1.在神经网络知识库基础上发展而来的神经网络集成应用体系

在神经网络技术应用的过程中,要对工作人员所具备的神经网络方面的知识和经验进行培训,可以通过多元化的神经网络来学习和积累与神经网络有关的知识,神经网络所具备的实用性将获得大幅度的提高。现阶段,我国与神经网络技术有关的工程都较为复杂,大多数的工程都具备独立性较强的子系统、功能单元及部件等,将原本复杂的系统分解成多个简单的小系统。因此工作人员在遇到复杂的系统问题时,可以将复杂的问题分解成多个相对独立的部件、功能单元或者是子系统,进行信息资料的输出或者是输入。使用神经网络技术得到相关子系统的特点信息之后,就能够以此为基础面对系统复杂的问题,例如系统中的辨识度问题、同一个系统中包括多个子系统的神经网络问题等。

在上述想法的基础上,对神经网络知识库进行构建,并逐渐完善神经网络集成体系的框架。是按照将复杂的神经网络问题分解成多个子系统的神经网络问题,而不是针对一个相对较复杂的问题进行的。将复杂问题分解成多个子系统,能够充分体现复杂的神经网络技术所具备功能,并为神经网络问题的分类提供便利,不仅可以提高解决问题的工作效率,而且可以积累神经网络方面的经验。在神经网络问题的实际解决过程中,如果子系统所具备的属性是对数据资料的输出和输入是固定的话,就需要子系统记住这些匹配。也可以是将神经网络子系统中存在的知识库与神经网络中的仪器设备相匹配,那么在进行相关信息的输入时,就可以对神经网络知识库中的连接权、阈值等相关参数进行调用,而不进行反复性质的神经网络学习,这时神经网络所具备的功能就是对函数进行传递。如果在子系统的神经网络知识库中存在与子系统属性相匹配的网络部分,就需要在神经网络知识库中找到与初始值和缺省值相匹配的经验值,将其作为基础就可以对神经网络的子系统的连接权、阈值等相关参数进行训练;如果神经网络的知识库中不存在与子系统属性相匹配的网络部分,就要对神经网络的样本进行训练,并在神经网络问题求解的过程中对网络结构的设计和计算方法等进行学习和训练,以求真正与神经网络的知识库相融合。在神经网络知识库基础上发展而来的多神经网络集成体系如下图所示:

图 在神经网络知识库基础上发展而来的多神经网络集成体系

2.多神经网络集成的方法与流程

从神经网络的有关资料可以看出,多神经的网络集成体系中存在多个子系统且属于多层并联或者串联的结构体系。从资料明显可以看出,子神经网络系统的结构较为简单,为神经网络进行计算和训练等操作提供了便利。在对复杂的网络问题进行分解的过程中,要进行反复的摸索和计算,以求得到最优化的结果,并把结果存储在神经网络的知识库中,为下一次的操作提供经验和学习的基础。在神经网络系统中存在多个层次,可以将位于下一层的输出当做是上一层的输入使用,位于同一层次的神经网络都可以被上一层的神经网络使用,直到到达神经网络的顶层为止。

二、在BP网络集成的基础上进行非线性的研究案例

本文通过复杂的非线性函数案例对神经网络的集成方法进行验证,以有效证明神经网络集成方法所具备的有效性、稳定性、可靠性和可行性。在神经网络函数的研究过程中,人们一直都比较注重对神经网络函数逼近原理进行研究,但是没有更为明确的说明。

1.非线性函数逼近原理的举例描述

通过神经网络进行函数的非线性映射的描述,函数F■(x■,x■)中的x■,x■要符合以下要求:x■,x■∈[-1,1]。函数表示为:

F■(x■,x■)=sin■∈(πx■)+cos■(πx■)+2sin(πx■)cos(πx■)

在函数中根据x■=x■=0.05的原则进行取点的操作,并对函数进行神经网络的输入和输出操作的训练,以求得出函数公式最理想的输出结果。

2.函数问题的解题方法

(1)在函数公式求解的过程中,需要用到神经网络知识库中的逼近原理。

(2)在函数公式求解的过程中,需要进行反复的摸索和拼凑,以实现对神经网络拓扑结构的设计,通过BP算法的使用,实现对函数公式求解的目的。

(3)在函数公式的求解过程中,如果使用多神经网络集成方法的话,就要对神经网络的结构进行设计,以为函数公式的求解提供便利。

F■(x■,x■)=sin■(πx■)+cos■(πx■)+2sin(πx■)cos(πx■)

