首页 > 文章中心 > 生物技术的优点和缺点

生物技术的优点和缺点

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物技术的优点和缺点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

生物技术的优点和缺点

生物技术的优点和缺点范文第1篇

关键词:印染废水

Abstract: the paper system technology and progress of the printing and dyeing wastewater at home and abroad, especially the new technology in recent years is introduced, and probes into the developing trend of printing and dyeing wastewater treatment technology, combined with the advantages and disadvantages and practicability, economy, the authors put forward their own views and the prospect of printing and dyeing wastewater treatment.

Keywords: printing and dyeing wastewater

中图分类号:X791文献标识码:A文章编号:2095-2104(2013)

引言:印染废水组分复杂,常含有多种染料,色度深、毒性强、难降解,PH波动大、而且浓度高,废水量大,是难处理的工业废水之一。由于化学纤维织物的发展,,使难生化降解有机物大量进入印染废水,色度的去除是印染废水处理的一大难题,旧的生化法在脱色方面一直不能令人满意。传统的生物处理工艺已受到严重挑战。

如何选择适宜的废水处理工艺,做到运行成本既合理,污染物去除效果又好,是工程设计中的关键。为了对印染废水处理工艺有更深入的了解,文章简要介绍印染废水的几种典型的传统处理方式,以及新型印染废水处理工艺技术,并就其优缺点进行评析和展望。

一、传统印染废水处理工艺:

1 物理处理法:吸附法和混凝法

吸附法可通过吸附剂去除水中的色、臭、重金属离子和有机物。但该方法不大适用于分散染料的去除。

混凝沉淀法是对于成分复杂的染料废水,先经均化沉淀,加入适量的酸或碱中和后,再加混凝剂絮凝沉淀。传统混凝法对疏水性染料脱色效率很高。缺点是需随着水质变化改变投料条件,对亲水性染料的脱色效果差,COD去除率低。

2 化学处理法:化学氧化法、焚烧法

化学氧化法是通过强氧化剂的氧化作用,破坏发色基团或染料分子结构,达到脱色和去除COD的目的。

焚烧法是在高温下,利用空气深度氧化处理极高浓度有机物废水的最有效手段,是最易实现工业化的方法。目前,国内焚烧处理存在的主要问题是:热回收率低,不少焚烧装置因运转费用高而不能运行。国外先进的焚烧系统都配备废热回收和废气污染控制装置,有利于降低能耗和消除二次污染。

3 生物处理法

废水生化处理是利用微生物的代谢作用分解废水中有机物的处理方法。生化法操作简单, 运行费用低, 无二次污染的优点, 在印染废水的处理中得到了广泛的应用。生化法包括好氧法和厌氧法。

二、新型印染废水处理工艺:

1 膜过滤法

国内用醋酸纤维素纳滤膜处理染料厂的高盐度、高色度废水, 色度去除率几乎达100%, COD 去除率在95% 以上。【4】膜分离技术处理效果明显, 是一种极有前途的物理处理新技术。但其投资和运行费用高, 易发生堵塞, 需要高水平的预处理和定期的化学清洗, 还存在浓缩物的处理问题。【3】

2 高能物理处理法

水分子在高能束轰击作用下能发生激发和电离, 生成离子, 激发电子、次级电子, 这些高活性粒子可使有害物质得到降解。该技术的特点是有机物的去除率高, 设备占地面积小, 操作简便; 但因其产生高能粒子的装置昂贵, 技术要求高, 能耗较大, 要真正投入应用还有大量的问题需要解决。

3 化学处理法

3.1 光催化氧化法:利用某些物质在紫外光的作用下产生自由基, 氧化染料分子从而实现脱色。目前存在的主要问题是染料体系的复杂性和测试方法的局限性。其次, 是由于催化剂悬浮于水体中, 加大了清理难度, 增加对环境的二次污染。

3.2 超声波氧化法:基于超声波能在液体中产生局部高温、高压、高剪切力, 诱使水分子及染料分子裂解产生自由基, 引发各种反应并促进絮凝的一种技术。该技术可与化学氧化、电解氧化、光催化氧化等联用, 对一些难降解有机物有显著的降解效果,去除率高且反应速度快。

4. 生物法

4.1 好氧生物处理法【5】

4.1.1加压生物氧化法: 采用密闭塔式容器, 根据亨利分压定律, 以简单的“加压”手段突破了有机废水生物处理的供氧问题, 增大了活性微生物量, 提高了微生物活性。为生物法处理印染废水, 特别是处理浓度高和难生物降解的印染废水创出了一条新路。

4.1.2 膜生物反应器处理法: 它将水力停留时间与污泥停留时间相分离,延长了泥龄,污泥质量浓度可以得到提高,从而提高了生物系统对难降解有机物的处理能力。它具有出水稳定、水质好等优点, 但膜污染、成本高的问题阻碍了它的大量推广。

4.1.3 添加优势菌种法: 通过添加优势复合菌, 经长期驯化形成稳定的含菌泥体系, 菌泥的形成不但可使降解效率大大提高, 而且可使反应时间大大缩短, 因而大幅度降低了废水处理工程的投资和运行成本。利用高效菌作为添加剂或种源接种处理印染废水是当今环保领域中新兴的生物技术。

4.2 厌氧生物处理法: 厌氧生物处理较好氧生物处理在印染废水处理上, 有应用范围广、能耗低、有机负荷高、剩余污泥少的优势。但是, 单一的厌氧处理运行周期比较长, 而且往往很难达到排放标准。因此,厌氧生物处理应用较多的主要是其复合或改进工艺。

4.3 好氧-厌氧处理法: 通过厌氧处理以提高印染废水的可生化性, 使出水水质稳定, 减少了负荷冲击, 以利于后续的好氧处理。当有机物通过厌氧反应, 降解成有机酸或小分子的溶解性物质后, 再通过好氧处理予以彻底降解。

厌氧-好氧法处理难生化降解的印染废水具有除污染效率高、运行稳定和较强的耐冲击负荷能力等特点。但是又存在着以下自身无法解决的问题:活性污泥沉降性、生化反应速率和剩余污泥的处理费用较高;随着印染废水的可生化性变差,单一运用生物处理法不能满足实际要求。

小结:

比较上述各种印染废水处理技术, 物理和化学法总体上处理成本高, 其中吸附法和膜分离技术适合作为深度处理技术, 化学氧化法处理效率高、二次污染较少。比较有效的处理工艺是通过物化处理减少印染废水的生物毒性, 提高可生化性, 再采用运行成本较低的生化法进一步处理。且单一处理工艺均很难达到要求, 需对不同处理工艺进行优化组合。因此, 系统开发不同工艺的有效组合, 研究高效、经济、节能的印染废水处理反应器将是印染废水处理工艺研究的主要内容和发展方向。

参考文献

[1] 明银安,陆晓华. 印染废水处理技术进展. 工业安全与环保 2003,29,8:16~17.

