前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高中化学知识点总结范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
一、元素周期表
熟记等式:原子序数=核电荷数=质子数=核外电子数
1、元素周期表的编排原则:
①按照原子序数递增的顺序从左到右排列;
②将电子层数相同的元素排成一个横行——周期;
③把最外层电子数相同的元素按电子层数递增的顺序从上到下排成纵行——族
2、如何精确表示元素在周期表中的位置:
周期序数=电子层数;主族序数=最外层电子数
口诀:三短三长一不全;七主七副零八族
熟记:三个短周期,第一和第七主族和零族的元素符号和名称
3、元素金属性和非金属性判断依据:
①元素金属性强弱的判断依据:
单质跟水或酸起反应置换出氢的难易;
元素最高价氧化物的水化物——氢氧化物的碱性强弱; 置换反应。
②元素非金属性强弱的判断依据:
单质与氢气生成气态氢化物的难易及气态氢化物的稳定性;
最高价氧化物对应的水化物的酸性强弱; 置换反应。
4、核素:具有一定数目的质子和一定数目的中子的一种原子。
①质量数==质子数+中子数:a == z + n
②同位素:质子数相同而中子数不同的同一元素的不同原子,互称同位素。(同一元素的各种同位素物理性质不同,化学性质相同)
二、 元素周期律
1、影响原子半径大小的因素:①电子层数:电子层数越多,原子半径越大(最主要因素)
②核电荷数:核电荷数增多,吸引力增大,使原子半径有减小的趋向(次要因素)
③核外电子数:电子数增多,增加了相互排斥,使原子半径有增大的倾向
2、元素的化合价与最外层电子数的关系:最高正价等于最外层电子数(氟氧元素无正价)
负化合价数 = 8—最外层电子数(金属元素无负化合价)
3、同主族、同周期元素的结构、性质递变规律:
同主族:从上到下,随电子层数的递增,原子半径增大,核对外层电子吸引能力减弱,失电子能力增强,还原性(金属性)逐渐增强,其离子的氧化性减弱。
同周期:左→右,核电荷数——→逐渐增多,最外层电子数——→逐渐增多
原子半径——→逐渐减小,得电子能力——→逐渐增强,失电子能力——→逐渐减弱
氧化性——→逐渐增强,还原性——→逐渐减弱,气态氢化物稳定性——→逐渐增强
最高价氧化物对应水化物酸性——→逐渐增强,碱性 ——→ 逐渐减弱
化学键
含有离子键的化合物就是离子化合物;只含有共价键的化合物才是共价化合物。
naoh中含极性共价键与离子键,nh4cl中含极性共价键与离子键,na2o2中含非极性共价键与离子键,h2o2中含极性和非极性共价键
化学能与热能
一、化学能与热能
1、在任何的化学反应中总伴有能量的变化。
原因:当物质发生化学反应时,断开反应物中的化学键要吸收能量,而形成生成物中的化学键要放出能量。化学键的断裂和形成是化学反应中能量变化的主要原因。一个确定的化学反应在发生过程中是吸收能量还是放出能量,决定于反应物的总能量与生成物的总能量的相对大小。e反应物总能量>e生成物总能量,为放热反应。e反应物总能量
2、常见的放热反应和吸热反应
常见的放热反应:①所有的燃烧与缓慢氧化。②酸碱中和反应。③金属与酸、水反应制氢气。
④大多数化合反应(特殊:c+co2= 2co是吸热反应)。
常见的吸热反应:①以c、h2、co为还原剂的氧化还原反应如:c(s)+h2o(g) = co(g)+h2(g)。
②铵盐和碱的反应如ba(oh)2•8h2o+nh4cl=bacl2+2nh3↑+10h2o
③大多数分解反应如kclo3、kmno4、caco3的分解等。
[练习]1、下列反应中,即属于氧化还原反应同时又是吸热反应的是( b )
a. ba(oh)2•8h2o与nh4cl反应 b.灼热的炭与co2反应
c.铝与稀盐酸 d.h2与o2的燃烧反应
2、已知反应x+y=m+n为放热反应,对该反应的下列说法中正确的是( c )
a. x的能量一定高于m b. y的能量一定高于n
c. x和y的总能量一定高于m和n的总能量
d. 因该反应为放热反应,故不必加热就可发生
化学能与电能
二、化学能与电能
1、化学能转化为电能的方式:
电能
(电力) 火电(火力发电) 化学能→热能→机械能→电能 缺点:环境污染、低效