=(sin(πx■)+cos(πx■))■

根据神经网络中可以将复杂的问题进行分解成多个子系统的原则,将函数公式分解成以下四个简单的函数问题:

f■(x■)=sin(πx■)

f■(x■)=cos(πx■)

f■(f■,f■)=sin(πx■)+cos(πx■)=f■f■

F■(f■)=f■■

对分解之后的函数公式进行求解,通过BP算法的求解,从而达到对函数公式求解的目的。

3.函数求解过程中所使用的方法对比

在使用神经网络进行求解的过程中,神经网络的结构呈现出较为复杂的特点,由于缺少经验作为基础,因此只能进行多次的尝试和摸索,比较花费人力,浪费时间,得到的结果还不理想,存在一系列的问题,例如速度慢、规律复杂等。本文介绍的案例就进行了反复的尝试,得到的输出三维图与最理想的三维图之间还存在差异。

把原来较为复杂的函数公式分解成多个简单的函数公式之后,在通过多神经网络集成方法进行求解的过程中,每个函数公式都很简单,在训练的过程中,也不存在大量的拼凑和尝试,能够在短时间内就确定函数公式结构的参数。将与函数公式有关的阈值和训练值等都存储在神经网络的知识库中,在遇到同类型的函数公式求解时,就可以从神经网络知识库中直接调用即可,不仅计算的速度快,输出结果的精确度也很高。通过神经网络集成方法找到的函数公式的输出三维图,与最优的三维图之间非常的相似,差异不大,可以忽略不计。

三、结语

在神经网络知识库的基础上使用多神经网络集成方法进行问题的求解时,不仅可以大大节省求解所用的时间,而且可以大大提高输出结果的精确度。可以将复杂的问题分解成多个简单的问题,以提高神经网络的工作效率,对计算方法进行创新和发展。

参考文献:

[1]林民龙.基于神经网络集成的增量式学习[D].中国科学技术大学,2012.

[2]唐东波.基于神经网络集成的电信客户流失预测建模及应用[J].大众商务,2010(06).

[3]李明爱,王蕊,郝冬梅.基于神经网络集成技术的运动想象脑电识别方法[J].北京工业大学学报,2011(03).

[4]刘大有,张冬威,李妮娅,刘杰,金弟.基于网络聚类选择的神经网络集成方法及应用[J].吉林大学学报,2011(04).

[5]潘远.粗集约简的神经网络集成在遥感影像分类中的应用[D].辽宁工程技术大学,2012.

神经网络的实现过程范文第2篇

【关键词】人工神经网络;故障诊断;模式识别;Matlab软件

一、人工神经网络综述

BP神经网络是目前应用最为广泛和成功的神经网络之一,它是由一个输入层,一个或多个隐层以及一个输出层组成,上下层之间实现全连接,而每层神经元之间没有连接。网络的学习过程包括信号正向传播和误差反向传播。在正向传播进程中,输入信息从输入层经隐层加权处理传向输出层,经功能函数运算后得到的输出值与期望值进行比较,若有误差,则误差反向传播,沿原先的连接通道返回,通过逐层修改各层的权重系数,减小误差。随着这种误差逆向传播修正的不断进行,网络对输入模式响应的正确率也不断上升。