[2] 赵平,罗智明,梁羽峰,宏凤英,吴晋波. 印染废水的传统处理方式评析. 广东化工.2011,8,38,220:114~115

[3] 景晓辉,尤克非,丁欣宇,蔡再生. 印染废水处理技术的研究与进展. 南通大学学报( 自然科学版). 2005.3.4:18~19

生物技术的优点和缺点范文第2篇

1.1缺乏拥有自主知识产权的基因

目前我国正在研发的转基因植物涉及的种类较少,随着转基因技术研发的深入,这种状况将严重制约我国转基因植物的研发进展。从整体水平看,目前我国在转基因作物研究技术方面的进展与国际基本同步,在发展中国家居领先地位。但与国际先进水平相比仍有较大差距,主要表现在我国拥有自主知识产权较差,转基因技术的研发又相对较少,这种状况将严重制约我国转基因作物的研发进展。

1.2对转基因作物的认知不足

转基因作物有很多优势,但它的潜在危害和风险是巨大的,对人类的健康和周围环境的不确定性。因为有一个巨大的信息不对称领域的转基因作物和技术等,优点和缺点尚未完全被人们认知或一定程度的理解。与此同时,由于社会道德和的影响,有些人的转基因作物有不同程度的偏差,如恐惧、怀疑。转基因作物的产业化在中国有直接或间接的负面影响。

1.3转基因育种技术体系不够完善

转基因技术在我国主要停留在实验室的小规模的水平,与国外跨国公司大规模遗传转化相比,有很大的差距。与此同时,我国缺乏有效的系统支持育种技术支持转基因技术,不能完全显示转基因技术的优势。在应用转基因技术为核心和领先技术,开发更好的种子资源的同时,也会带来相应的栽培,然而栽培和管理等一系列措施改变尚未改变。因此,实现转基因作物的产业化发展,除了依靠转基因技术获得优良的品种资源,还需要杂交育种、耕作栽培、土壤、植物和其他配套的综合措施。

1.4国内农业科技企业发展落后

转基因植物产业化能力仍然薄弱。缺乏具有国际竞争力的大型农业科技企业组织和企业、成果转化和产业化的转基因植物产业化能力较弱。在转基因作物市场中,通过企业重组、并购,孟山都、安内特、巴斯夫、先正达、杜邦和其他大型农业生物技术企业已逐渐成为生物技术研究和发展的主题,占据了转基因作物品种、技术和知识产权,加速其在转基因行业的垄断。

2加强转基因产品贸易发展的对策

2.1加强有关农产品国际贸易规范和惯例的研究

我国之制定了相应的转基因产品管理制度,但缺乏强有力的监督。在政策创新方面,应该合理构建技术性贸易措施以保护消费者利益与产业发展。由于转基因产品对人类健康、生态环境的影响具有不确定性,建议相关部门在不歧视外国出口商的前提下制定专门针对转基因产品贸易的法律法规、技术标准、认证程序等,利用“转基因安全”的审定,设置高门槛,阻止外国产品随意进入我国市场。同时,也要重视宣传尊重消费者的知情权,把对转基因食品的选择权交给消费者。

2.2建立标准化的协调转基因产品管理系统

建立一个标准化的协调转基因产品管理系统,以确保产品的安全。一方面,加强宣传,提高公众的感知水平的转基因作物加强农业转基因技术的有效推广。另一方面,我们应该完善立法体系,制定细致的实验室以及种植审批制度,以保证有条件的社会力量可以加入到转基因产品的研发过程,从而促进转基因产业的发展。

2.3增强转基因技术的研究与开发

近年来,我国政府逐渐重视了科技的重要性,而且在科技投入方面也是逐年加大,这位我国的产品的创新和发展提供了有力的保障,但是资金的投入力度和发达国家相比还是相差甚远,甚至都不及发达国家一家跨国公司的科研投入力度。由欧美转基因产品的贸易争端可以发现,只有自身的科研技术能力在国际上处于领先水平,才能在国际舞台上立足,才能引领国际市场的发展。

2.4增强转基因技术的应用提高我国竞争力

我国应该继续推进转基因作物的产业化和市场化,打造出优势产品在国际上的竞争力,但是要根据国际市场的情形和转基因技术的重视程度。目前,我国的优势转基因技术主要是在抗虫棉和转基因水稻方面,所以我国应该继续发展转基因技术在棉花和水稻方面的研究,形成自己的优势产业。

3结论

生物技术的优点和缺点范文第3篇

关键词 绿色化学 环境保护 生物技术

人类正面临有史以来最严重的环境危机,由于人口急剧的增加,资源的消耗日益扩大,人均耕地、淡水和矿产等资源占有量逐渐减少,人口与资源的矛盾越来越尖锐;环保问题就成为经济与社会发展的重要问题之一。作为国民经济支柱产业之一的化学工业及相关产业,在为创造人类的物质文明作出重要贡献的同时,在生产活动中不断排放出大量有毒物质,化学工业也为环境和人类的健康带来一定的危害。发达国家对环境的治理,已开始从治标,即从末端治理污染转向治本,即开发清洁工业技术,消减污染源头,生产环境友好产品。“绿色技术”已成为21世纪化工技术与化学研究的热点和重要科技前沿。

绿色化学又称绿色技术、环境无害化学、环境友好化学、清洁化学。绿色化学即是用化学及其它技术和方法去减少或消除那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等的使用和产生。

化学可以粗略地看作是研究从一种物质向另一种物质转化的科学。传统的化学虽然可以得到人类需要的新物质,但是在许多场合中却既未有效地利用资源,又产生大量排放物,造成严重的环境污染。绿色化学则是更高层次的化学,它的主要特点是“原子经济性”,即在获得物质的转化过程中充分利用每个原料原子,实现“零排放”,因此既可以充分利用资源,又不产生污染。传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。绿色化学可以变废为宝,可使经济效益大幅度提高。绿色化学已在全世界兴起,它对我国这样新兴的发展中国家更是一个难得的机遇。