原电池 将化学能直接转化为电能 优点:清洁、高效
2、原电池原理
(1)概念:把化学能直接转化为电能的装置叫做原电池。
(2)原电池的工作原理:通过氧化还原反应(有电子的转移)把化学能转变为电能。
(3)构成原电池的条件:(1)有活泼性不同的两个电极;(2)电解质溶液(3)闭合回路(4)自发的氧化还原反应
(4)电极名称及发生的反应:
负极:较活泼的金属作负极,负极发生氧化反应,
电极反应式:较活泼金属-ne-=金属阳离子
负极现象:负极溶解,负极质量减少。
正极:较不活泼的金属或石墨作正极,正极发生还原反应,
电极反应式:溶液中阳离子+ne-=单质
正极的现象:一般有气体放出或正极质量增加。
(5)原电池正负极的判断方法:
①依据原电池两极的材料:
较活泼的金属作负极(k、ca、na太活泼,不能作电极);
较不活泼金属或可导电非金属(石墨)、氧化物(mno2)等作正极。
②根据电流方向或电子流向:(外电路)的电流由正极流向负极;电子则由负极经外电路流向原电池的正极。
③根据内电路离子的迁移方向:阳离子流向原电池正极,阴离子流向原电池负极。
④根据原电池中的反应类型:
负极:失电子,发生氧化反应,现象通常是电极本身消耗,质量减小。
正极:得电子,发生还原反应,现象是常伴随金属的析出或h2的放出。
(6)原电池电极反应的书写方法:
(i)原电池反应所依托的化学反应原理是氧化还原反应,负极反应是氧化反应,正极反应是还原反应。因此书写电极反应的方法归纳如下:
①写出总反应方程式。 ②把总反应根据电子得失情况,分成氧化反应、还原反应。
③氧化反应在负极发生,还原反应在正极发生,反应物和生成物对号入座,注意酸碱介质和水等参与反应。
(ii)原电池的总反应式一般把正极和负极反应式相加而得。
(7)原电池的应用:①加快化学反应速率,如粗锌制氢气速率比纯锌制氢气快。②比较金属活动性强弱。③设计原电池。④金属的防腐。
化学反应的速率和限度
三、化学反应的速率和限度
1、化学反应的速率
(1)概念:化学反应速率通常用单位时间内反应物浓度的减少量或生成物浓度的增加量(均取正值)来表示。
计算公式:v(b)= =
①单位:mol/(l•s)或mol/(l•min)
②b为溶液或气体,若b为固体或纯液体不计算速率。
③重要规律:速率比=方程式系数比
(2)影响化学反应速率的因素:
内因:由参加反应的物质的结构和性质决定的(主要因素)。
外因:①温度:升高温度,增大速率
②催化剂:一般加快反应速率(正催化剂)
③浓度:增加c反应物的浓度,增大速率(溶液或气体才有浓度可言)
④压强:增大压强,增大速率(适用于有气体参加的反应)
⑤其它因素:如光(射线)、固体的表面积(颗粒大小)、反应物的状态(溶剂)、原电池等也会改变化学反应速率。
2、化学反应的限度——化学平衡
(1)化学平衡状态的特征:逆、动、等、定、变。
①逆:化学平衡研究的对象是可逆反应。
②动:动态平衡,达到平衡状态时,正逆反应仍在不断进行。
③等:达到平衡状态时,正方应速率和逆反应速率相等,但不等于0。即v正=v逆≠0。
④定:达到平衡状态时,各组分的浓度保持不变,各组成成分的含量保持一定。
⑤变:当条件变化时,原平衡被破坏,在新的条件下会重新建立新的平衡。
(3)判断化学平衡状态的标志:
① va(正方向)=va(逆方向)或na(消耗)=na(生成)(不同方向同一物质比较)
②各组分浓度保持不变或百分含量不变
③借助颜色不变判断(有一种物质是有颜色的)
④总物质的量或总体积或总压强或平均相对分子质量不变(前提:反应前后气体的总物质的量不相等的反应适用,即如对于反应xa+yb zc,x+y≠z )
有机物
一、有机物的概念
1、定义:含有碳元素的化合物为有机物(碳的氧化物、碳酸、碳酸盐、碳的金属化合物等除外)
2、特性:①种类多②大多难溶于水,易溶于有机溶剂③易分解,易燃烧④熔点低,难导电、大多是非电解质⑤反应慢,有副反应(故反应方程式中用“→”代替“=”)
二、甲烷ch4
烃—碳氢化合物:仅有碳和氢两种元素组成(甲烷是分子组成最简单的烃)
1、物理性质:无色、无味的气体,极难溶于水,密度小于空气,俗名:沼气、坑气
2、分子结构:ch4:以碳原子为中心, 四个氢原子为顶点的正四面体(键角:109度28分)
3、化学性质:①氧化反应:(产物气体如何检验?)