二、人工神经网络的识别、诊断过程

滚动轴承在设备中是比较典型的,本文以滚动轴承的故障识别、诊断为例。进行模式识别的大体步骤为:首先对经过零均值化后的振动信号数据进行时域、频域分析,将筛选后的有效时域、频域特征值作为人工神经网络输入层的输入,经Matlab软件进行神经网络的训练,最后可得出一个可以识别轴承工作状态的神经网络,进而可以对滚动轴承进行模式识别。可见采用振动信号检测法对机器设备进行故障诊断的过程包含信号采集、特征提取、状态识别、故障分析和决策干预等五个基本环节,在滚动轴承故障诊断中,振动信号的采集是关键,保证信号采集的准确性、合理性和实时性是正确实现故障诊断的前提。(1)信号采集。每台机器设备都有自身的固有频率,若设备发生故障,其频率变化,其振动信号也会发生变化。因此,振动信号可以作为故障诊断的一个重要标准。在信号采集中主要用到加速度传感器、电荷放大器、带滤波的A/D转换器。先通过压电式加速度传感器对振动信号进行拾取,然后经过电荷放大器及通过带滤波的A/D转换电路得到微机可以识别的数字信号,从而实现振动信号的采集。(2)特征值提取。为了便于观察,要把采样点的值分布在0附近,故先对采集的采样点值进行零均值化。用matlab对零均值化后的的采样点进行时域、频域分析。时域分析是计算振动信号的在时域范围内的特征参数,包括:平均值、方差、均方根、峰值峰值因子、峭度系数等参数。频域分析是对零均值化后数据进行傅里叶变换,绘制频谱图,对不同样本故障轴承和正常轴承的频谱图进行对比,找出幅值差别比较明显的几组,作为频域分析的特征值。由于各个特征值的幅值大小不一致,不便于比较同一特征值在不同样本之间的差异,所以对所有有效特征值进行归一化,归一化后的结果可以作为神经网络的输入值。(3)模式识别和故障分析。在状态检测过程中,样本数据来源于实验数据分析后提取的有效特征值,这些有效的特征值作为神经网络的输入。神经网络的输出为轴承状态,分为正常轴承和故障轴承(也可以把故障具体分,比如内圈、外圈、滚动体故障等),可以用(0 1)表示正常轴承,(1 1)表示故障轴承,因此网络中设计2个输出神经元表示这2个状态。对轴承的不同状态进行识别,建立神经网络对它进行训练,可以用公式(其中是输入层神经元数,是隐层神经元数)大体的计算出隐层神经元层数。我们设计一个隐层可以随意改变的BP神经网络,通过误差对比确定隐层数目。设定神经网络的隐含层神经元的传递函数为tansig,输出层神经元的传递函数为logsig,目标误差为0.001,最大训练步数为1000。由以上设计写出网络训练代码,经Matlab运行,找出网络误差最小所对应层数,该层数作为神经网络的隐层。

确定神经网络的隐层后便可确定神经网络的最终结构,下一步就要对网络进行训练,使人工神经网络所产生的网络误差小于目标误差,对神经网络训练好以后,接下来就是对轴承的测试,神经网络测试代码为:y=sim(net,测试数据)。把正常轴承和故障轴承的测试数据导入Matlab程序中,结果整理后可得(以实验室中的一组实验数据为例):

用均值表示结果为:

把预先设定好的状态值和测试后的结果进行比较,很清楚的可以辨别出正常轴承和故障轴承。可见,对机器设备或者系统的故障诊断实质是一个模式识别过程。利用神经网络的模式识别能力,直接识别系统的当前模式,实现正常模式和故障模式之间、以及不同故障模式或不同故障程度之间的区分。

参 考 文 献

神经网络的实现过程范文第3篇

关键词 神经网络;BP;优化算法

中图分类号:TP183 文献标识码:A 文章编号:1671-7597(2014)13-0066-01

1 人工神经网络模型

人工神经网络简称ANN,它是一种将人类大脑的组织结构和运行机制作为其研究基础来模拟人类大脑内部结构和其智能行为的处理系统。人工神经网络中的神经元细胞将其接收到的所有信号进行处理,如加权求和等操作,进行操作后经轴突输出。

2 人工神经网络的分类

2.1 前馈型神经网络

前馈型神经网络通过对其网络中的神经元之间的连接关系进行复合映射,因此这种网络模型具有非常强的非线性处理的能力。如图1所示,在这里前馈型神经网络模型被分为三层,分别为输入层、输出层和隐含层,一般常用的前馈型神经网络有BP神经网络、RBF神经网络、自组织神经网络等。

图1 前向神经网络模型

2.2 反馈型神经网络

反馈型神经网络其结构,在这个模型中我们假设网络总的神经元个数为N,则每个神经元节点都有N个输入值及一个输出值,每个神经元节点都如此,节点之间相互联系。现在被大量使用的反馈型神经网络一般有离散Hopfield神经网络模型、Elman神经网络模型等等。

3 BP神经网络

3.1 BP神经网络简介

1986年,Rumelhant和McCelland提出了BP神经网络的一般模型,BP神经网络是一种具有多层网络的反向传播学习算法。BP神经网络模型的基本思想是:整个过程主要由信号的正向传播和误差的反向传播两个过程组成。目前,BP神经网络的应用范围为数据压缩、数据分类、预测分析和模式识别等领域。