1 采用无毒、无害并可循环使用的新物料

1.1 原料选择

工业化的发展为人类提供了许多新物料,它们在不断改善人类物质生活的同时,也带来大量生活废物,使人类的生活环境迅速恶化。为了既不降低人类的生活水平,又不破坏环境,我们必须研制并采用对环境无毒无害又可循环使用的新物料。

以塑料为例,据统计,到1989年美国在包装上使用的塑料就超过55.43亿kg(20世纪90年代数量进一步上升),打开包装后即被抛弃,这些塑料废物破坏环境是我们面临的一大问题:掩埋它们将永久留在土地里中;焚烧它们会放出剧毒。

我国也大量使用塑料包装,而且在农村还广泛地使用塑料大棚和地膜,造成的“白色污染”也越来越严重。解决这个问题的根本出路在于研制可以自然分解或生物降解的新型塑料,目前国际上已有一些成功的方法,例如:光降解塑料和生物降解塑料。前者已经投入生产。光生物双降解塑料研究是我国“八五”科技攻关的一个重大项目,已取得一些进展。

1.2 溶剂的选择

大量的与化学制造相关的污染问题不仅来源于原料和产品,而且源自在其制造过程中使用的物质。最常见的是在反应介质,分离和配方中所用的溶剂。在传统的有机反应中,有机溶剂是最常用的反应介质,这主要是因为它们能较好地溶解有机化合物。但有机溶剂的毒性和难以回收又使之成为对环境有害的因素。因此,在无溶剂存在下进行的有机反应,用水作反应介质,以及超临界流体作反应介质或萃取溶剂将成为发展洁净合成的重要途径。

1.2.1 固相反应

固相化学反应实际上是在无溶剂化作用的新颖化学环境下进行的反应,有时可比溶液反应更为有效并达到更好的选择性。它是避免使用挥发性溶剂的一个研究动向。

1.2.2 以水为溶剂的反应

由于大多数有机化合物在水中的溶解性差,而且许多试剂在水中会分解,因此一般避免用水作反应介质。但水作为反应溶剂有其独特的优越性,因为水是地球上自然丰度最高的“溶剂”,价廉、无毒、不危害环境。此外水溶剂特有的疏水效用对一些重要有机转化是十分有益的,有时可提高反应速率和选择性,更何况生命体内的化学反应大多是在水中进行的。

水相有机合成在有机金属类反应,水相Lewis酸催化的反应现都已取得较大进展。因此在某些有机化学反应中,开发利用以水作溶剂是大有可为的。

1.2.3 超临界流体作为有机溶剂

超临界流体是指超临界温度及超临界压力下的流体,是一种介于气态与液态之间的流体。在无毒无害溶剂的研究中,最活跃的研究项目是开发超临界流体(SCF),特别是超临界CO2作溶剂。超临界CO2是指温度和压力在其临界点(31.10℃,7 477.79KPa)以上的CO2流体。它通常具有流体的密度,因而有常规常态溶剂的溶解度;在相同条件下,它又具有气体的粘度,因而又具有很高的传质速度。而且,由于具有很大的可压缩性,流体的密度,溶剂溶解度和粘度等性能可由压力和温度的变化来调节。其最大优点是无毒、不可燃、价廉等。

1.3 催化剂的选择

许多传统的有机反应用到酸、碱液体催化剂。如烃类的烷基化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸做催化剂,这些液体酸催化剂的共同缺点是:对设备腐蚀严重,对人身危害和产生废渣污染环境。为了保护环境,多年来人们从分子筛、杂多酸、超强酸等新催化材料入手,大力开发固体酸做为烷基催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术较为成熟,这种催化剂选择性高,乙苯收率超过99.6%,而且催化剂寿命长。

2

化学反应的绿色化

为了节约资源和减少污染,合成效率成了当今合成方法学研究中关注的焦点。合成效率包括两方面,一是选择性(化学、区域、非对映体和对映体选择性),另一个就是原子经济性,即原料分子中究竟有百分之几的原子转化为产物,理想的原子经济反应是原料分子中的原子百分之百的转变为产物,不产生副产物或废弃物,实现废物的“零排放”。为此,化学化工工作者在设计合成路线时,要减少“中转”、增加“直快”、“特快”,更加经济合理地利用原料分子中的每一个原子,减少中间产物的形成,少用或不用保护基或离去基,避免副产物或废弃物的产生。实现原子经济反应的有效手段很多,在些不作赘述。

3

生物技术的应用

生物科学是当代科学的前沿。生物技术是世界范围内新技术革命的重要组成部分,生物化工是21世纪最具有发展潜力的产业之一,它将成为创造巨大社会财富的重要产业体系。采用生物技术已在能源、采油、采矿、肥料、农药、蛋白质、聚合物、表面活性剂、催化剂、基本有机化工原料、精细化学品的制造等方面得到广泛应用。从发展绿色化学的角度出发,它最大的特点和魅力就在节约能源和易于实现无污染生产而且可以实现用一般化工技术难以实现的化工过程,其产品常常又具有特殊性能。因此,生物技术的研究和应用倍受青睐。

绿色化学是人类的一项重要战略任务。绿色化学的根本目的是从节约资源和防止污染的观点来重新审视和改革传统化学,从而使我们对环境的治理可以从治标中转向治本。绿色化学的发展不仅将对环境保护产生重大影响,而且将为我国的企业与国际接轨创造条件。

参考文献

1 朱清时. 绿色化学和新的产业革命[J]. 现代化工,1998(6)

2 闵思泽. 环境友好石油炼制技术的发展[J].化学进展,1998(1)

生物技术的优点和缺点范文第4篇

关键词:蛋白质组学;蛋白质组学技术体系

中图分类号:Q753

文献标识码:A

文章编号:1672-979X(2010)5-0207-04

21世纪是生物技术和信息技术的世纪。随着人类基因组测序计划的完成,功能基因组学逐渐成为新的研究热点,研究蛋白质组学是功能基因组研究的重要组成部分,是生命科学研究进入后基因组时代的里程碑,也是后基因组时代研究的核心内容之一。

1 蛋白质组与基因组――从基因组到蛋白质组的转变

基因组用于描述生物的全部基因和染色体组成。基因组学包括结构基因组学和功能基因组学两方面的内容。

随着研究的深入,人们认识到单纯基因组信息不能完全揭示生命的奥秘。基因是遗传信息的携带者,蛋白质才是生理功能的执行者和生命活动的直接体现者。几乎所有的生理和病理过程都能引起蛋白质相应的变化,研究蛋白质结构和功能将直接阐明生物体在不同生理或病理条件下的变化机制。由此产生了蛋白质组学(protemics)。在后基因组时代,生命科学的中心任务将是阐明基因组所表达蛋白质的表达规律和生物功能。生命科学的研究重心将从基因组学移向蛋白质组学。

2 蛋白质组学的研究内容

蛋白质组学研究的内容主要有结构蛋白质组学和功能蛋白质组学两方面。结构蛋白质组学主要是研究蛋白质表达模式,功能蛋白质组学主要是研究蛋白质功能模式,目前的研究主要集中在蛋白质组相互作用网络关系上。

目前蛋白质组学又出现了新的研究趋势:(1)亚细胞蛋白质组学分离、鉴定不同生理状态下亚细胞蛋白质的表达,这对全面了解细胞功能有重要意义;(2)定量蛋白质组学精确的定量分析和鉴定一个基因组表达的所有蛋白质已成为当前研究的热点;(3)磷酸化蛋白质组学蛋白质磷酸化和去磷酸化调节几乎所有的生命活动过程。蛋白质组学的方法可以从整体上观察细胞或组织中蛋白质磷酸化的状态及其变化;(4)糖基化蛋白质组学可用于确定糖蛋白特异性结合位点中多糖所处的不同位置。近来在蛋白质组学背景下进行的糖生物学研究已取得了可喜的进展;(5)相互作用蛋白质组学通过各种先进技术研究蛋白质之间的相互作用,绘制某个体系蛋白质作用的图谱。

3 蛋白质组学研究技术

蛋白质组学的发展,既是技术推动又受技术限制。蛋白质组学研究成功与否,很大程度上取决于技术方法水平的高低。蛋白质组学的蓬勃发展主要得益于三大技术突破:固相化pH梯度胶条即IPG胶条的发明和完善;两种软电离质谱技术的出现:蛋白质双向凝胶电泳图谱数字化和一系列分析软件的问世。当前国际蛋白质组研究技术平台的技术基础和发展趋势有以下几个方面。

3.1蛋白质样品制备技术

样品制备是双向电泳成功的关键之一。选择合适的样品制备方法对获得满意的双向电泳图谱非常重要。不同来源的样品有不同的处理方法。目前常用的样品处理技术有液相等电聚焦、亚细胞分级、吸附色谱、连续多步提取方法等。

激光捕获显微切割技术是上世纪末期发展起来的新技术。利用激光切割组织,能高效地从复合组织异性地分离出单个细胞或单一类型细胞群,显著提高样本的均一性。

3.2蛋白质分离技术

3.2.1双向凝胶电泳(2-DE) 其原理是根据蛋白质的等电点和相对分子质量来分离蛋白质。近年双向电泳技术的蛋白质分离分辨率和重复性显著提高。尤其是差异荧光显示凝胶电泳(DIGE)技术,将蛋白质样品经不同的荧光染料CYPRO Ruby(Cy2、Cy3、Cy5)标记后,等量混合双向电泳,蛋白量差异可通过蛋白点荧光信号间的不同比率分辨。此法灵敏度高,所需样品量少,一张胶可同时分析3个样品,减少了工作量,重复性显著提高。目前该技术已得到了广泛应用。

3.2.2高效液相色谱技术(HPLC) 2D-LCO口串联HPLC也是分析蛋白质组学最有效的工具之一。其基本原理是先进行第一向分子筛柱层析,按蛋白质相对分子质量大小分离。从柱上流出的蛋白峰自动进入第二向层析进一步分离,第二向层析通常是利用蛋白质表面疏水性质进行反相柱层析。

3.2.3毛细管电泳(CE) 在高电场强度作用下,按相对分子质量、电荷、电泳迁移率等差异有效分离毛细管中的待测样品。CE分辨率高,分离速度快且易于和ESI-MS实现在线连接,在蛋白质分析中应用的极为广泛。与2-DE比较,CE可在线自动分析蛋白质的分离,并可分析相对分子质量范围不适于2-DE的样品。缺点是复杂样品分离不完全。

3.3蛋白质定量分析

蛋白质组研究中,以2-DE为基础的蛋白质定量方法大致有考马斯亮蓝染色法、银染法、负染法、荧光染色法和放射性同位素标记法等。其中,考马斯亮蓝染色法和银染法是最常用的定量手段,操作简单易行,而且能很好地与质谱鉴定匹配,但灵敏度较低,检测下限为0.2~0.5g,背景较高。

银染的优点是灵敏度高,可染出蛋白质量1ng/点,但与蛋白质量的线性关系不如考马斯亮蓝染色法,且对质谱鉴定影响较大。

负染方法简单快速,但是,其重复性依赖于许多物理化学因素,例如染色液的pH,胶中阴离子浓度、温度等,所以不能作为一种通用方法。

荧光染色法的灵敏度与银染相似但速度快得多,且不需要固定蛋白质。这为后续的蛋白酶解或印迹带来很大方便。此外,荧光染色的线性范围较宽,定量结果较可靠。

在所有的染色方法中,最灵敏的是同位素标记法,20×10-6量的标记蛋白就可通过其荧光或磷光的强度测定。但此方法易污染,易对人体产生伤害,操作也不方便,一般不采用。

3.4蛋白质的鉴定

3.4.1氨基酸组成分析此法可提供蛋白质一级结构信息,耗资低,但速度较慢。所需蛋白质或肽的量较大,在超微量分析中受到限制;且存在酸性水解不彻底或部分降解而致氨基酸变异的缺点,故应结合蛋白质的其它属性鉴定。

3.4.2 C-端或N-端氨基酸序列分析常用Edman降解法测定蛋白质N-端氨基酸序列。常用羧肽酶法、化学降解法测定蛋白质C-端氨基酸序列。目前均可用自动测序仪。

3.4.3质谱能清楚地鉴定蛋白质并准确测量肽和蛋白质的相对分子质量、氨基酸序列及翻译后的修饰,因灵敏度高、速度快、易自动化,已成为蛋白质组研究中主要的蛋白质鉴定技术。