3.2 BP神经网络的结构

如图2所示,这里是BP神经网络的一种模型结构,在这种模型结构中输入信号量为m,具有隐含层的数量为j,输出信号量为q的模型结构。

BP神经网络一般具有一个或多个隐含层单元,其差别主要体现在激活函数的不同。针对BP神经网络所使用的激活函数一

图2 BP神经网络模型结构

般采用S型对数函数或者采用正切激活函数,而输出层则一般采用线性函数作为激活函数。

3.3 BP神经网络的改进方法

BP神经网络作为当今对研究电力负荷预测应用最多的一种神经网络,但标准的BP神经网络算法存在的一些缺陷,这里就对一些经常使用的典型改进方法进行描述。

1)增加动量项。在一般的BP神经网络算法中,其模型中的各层权值在进行更新的过程中,是按照t时刻误差曲线进行梯度下降方式进行调整的,在这里并没有考虑其之间的梯度下降的方向,如果使用这种方式进行调整则会造成训练的过程不稳定,容易发生振荡,导致收敛过程缓慢的结果。因此有些学者就为了使网络训练的速度提高,收敛过程加快,就在一般网络模型的权值更新环节添加了一个动量项因子即:

(1)

在这个式子中,W表示BP神经网络中每一层的权值矩阵,O则表示神经网络中每一层的输出向量矩阵,α则被称为该神经网络的动量系数因子,其取值范围在0到1之间,在该网络在进行训练的过程中,如果其误差梯度网线出现了局部极小值现象,虽然在这里的第一项会趋搂于零,但是这一项,

这样就会使该训练过程避免了限入局部极小值区域的形势,从而加快了其训练速度,使该神经网络收敛速度加快,因此这种带有动量项因子的BP神经网络算法应用到了很多的BP网络中。

2)学习速度的自适应调节方法。学习速度η在一个标准的BP神经网络中是以一个常数出现的我们也称为之步长,而在实际的运算过程中,很难找到一个数值作为最优学习速度。我们从误差曲面图形中可以看出,当曲面中区域处于一个平坦区域时,我们需要设置一个比较大的η值,使它能够跳出这个平坦的区域;而当曲面中的区域处于变化比较很大的区域时,这时的η的数值我们又需要将其进行减小或者增大操作。自适应调整学习速度η则可以根据网络的总误差来进行自我调整,在网络经过多次调整后,如果E总继续上升,则表明这里的调整是无效的,且η=βη, ;而经常调整这里的E总下降了,则表明这里的调整是有效果的,且η=αη,。

3)引入陡度因子(防止饱和)。在网络训练的过程中,由于其误差曲面具有平坦区,当处于这个区域时,由于S型激活函数有饱和特性,促使权值的调整速度放慢,从而影响了调整的速度。在训练的过程中,如果算法调整进入了这个区域,我们可以减小神经元的输入量,使其输出值迅速脱离激活函数的饱和区域,这里误差函数的数值则会随之发生改变,其权值的调整也就脱离了该平坦区。想要实现以上思路则需要在激活函数中引入一个陡度因子λ。

(2)

当趋近于0时,而数值较大时,调整其进入误差曲面中的平坦区,此时λ的值应选择大于1的数值;而当调整脱离平坦区域后,再设置λ大于1,使激活函数能够恢复到原始数值。

4 总结

综上所述,设计一个人工神经网络应用到实际问题中,可以归结为网络自身权值参数的学习与合理的设计网络拓扑结构这两大类优化问题。由于人工神经网络的训练是一个非常复杂的问题,使用传统的学习算法进行训练则要花费很长的时间,BP算法用到了梯度下降法,才只能在一定范围内找到合适的参数值及其模型结构。因此,为了更好的提高神经网络的泛化能力,及将网络拓扑结构设计的更加合理,大量关于神经网络的优化算法相继产生。

参考文献

神经网络的实现过程范文第4篇

关键词:神经网络 化工 应用

一、前言

人工神经网络是一个多科学、综合性的研究领域,它是根据仿生学模拟人体大脑结构和运行机制构造的非线性动力学系统[1]。神经网络可以看作是一种具有自组织、自学习能力的智能机器,它能模仿人的学习过程,通过给网络各种范例,把网络的实际输出与希望输出比较,根据偏差修改节点间的连接权,直到获得满意的输出。现已广泛应用于经济学、军事学、材料学、医学、生物学等领域。