质谱技术的基本原理基于:带电粒子在磁场或电场中运动的轨迹和速度依粒子质量与携带电荷比的不同而变

化,可据此判断粒子的质量和特性。目前常用的质谱仪有气相色谱-质谱仪(GC-MS):液质联用质谱仪(LC-MS);电喷雾电离串联质谱仪(ESI-MS-MS);液相色谱-电喷雾离子化质谱仪(LC-ESI-MS);基质辅助的激光解吸飞行时间质谱仪(MALDI-TOF-MS)等。其中MALDI-TOF-MS和ESI-MS-MS是简单高效且灵敏的方法,是目前蛋白质组学研究中应用最广泛的生物质谱仪。

3.4.3.1肽质量指纹图谱法鉴定蛋白质在蛋白质数据库中检索实验获得的肽质量指纹图谱,根据肽段匹配率和蛋白质序列覆盖率寻找具有相似肽指纹图谱(PMF)的蛋白质,就可以初步完成蛋白质鉴定。

当前测定蛋白质的肽质量指纹图谱,常用的质谱仪为MALDI-TOF-MS,精度可达0.1个质量单位,灵敏度可以达到分解亚皮摩尔量的蛋白质,并且分析时间极短,适于蛋白质的高通量鉴定。

3.4.3.2质谱测肽序列信息鉴定蛋白质为进一步鉴定蛋白质,可将液相中的肽段经电喷雾电离后进入串联质谱,肽链中的肽键断裂,形成N-端和C-端碎片离子系列。根据肽片段的断裂规律综合分析这些碎片离子系列,可得出肽段的氨基酸序列,联合肽片段的相对分子质量和肽段的序列信息,就足以鉴定一个蛋白质。

表面增强激光解吸电离-飞行时间-质谱(SELDI-TOF-MS)是在MALDI-TOF-MS基础上进一步改进的质谱技术。它通过表面选择性吸附大大降低了样品蛋白质的复杂性,而又能同时分析多样品、多蛋白质,具有分析速度快、简便易行、样品用量少和高通量等特点。

3.4.4同位素标记亲和标签(ICAT) 这是应用MALDI-ToF和LC-MS/MS表达蛋白质差异的定量分析技术。其优点是可以直接测试混合样品而不需分离,能迅速定性和定量鉴定低丰度蛋白质,但也存在特异性吸附、不可逆吸附和容量低等缺点。

3.4.5iTRAQ iTRAQ试剂是在ICAT基础上发展起来的氨基反应试剂,可标记四重样品,以便用串联质谱仪比较分析丰度。Hirsch等利用iTRAQ-MS/MS研究大鼠肝脏局部热缺血处理后Kuppfer细胞内蛋白质的变化,获得了总计1559种蛋白质的定量比较数据。

3.4.6蛋白质芯片技术这是用于分析蛋白质功能及相互作用的生物芯片。待分析样品中的生物分子与蛋白质芯片的探针分子杂交或相互作用或用其他分离方式分离后,用激光共聚焦显微扫描仪检测和分析杂交信号,从而实现高通量检测多肽、蛋白质及其他生物成分的活性、种类和相互作用。此技术快速、操作简便、样品用量少,可平行检测多个样品,可直接检测不经处理的各种体液和分泌物等。在蛋白质组学研究中较目前用的常规方法有明显优势。

3.5蛋白质之间的相互作用技术

蛋白质之间相互作用是细胞生命活动的基础和特征。目前主要的研究方法有以下几种。

3.5.1酵母双杂交系统这是在真核模式生物酵母中进行的,灵敏度很高。目前此技术不但可用于体内检验蛋白质之间,蛋白质与小分子肽、DNA、RNA之间的相互作用,而且能用于发现新的功能蛋白质,研究蛋白质的功能,对于认识蛋白质组特定代谢途径中的蛋白质相互作用关系网络发挥了重要作用。

这种技术可用于研究大量蛋白质间的相互作用,易自动化、高通量,但存在假阳性和假阴性现象。酵母双杂交系统提供的蛋白质之间可能的相互作用信息,还需通过进一步的生物化学实验确定和排除。

3.5.2噬菌体展示技术主要是在编码噬菌体外壳蛋白质基因上连接一单克隆抗体基因序列。噬菌体生长时表面会表达出相应单抗,噬菌体过柱时,如柱上含有目的蛋白质,则可特异性地结合相应抗体。该技术具有高通量及简便的特点,与酵母双杂交技术互为补充,弥补了酵母双杂交技术的一些限制。缺陷是噬菌体文库中的编码蛋白均为融合蛋白,可能改变天然蛋白质的结构和功能,体外检测的相互作用可能与体内不符。

3.5.3串联亲和纯化(TAP)

利用一种经过特殊设计的蛋白标签,经过两步连续亲和纯化,获得更接近自然状态的特定蛋白复合物。TAP技术可在低浓度下富集目的蛋白,得到的产物可用于活性检测及结构分析。因其高特异性和选择性可减小复杂蛋白质组分离的复杂性。

TAP技术的开发是研究蛋白质相互作用方法学上的巨大突破。该方法集成了经典的亲和纯化和免疫共沉淀两种技术的优点,可快速得到生理条件下与目标蛋白真实相互作用蛋白质的特点。这些分离技术与2-DE相互补充或不同分离模式组合,将成为蛋白质组学高通量分析的重要工具。

3.5.4表面等离子共振技术(SPR) 为研究蛋白质之间相互作用的全新手段。典型代表是瑞典BIACORE的单元蛋白质芯片。SPR技术的特点是检测快速、安全,不需标记物或染料,灵敏度高。除用于检测蛋白质之间的相互作用外,还可用于检测蛋白质与核酸及其他生物大分子之间的相互作用,并且能实时监测整个反应过程。因此,SPR技术在检测生物大分子特异性相互作用上比传统方法更具优势。

3.6生物信息学分析

生物信息学是蛋白质组学研究不可或缺的研究方法。蛋白质组学研究任一物种的基因组编码的全套蛋白质,通常是高通量的,在预测和结构分析蛋白质功能时,生物信息学就成为蛋白质组学研究的核心技术之一。数据库是生物信息学的主要内容,各种数据库几乎覆盖了生命科学的各领域,建立与开发蛋白质组数据库和分析软件是蛋白质组定性和定量分析的重要基础。Mascot,Expasy,PeptideSearch和ProteinProspector等是目前蛋白质组学中常用的检索数据库。