化工过程一般比较复杂, 对象特性多变、间歇或半连续生产过程多,具有严重非线性特性。因此,其模型化问题一直是研究的热点。化工生产过程的数据或实验室实验数据的拟台、分析,是优化过程或优化反应条件的基础一般被处理的数据可以分为二类:静态数据(static data)和动态数据(Dynamic data),对于静态数据的关联,神经网络是一种很有希望的“经验模型”拟合工具。动态过程数据具有系统随时间而变化的特征,操作参数和产物的产量和质量之间的关系更为复杂。处理和分析动态过程数据的方法除了常用的在物料衡算、能量衡算、反应动力学方程、相平衡等基础上建立数学模型(Mathematical Models)、数理统计(Statistical Analysis)等方法外,用神经网络拟合动态过程数据, 建立动态过程模型, 往往能从动态数据提供的模式中提取较为有用的信息,对过程进行预测、故障诊断,从而使过程得到优化。因此,神经网络以其强大的函数映射能力, 已经广泛用于化工过程非线性系统建模领域。 它能够通过输入输出数据对过程进行有效地学习,为化工过程的综合发展提供了一种先进的技术手段。

二、人工神经网络简介

人工神经网络(英文缩写为ANN)简称神经网络,是在生物学和现代神经科学研究的基础上,对人类大脑的结构和功能进行简化模仿而形成的新型信息处理系统[2,3]。由“神经元”(neurons)或节点组成。至少含有输入层、一个隐含层以及一个输出层。输入层—从外部接受信息并将此信息传入人工神经网络,以便进行处理;隐含层—接收输入层的信息,对所有信息进行处理;输出层—接收人工神经网络处理后的信息,将结果送到外部接受器。当输入层从外部收到信息时,它将被激活,并将信号传递到它的近邻这些近邻从输入层接收到激活信号后,依次将其输出到它们的近邻,所得到的结果在输出层以激活模式表现。

神经网络可以看作是一种具有自组织、自学习能力的智能机器,它能模仿人的学习过程。比如,一个复杂化工装置的操作工人,开始学习操作时,由于没有经验,难以保证控制质量。但经过一段时间学习后,他就能逐步提高技能。神经网络正是模拟人类学习过程,通过给网络各种范例,把网络的实际输出与希望输出比较,根据偏差修改节点间的连接权,直到获得满意的输出。人工神经网络研究工作可分成 3个大方向:(1)探求人脑神经网络的生物结构和机制,这实际上是研究神经网络理论的初衷;(2)用微电子或光学器件形成有一定功能的网络,这主要是新一代计算机制造领域所关注的问题;(3)将人工神经网络作为一种解决问题的手段和方法,而这类问题用传统方法无法解决或在具体处理技术上尚存在困难。

三、神经网络在化工中的应用

1.故障诊断

当系统的某个环节发生故障时,若不及时处理,就可能引起故障扩大并导致重大事故的发生。因此建立高效的、准确的实时故障检测和诊断系统,消除故障隐患,及时排除故障,确保安全、平稳、优质的生产,已成为整个生产过程的关键所在。神经网络是模仿和延伸人脑智能、思维、意识等功能的非显形自适应动力学系统,其所具有的学习算法能使其对事物和环境具有很强的自学习、自适应和自组织能力。神经网络用于故障诊断和校正不必建立严格的系统公式或其它数学模型,经数据样本训练后可准确、有效地侦破和识别过失误差,同时校正测量数据中的随机误差。与直接应用非线性规划的校正方法相比,神经网络的计算速度快,在化工过程的实时数据校正方面具有明显的优势。目前应用于故障诊断的网络类型主要有:BP网络、RBF网络、自适应网络等。