生物技术的优点和缺点范文第5篇

【关键词】 信号放大;时间分辨荧光分析;镧系元素螯合物

Studies and applications of time-resolved fluorescence assay based on signal amplification

【Abstract】 Time-resolved fluorescence assies(TRFA) based on signal amplification are new ultrasensitive labelling assay technologies.The basis is biosignal amplification,the labels are lanthanide chelates,and the detection methods are the time-resolved and wavelength-resolved fluorescence assay in the technologies.In addition,enzyme-labelled assay and PCR amplification et al are used in the technologies.The several main signal amplification methods and amplifications, for example, enzyme-amplification, two-round enzyme-amplification,europium nanopartical,rolling circle amplification,immuno-PCR and fluorescence quenching assay et al, were introduced in the summary. The unique advantages of nonisotope and ultrasensitivity and extensive applications in bioassay shown good prospects of TRFA based on signal amplification.

【Key words】 signal amplification; time-resolved fluorescence assay; lanthanide chelate

近些年来,非同位素标记分析技术发展迅速。它主要包括:酶标记分析技术、化学发光分析技术、生物发光分析技术和时间分辨荧光分析技术。信号放大时间分辨荧光分析技术克服了其他技术的缺点,具有非同位素、灵敏度高、标记物制备简单、测量快速和分析动态范围宽等优点,成为一种最有发展前途的非同位素标记分析技术。

1 信号放大时间分辨荧光分析技术的原理及特点

信号放大时间分辨荧光分析(time-resolved fluorescence assay, TRFA)技术是把生物信号放大、镧系元素螯合物的固有优点以及时间分辨和波长分辨两种测量技术合为一体,极其有效地排除了非特异荧光,测量了特异荧光,因而灵敏度很高。

信号放大时间分辨荧光分析技术的优点归根到底是源于镧系元素螯合物的固有特点[1]。它们是:(1)激发光谱带较宽,可以增加激发能,提高标记物的比活性。(2)发射光谱带很窄,50%发射谱带的宽仅约为10nm,可以利用通带滤光片,只允许峰值波长±5nm谱段通过供测量,在如此窄的谱段内,非特异荧光很少,可有效降低本底荧光,且能量损失也不大。(3)激发光与发射光之间的stokes位移大,有利于排除激发光散射等的干扰。(4)镧系离子螯合物的荧光寿命很长,约1ms,在时间分辨荧光仪上测量时,脉冲光源激发后,可适当延迟一段时间,待其他短半衰期(1~10ns)的非特异荧光完全衰变后再测量,从而极大的降低了本底荧光,实现了时间分辨,灵敏度大大提高。(5)镧系离子由激发态跃迁到基态时发射荧光,在测量时间内可反复激发镧系离子,相当于大大提高了标记比活性。

此外,时间分辨荧光分析技术的分析动态范围宽,可达4~5个数量级;标记物制备简单,稳定性好,有效期长,不受半衰期影响;标记蛋白质时反应条件温和,蛋白质活性受损少;测量快速,易于自动化。

2 生物素—链霉亲和素系统放大的时间分辨荧光分析

1988年,出现了一种新的双功能螯合剂,称为4,7-双(氯磺酰基苯基)-1,10-菲咯啉-2,9-二羧酸[4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid,BCPDA],为了增加生物放大又把生物素-亲合素系统(biotin-avidin system,BAS)引入免疫反应系统。本分析系统的基本原理是:固相McAb与抗原反应后,再加入生物素化McAb,形成免疫反应复合物,再加入通用试剂SA-BCPDA-Eu3+,其中SA是链霉亲合素(streptavidin,SA),借助SA与生物素的高特异和高亲合力的结合,把这种通用试剂连接到免疫反应复合物上,最终形成的复合物为:固相McAb-抗原(标准或样品)-(McAb-生物素)-(SA-BCPDA-Eu3+)[2]。本分析系统的特点是不用增强液,可在固相下直接测荧光。该系统共有三次放大作用,但放大倍数仍然远小于增强液系统,灵敏度可能略低,为此也有学者在最后一步加入增强液,进行液相荧光测定。

3 酶放大时间分辨荧光分析

酶放大时间分辨荧光分析(enzyme-amplified time-resolved fluorescence assay, EATRFA)系统,它的核心思想是把生物素-链霉亲和素的高亲和力和放大作用、酶放大作用、镧系元素螯合物的特有优点和时间分辨测量技术结合,不用增强液,在液相下测量荧光。

其基本原理是:固相McAb与抗原和生物素化McAb同时反应,形成免疫反应复合物;然后再与碱性磷酸酶(ALP)标记SA的复合物ALP-SA反应,形成复合物(固相McAb-抗原-McAb-生物素-SA-ALP)。再加入ALP的底物5-氟水杨酸磷酸酯(5-fluorosalicyl phosphate,5-FSAP),生成产物5-氟水杨酸(5-fluorosalicylic acid,5-FSA)。再加入铽(Tb3+)—乙二胺四乙酸(EDTA)螯合物,在高pH下,形成荧光寿命长、荧光产额高的三元复合物FSA- Tb3+-EDTA。测定546nm波长的荧光强度即可得抗原浓度[3,4]。在本法中,环境改变和淬灭体对荧光发射特征影响极小;镧系元素污染的影响也非常小[5];在液相下测荧光,不用分离,非常简捷。

4 二次酶放大时间分辨荧光分析

近年又提出二次酶放大时间分辨荧光分析系统[3,6],用于核酸杂交分析。其原理如下:先用抗体包被微滴定孔,再经特异抗原标记的靶DNA与该抗体反应,将靶DNA连接到固相抗体上。然后用生物素化探针与靶DNA杂交,再通过生物素与链霉亲和素的反应,将链霉亲和素标记的辣根过氧化物酶(HRP)连接到杂化物上。当加入含有H2O2和生物素化酪胺(B-T)的HRP的底物溶液,因有H2O2存在,HRP在催化酪胺氧化,产生游离基团的同时,也催化事先固定在微滴定孔表面的蛋白质(如白蛋白)的酪胺酰基的氧化。由于二聚体形成反应,于是B-T就共价地结合到固相上。再加入ALP-SA,经B与SA的反应,ALP结合到固相上。至此,实现了杂交和建立了杂交的定量关系。洗涤后,加入ALP的底物5-FSAP,此后的步骤与EATRF分析系统的相同。二次酶放大时间分辨荧光分析系统的主要目的是增加放大倍数,大大提高分析灵敏度。有报告称此系统的特异信号可增加30倍,信/噪比可改进10倍,灵敏度可达3×10-16mol[7]。

荧光光谱明确可靠。测量荧光强度时,溶液中有5-FSA:EDTA:Tb三元复合物,它的最大吸收波长与仪器的激发波长337nm几乎相等,很匹配,它的四条发射谱带中547nm谱带的强度最强,用(547±5)nm的窄通带滤光片,只允许其通过,是供测量的荧光信号。5-FSAP本身不发荧光,也不能与Tb-EDTA结合成复合物。游离的5-FSA只发射420nm波长的荧光,也被滤光片滤掉。

EATRFA系统的优点是:灵敏度非常高,对PBR322DNA的杂交分析,国外Evanglista等报道为3pg[8],国内赵启仁等报道为10pg[3],而二次EATRFA系统的灵敏度更高;分析系统简单,全过程操作,可以一管到底,在检测荧光强度时,不需要分离,可直接在液相下测量;分析快速,测定全过程只需要十几小时,且主要是温育需要过夜;相关试剂的有效期长;不存在放射性对人体的危害等问题;不存在金属离子污染问题;环境改变和淬灭体对荧光特征发射的影响极小;有利于分析自动化实现。

5 纳米颗粒的应用

近几年来,纳米颗粒应用到时间分辨荧光分析技术中。每个纳米颗粒含有数千镧系元素螯合物,这样可以大大提高标记比活性。在均相时间分辨荧光分析中,使用纳米颗粒技术,当激发光激发时,大量增加的镧系元素螯合物作为能量供体将能量传递给能量受体,传递的能量增加,受体所受的激发荧光强度也大大增加。Harma等和Kokko等分别报告了用铕纳米颗粒和时间分辨荧光免疫分析技术进行了超灵敏的前列腺特异抗原(PSA)和雌二醇的测定[9,10]。

6 滚动循环放大时间分辨荧光分析

由于ELISA等酶免疫分析的灵敏度和特异性受限,特别是当分析材料或抗原的量很少时,2000年,Schweitzer等[11]利用滚动循环放大(rolling circle amplification, RCA)进行了超灵敏的抗原测定。滚动循环放大用于蛋白抗原类的测定,被称为“immunoRCA”。它是一个多元化的分析系统,可以一次检测多种抗原,可用于免疫诊断和基因诊断。

“immunoRCA”的原理是:将抗原(标准或待测样品)包被在固相上,加入共价连接寡核苷酸引物的抗体。通过抗原和抗体的特异结合,寡核苷酸引物连于固相。这样,在环状DNA、DNA聚合酶和核苷酸的存在下,进行扩增。扩增的结果就是一条很长的DNA分子,它包含了数百个拷贝的环状DNA序列[12]。这时,我们用生物素化的探针和其杂交,利用生物素-链霉亲和素系统对扩增产物DNA的量进行时间分辨荧光测定。因为在一定范围内,所得扩增DNA的量正比于固相的量,所以可以定量固相抗原。

“immunoRCA”具有灵敏度高,特异性强;测定快速,动态范围宽;不需要特殊的设备,操作更简便;避免假阳性结果;检测结果更准确等优点[13,14]。

“immunoRCA”不仅可用于蛋白抗原类的测定,其基本原理还可应用于点突变检测以及直接检测病毒DNA或RNA来诊断病毒感染。2003年,Wang B等用RCA高效地测定了SARS-CoV病毒DNA[15]。2005年,Silander K等用少量DNA经过多样引物进行了SNP基因扩增的评估[16]。

7 免疫PCR时间分辨荧光分析

很多疾病的生命和分子基础的基本原理的阐明,需要研究生物分子的相互作用,甚至是在单个细胞或单个分子水平上的这种作用。多数自然过程涉及蛋白质和其他非核酸物质,因此,单是核酸分析还是不足以探索生物原理。为了把PCR的近乎指数的扩增能扩展到蛋白质的高灵敏度测定,Sano et al[17]创立了免疫PCR法(Immuno-PCR,IPCR)。IPCR是一种检测微量抗原的高灵敏度技术。它把抗原抗体反应的高特异性和PCR的高灵敏感性有机地结合起来。它的基本原理是:用一段已知DNA分子标记抗体作为探针,利用抗体和抗原的特异结合,把此探针连接到待测抗原上,PCR扩增粘附在抗原抗体复合物上的这段DNA分子,电泳定性,根据特异性PCR产物的有无,来判断待测抗原是否存在。IPCR是迄今最敏感的一种抗原检测方法,理论上可以检测单个抗原分子,实践上它的灵敏度比ELISA法高100~10000倍[18]。由于PCR产物在抗原量未达到饱和前与抗原抗体复合物的量成正比,因此IPCR还可进行抗原的定量[19]和半定量试验。

IPCR的连接分子是指IPCR中需要的连接报告分子和抗原抗体复合物的中间桥分子[20]。主要有:重组的链霉亲和素-蛋白A嵌合体,蛋白A可与抗体的Fc段结合,而链霉亲和素可与DNA分子上的生物素连接。以及生物素化单抗-亲和素-生物素化DNA分子复合体及其修饰物[21]。研制新型连接分子是IPCR的一个研究热点。

转贴于

要求用作IPCR报告分子和PCR扩增系统有良好的扩增效果,具有近似理论的扩增率。与反应系统中可能存在的DNA分子不应有同源性。目前用的较多的是DNA聚合酶将生物素化的碱基聚合到DNA末端,理论上一条DNA链上标记一个生物素分子时灵敏度最高。

PCR产物经葡聚糖凝胶电泳后,EB染色,紫外线灯下观察或照像,出现特异性扩增带为阳性。另外,在PCR扩增时应用生物素标记,再与碱性磷酸酶标记的链霉亲和素反应,再加入ALP的底物5-FSAP,产物为5-FSA,再加入含Tb-EDTA的荧光发展溶液,可用时间分辨荧光仪测荧光强度。当然也有用放射性同位素和荧光素的。