Rengaswamy[4]等人把神经网络用在化工过程的初始故障预测和诊断( FDD)中,提出一种神经网络构架,利用速度训练在分类设计中明确引入时间和过程模型映像的在线更新三个要素,来解决化工过程中的初始故障诊断问题。国内也有关于神经网络用于故障诊断的报道,黄道[5]等人以TE (Tenneaaee Eastman,Eastman化学公司开发的过程模拟器,提供了一个实际工业过程的仿真平台,是一种国际上通用的标准仿真模型)模型为背景,根据模型的特点进行了故障诊断。当输入变量接近训练过的样本时,诊断的成功率可达100%。另外,模糊神经元网络作为一种更接近人脑思维的网格,也是解决此类问题的一个发展方向。李宏光[6]等人就针对化工非线性过程建模问题, 提出了由函数逼近和规则推理网络构成的模糊神经网络,其规则网络基于过程先验知识用于对操作区间的划分,而函数网络采用改进型模糊神经网络结构完成非线性函数逼近,并将该技术应用于工业尿素 CO2汽提塔液位建模。

2.化工过程控制

随着神经网络研究的不断深入,其越来越多地应用于控制领域的各个方面,从过程控制、机器人控制、生产制造、模式识别直到决策支持神经网络都有应用。神经网络可以成功地建立流程和控制参数问的非线性关系及构造相关的数学模型,并可跟踪瞬息过程及具有稳健功能等,因此可有效地用于化工过程最优化和控制。

1986年,Rumelhart第一次将ANN用于控制界。神经元网络用于控制有两种方法,一种用来构造模型,主要利用对象的先验信息,经过误差校正反馈,修正网络权值,最终得到具有因果关系的函数,实现状态估计,进而推断控制;另一种直接充当控制器,就像PID控制器那样进行实时控制。神经元网络用于控制,不仅能处理精确知识,也能处理模糊信息。Tsen[7]等利用混合神经网络实现对乙酸乙烯酯(VA)的乳液聚合过程的预测控制。原有的该间歇过程的复杂的机理模型可对单体转化率做出较准确的预测,然而对产品性质(如数均相对分子质量及其分布)的预测不太可靠。所建的混合型神经网络模型用于实现过程的反馈预测控制。国内对神经网络的实质性研究相对较晚,谭民[8]在1990年提出了一种基于神经网络双向联想机制的控制系统故障诊断方法,并且作了仿真验证。清华大学自动化系则开发了一种基于时序神经网络的故障预报方法,利用工艺现场数据对大型氯碱厂的氯气中含氢气的问题进行了模拟预报实验。

3.药物释放预测

建立精确的缓释微胶囊模型是找出最优的工艺条件及掌握芯材释放规律的重要一步。缓释微胶囊的性能与影响因素之间足一种多输入、多输出、复杂的非线性关系。机理分析法和传统的系统辨识法对输入、多输出问题适应性差,过分依赖研究领域的知识与经验,难以得到实用的缓释微胶囊模型。人工神经网络能够很好地解决传统方法不能解决的具有高度非线性、耦合性、多变量性系统的建模问题并具有独特的优势。

赵武奇[9]等人建立了红景天苷缓释微囊的人工神经网络模型及其遗传算法优化技术,用神经网络模型描述了微囊制作参数与性能之间的关系,并用遗传算法优化微囊制作工艺参数,设计出性能最佳的微囊制作工艺参数。范彩霞[10]等人以难溶性药物氟比洛芬为模型药物,制备了17个处方并进行释放度检查。氟比洛芬和转速作为自变量,取其中l4个处方为训练处方,其余3个处方为验证处方,将自变量作为人工神经网络的输入,药物在各个取样时间点的释放为输出,采用剔除一点交叉验证法建立了人工神经网络模型。并通过线性回归和相似因子法比较人工神经网络和基于二元二项式的响应面法的预测能力,显示了人工神经网络的预测值与实测值的接近程度。

4.物性估算

用神经网络来解决估算物质的性质必须解决三个基本问题,第一个是对物质的表征问题;第二个是采用何种神经网络及其算法问题;第三个是神经网络输入与输出数据的归一化问题。无论采用哪种方法对数据进行处理,当用经过训练的神经网络进行物性估计时,不能将网络直接的输出值作为物性预估值,而是要将输出值再乘上一个系数,这个系数就是前面进行归一化处理时对数据的除数,相乘后得到的值作为物性估算值。神经网络用于物性估算,目前采用的就是BP网络或在此基础上的各种改进形式。常压沸点进行估算和研究。Prasad[11]等人利用神经网络对有机化合物的物理性质进行了预测,并与传统的基团贡献法比较,可以得到更为准确的物性参数。而后,董新法、方利国[12]等人将神经网络在物性估算中的应用作了一个全面而又简要的讲解,并提出神经网络在物性估算中潜在的应用前景,为其发展及其以后的应用研究提供了很好的工作平台。

目前,人工神经网络在各个领域中的应用都在向人工智能方向发展。不断丰富基础理论和开展应用研究、完善其技术的可靠性、开发智能性化工优化专家系统软件,对于我国的化工发展具有重要意义。此外,模糊理论、小波变换、统计学方法和分形技术等信息处理方法和理论与神经网络的结合解决化工类问题,被认为是一种发展趋势。

参考文献

[1]高大文,王鹏,蔡臻超.人工神经网络中隐含层节点与训练次数的优化[J].哈尔滨工业大学学报, 2003, 35(2): 207-209.

[2]苏碧瑶.人工神经网络的优化方法[J]. 科技资讯, 2011(30): 239-240.

[3]黄忠明, 吴志红, 刘全喜. 几种用于非线性函数逼近的神经网络方法研究[J]. 兵工自动化,2009, 28(10): 88-92.

[4]Rengaswamy R, Venkatasubramanian V. A fast training neural network and its updation for incipient fault detection and diagnosis[J].Computers and Chemical Engineering, 2000,(24): 431-437.

[5]黄道, 宋欣.神经网络在化工过程故障诊断中的应用[J].控制工程,2006,(13): 6-9.

[6]李宏光,何谦.化工过程建模中的一类复合型模糊神经网络[J]. 计算机与应用化学,2000,17(5): 399-402.

[7]Tsen A D, Shi S J, Wong D SH, etal. Predictive Control of Quality in Batch Polymerization Using a Hybrid Artificial Neural Network Model[J]. AIChE Journal,1996, 42(2): 455-465.

[8]谭民, 疏松桂. 基于神经元网络的控制系统故障诊断[J]. 控制与决策, 1990(1): 60-62.

[9]赵武奇, 殷涌光, 仇农学. 基于神经网络和遗传算法的红景天苷缓释微囊制备过程建模与优化[J]. 西北农林科技大学学报(自然科学版), 2006,34(11): 106-110.

[10] 范彩霞, 梁文权, 陈志喜. 人工神经网络预测氟比洛芬HPMC缓释片的药物释放[J]. 中国医药工业杂志, 2006, 37(10): 685-688.

[11]Prasad Y, Bhagwat S S. Simple Neural Network Models for Prediction of Physical Properties of Organic Compounds[J].Chemical Engineering & Technology, 2002, 25(11): 1041-1046.

神经网络的实现过程范文第5篇

人工神经网络是近年来迅猛发展的前沿课题,它对突破现有科学技术的瓶颈起到重大的作用。本文剖析了人工神经网络的特征、模型结构以及未来的发展趋势。

【关键词】人工神经网络 神经元 矩阵

1 人工神经网络概述

人工神经网络(ANN)是一种用计算机网络系统模拟生物神经网络的智能神经系统,它是在现代神经生物学研究成果的基础上发展起来的,模拟人脑信息处理机制的一种网络系统,它不但具有处理数值数据的计算能力,而且还具有处理知识的学习、联想和记忆能力。

人工神经网络模拟了大脑神经元的组织方式,反映了人脑的一些基本功能,为研究人工智能开辟了新的途径。它具有以下基本特征:

1.1 并行分布性

因为人工神经网络中的神经元排列并不是杂乱无章的,往往是以一种有规律的序列排列,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个基本的处理单元,则整个系统可以是一个分布式处理系统,使得计算快速。

1.2 可学习性和自适应性

一个相对很小的人工神经网络可存储大量的专家知识,并能根据学习算法,或利用指导系统模拟现实环境(称为有教师学习),或对输入进行自适应学习(称为无教师学习),可以处理不确定或不知道的事情,不断主动学习,不断完善知识的存储。

(3)鲁棒性和容错性

由于采用大量的神经元及其相互连接,具有联想映射与联想记忆能力,容错性保证网络将不完整的、畸变的输入样本恢复成完整的原型,鲁棒性使得网络中的神经元或突触遭到破坏时网络仍然具有学习和记忆能力,不会对整体系统带来严重的影响。