IPCR应用很多,目前主要用于检测肿瘤标志物、细胞因子、神经内分泌活性多肽、病毒抗原、细菌、酶、支原体、衣原体等微量抗原。到目前不完全统计有各种检测40多种[22~24]。

8 时间分辨荧光淬灭分析

时间分辨荧光淬灭分析(time-resolved fluorescence quenching assay,TRFQA)是建立于荧光共振能量转移(fluorescence resonance energy transfer,FRET)理论[25]上的一种分析系统。在此分析系统中,能量是从一个镧系元素螯合物转移到一个非荧光淬灭体。双链DNA探针,其中一条链的5′端标记镧系元素螯合物,另一条单链的3′端标记荧光淬灭基团。当标记有镧系元素螯合物的单链与靶DNA杂交时产生荧光信号,而游离的该种单链与标记有荧光淬灭基团的单链结合时,荧光信号被荧光淬灭基团淬灭。这样大大减小了背景荧光,提高了灵敏度[26]。2006年,Wang等进行了抗引物淬灭的实时PCR和临床癌症样品的分析[27]。Santangelo等用纳米结构探针测定了活细胞中的RNA[28]。

信号放大时间分辨荧光分析法是一种新型的超微量分析方法,由于它的优点突出,越来越受到关注,应用日益广泛。相信在不久的将来,随着生物技术的发展,对微量检测要求的提高,具有高灵敏度的信号放大时间分辨荧光分析将在更多的领域内得到广泛应用。

【参考文献】

1 Soini E, Kojola H . Time-resolved fluorometer for lanthanide chelates: a new generation on nonisotopic immunoassays. Clin Chem, 1983, 29: 65-68.

2 Hemmila J. Lanthanides as probes for time-resolved fluoromerric immunoassays. Scand J Clin Lab Invest, 1988,48:389.

3 赵启仁,李美佳,刘洁,等. 核酸杂交的酶放大时间分辨荧光分析. 中国医学科学院学报, 2002, 24(1): 84-88.

4 Steinkamp T, Karst U. Detection strategies for bioassays based on luminescent lanthanide complexes and signal amplification. Anal Bioanal Chem, 2004, 380(1):24-30.

5 Templeton EF, Wong HE, Evangelista RA, et al. Time-resolved fluorescence detection of enzyme- amplified lanthanide luminescence for nucleic acid hybridization assays. Clin Chem, 1991,37(9):1506-1512.

6 Campbell CN, Gal D, Cristler N, et al. Enzyme-amplified amperometric sandwich test for RNA and DNA. Anal Chem, 2002, 74(1):158-162.

7 Meyer J, Karst U. Enzyme-linked immunosorbent assays based on peroxidase labels and enzyme-amplified lanthanide luminescence detection. Analyst, 2001, 126(2): 175-178.

8 Evangelista RA, Pollak A, Templeton EF. Enzyme-amplified lanthanide luminescence for enzyme detection in bioanalytical assays. Anal Biochem, 1991, 197:213-224.

9 Harma H, Soukka T, Lovgren T, et al. Europium annoparticles and time-resolved fluorescence quenching assay(TruPoint) for ultrasensitive deteceion of prostate-specifec antigen.Clin Chem,2001,47(3):561-568.

10 Kokko L, Sandberg K, Lovgren T, et al. Europium(III)chelate-dyed nanoparticles as donors in a homogeneous proximity-based immunoassay for wstrasiol. Anal Chim Acta, 2004, 503:155-162.

11 Schweitzer B, Wiltshire S, Lambert J, et al. Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection. PANA, 2000,97(18):10113-10119.

12 Michael C, Mullenix, Richard S, et al. Rolling circle amplification in multiplex immunoassays. In DNA Amplification:Current Technologies and Applications.Horizon Bioscience,2004,313-331.

13 Haible D, Konrt S, Jeske H. Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods, 2006,Fe1b 27.

14 Wang B, Potter SJ, Lin Y, et al. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J Clin Microbiol, 2005 May,43(5):2339-2344.

15 Richardson PM, Detter C, Schweitzer B, et al. Practical applications of rolling circle amplification of DNA templates. Genet Eng (N Y), 2003,25:51-63.

16 Silander K, Komulainen K, Ellonen P, et al. Evaluating whole genome amplification via multiply-primed rolling circle amplification for SNP genotyping of samples with low DNA yield. Twin Res Hum Genet, 2005,8(4):368-375.

17 Sano T, Smith CL, Cantor CR. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science, 1992,258:120-122.

18 Christof M.Niemeyer, Michael Alder and Bon Wacker. Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification. TREND in Biotechnology,2005,23(4):208-216.

19 McKie A, Samuel D, Cohen B, et al. A quantitative immuno-PCR assay for the detection of mumps-specific IgG. J Immunol Methods, 2002,270: 135-141.

20 Shuji Takeda, Shinya Tsukiji and Teruyuki Nagamune. Site-specific conjugation of oligonucleotides to the C-terminus of recombinant protein by expressed protein ligation. Bioorg Med Chem Lett, 2004,14: 2407-2410.

21 Soi-Moi Chye, Shiu-Ru Lin, Ya-Lei Chen, et al. Immuno-PCR for detection of antigen to Angiostrongylus cantonensis circulating fifth-stage worms. Clin. Chem, 2004,50: 51-57.

22 Adler M, Wacker R,Niemeyer C M. A real-Time immuno-PCR assay for the ultrasensitive quantification of proteins suitable for routine diagnostics. Biochem Biophys Res Commun, 2003,308: 240-250.

23 Christof M Niemeyer, Ron Wacker, et al. Combination of DNA-directed immobilization and immuno-PCR: very sensitive antigen detection by means of self-assembled DNA protein conjugates. Nucleic Acids Res, 2003,31: 90.

24 Barletta JM, Edelman DC, Constantine NT. Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen. Am J Clin Pathol, 2004,122: 20-27.

25 Gabourdes M, Bourgine V, Mathis G, et al. A homogeneous time-resolved fluorescence detection of telomerase activity. Anal Biochem, 2004, 333(1):105-113.

26 Alice Y, Annika E, Jari H, et al. Homogeneous time-resolved fluorescence quenching assay (TruPoint)for nucleic acid detection. Clin Chem,50,No.10,2004,1943-1947.