1.3 泛化能力

人工神经网络是大规模的非线性系统,提供了系统协同和自组织的潜力,它能充分逼近任意复杂的非线性关系。如果输入发生较小变化,则输出能够保持相当小的差距。

1.4 信息综合能力

任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,能同时处理定量和定性的信息,适用于处理复杂非线性和不确定对象。

2 人工神经网络模型

神经网络是在对人脑思维方式研究的基础上,将其抽象模拟反映人脑基本功能的一种并行处理连接网络。神经元是神经网络的基本处理单元。

在神经网络的发展过程中,从不同角度对神经网络进行了不同层次的描述和模拟,提出了各种各样的神经网络模型,其中最具有代表性的神经网络模型有:感知器、线性神经网络、BP网络、自组织网络、径向基函数网络、反馈神经网络等等。

3 神经元矩阵

神经元矩阵是神经网络模型的一种新构想,是专门为神经网络打造的一个矩阵,它符合神经元的一切特征。

神经元矩阵采用矩阵形式,它可为n维向量组成。引入向量触头和信使粒的概念,向量触头可生长,即长度可变,方向可变,信使粒可“游荡”在矩阵中,建立各种联系。如图1即是神经元矩阵模型

(1)容器可产生一种无形的约束力,使系统得以形成,容器不是全封闭的,从而保证系统与外界的沟通和交互;各向量间可用相互作用的力来联系,而各个信使粒则受控于容器、中空向量以及其它的信使粒。各神经元之间自主交互,神经元矩阵是一种多层次的管理,即一层管理一层。系统具有明显的层级制和分块制,每层每块均独立且协同工作,即每层每块均含组织和自组织因素。

(2)向量触头是中空的,信使粒可以通过向量或存储于向量中,所以又称为中空向量。向量存储了信使粒后,可以吸引更多的信使粒在附近,或使邻近向量转向、伸长,进而形成相对稳定的信息通路。

(3)当两条或更多的信息通路汇集时,可能伴随着通路的增强、合并,以及信使粒的聚集、交换,这是神经元矩阵运算的一种主要形式。通路的形成过程,也就是是神经元矩阵分块、分层、形成联接的过程,也为矩阵系统宏观管理、层级控制的实现奠定了基础。

神经元矩阵亦是一种具有生物网络特征的数学模型,综合了数学上矩阵和向量等重要概念,是一种立体的矩阵结构。尤其是将矩阵的分块特性和向量的指向特征结合起来,更好的体现了神经网络的整体性和单元独立性,系统的组织和自组织特征也更为凸显。信使粒以“点”的数学概念,增强了系统的信息特征,尤其是增强了矩阵的存储和运算功能。

4 人工神经网络的发展趋势

人工神经网络是边缘叉科学,它涉及计算机、人工智能、自动化、生理学等多个学科领域,研究它的发展具有非常重要意义。针对神经网络的社会需求以及存在的问题,今后神经网络的研究趋势主要侧重以下几个方面。

4.1 增强对智能和机器关系问题的认识

人脑是一个结构异常复杂的信息系统,我们所知道的唯一智能系统,随着信息论、控制论、计算机科学、生命科学的发展,人们越来越惊异于大脑的奇妙。对人脑智能化实现的研究,是神经网络研究今后的需要增强的地发展方向。

4.2 发展神经计算和进化计算的理论及应用

利用神经科学理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,使离散符号计算、神经计算和进化计算相互促进,开发新的网络数理理论。

4.3 扩大神经元芯片和神经网络结构的作用

神经网络结构体现了结构和算法的统一,是硬件和软件的混合体,神经元矩阵即是如此。人工神经网络既可以用传统计算机来模拟,也可以用集成电路芯片组成神经计算机,甚至还可以生物芯片方式实现,因此研制电子神经网络计算机潜力巨大。如何让传统的计算机、人工智能技术和神经网络计算机相融合也是前沿课题,具有十分诱人的前景。

4.4 促进信息科学和生命科学的相互融合

信息科学与生命科学的相互交叉、相互促进、相互渗透是现代科学的一个显著特点。神经网络与各种智能处理方法有机结合具有很大的发展前景,如与专家系统、模糊逻辑、遗传算法、小波分析等相结合,取长补短,可以获得更好的应用效果。

参考文献

[1]钟珞.饶文碧.邹承明著.人工神经网络及其融合应用技术.科学出版社.