甲烷与kmno4不发生反应,所以不能使紫色kmno4溶液褪色
②取代反应:(三氯甲烷又叫氯仿,四氯甲烷又叫四氯化碳,二氯甲烷只有一种结构,说明甲烷是正四面体结构)
4、同系物:结构相似,在分子组成上相差一个或若干个ch2原子团的物质(所有的烷烃都是同系物)
5、同分异构体:化合物具有相同的分子式,但具有不同结构式(结构不同导致性质不同)
烷烃的溶沸点比较:碳原子数不同时,碳原子数越多,溶沸点越高;碳原子数相同时,支链数越多熔沸点越低同分异构体书写:会写丁烷和戊烷的同分异构体
三、乙烯c2h4
1、乙烯的制法:
工业制法:石油的裂解气(乙烯的产量是一个国家石油化工发展水平的标志之一)
2、物理性质:无色、稍有气味的气体,比空气略轻,难溶于水
3、结构:不饱和烃,分子中含碳碳双键,6个原子共平面,键角为120°
4、化学性质:
(1)氧化反应:c2h4+3o2 = 2co2+2h2o(火焰明亮并伴有黑烟)可以使酸性kmno4溶液褪色,说明乙烯能被kmno4氧化,化学性质比烷烃活泼。
(2)加成反应:乙烯可以使溴水褪色,利用此反应除乙烯
乙烯还可以和氢气、氯化氢、水等发生加成反应。
ch2=ch2 + h2→ch3ch3
ch2=ch2+hcl→ch3ch2cl(一氯乙烷)
ch2=ch2+h2o→ch3ch2oh(乙醇)
(3)聚合反应:
四、苯c6h6
1、物理性质:无色有特殊气味的液体,密度比水小,有毒,不溶于水,易溶于有机溶剂,本身也是良好的有机溶剂。
2、苯的结构:c6h6(正六边形平面结构)苯分子里6个c原子之间的键完全相同,碳碳键键能大于碳碳单键键能小于碳碳单键键能的2倍,键长介于碳碳单键键长和双键键长之间
键角120°。
3、化学性质
(1)氧化反应 2 c6h6+15o2 = 12co2+6h2o (火焰明亮,冒浓烟)不能使酸性高锰酸钾褪色。
(2)取代反应
① 铁粉的作用:与溴反应生成溴化铁做催化剂;溴苯无色密度比水大
② 苯与硝酸(用hono2表示)发生取代反应,生成无色、不溶于水、密度大于水、有毒的油状液体——硝基苯。+hono2 +h2o反应用水浴加热,控制温度在50—60℃,浓硫酸做催化剂和脱水剂。
(3)加成反应
用镍做催化剂,苯与氢发生加成反应,生成环己烷+3h2
五、乙醇ch3ch2oh
1、物理性质:无色有特殊香味的液体,密度比水小,与水以任意比互溶如何检验乙醇中是否含有水:加无水硫酸铜;如何得到无水乙醇:加生石灰,蒸馏
2、结构: ch3ch2oh(含有官能团:羟基)
3、化学性质
(1) 乙醇与金属钠的反应:2 ch3ch2oh +2na= 2ch3ch2ona+h2↑(取代反应)
(2) 乙醇的氧化反应
①乙醇的燃烧:ch3ch2oh +3o2= 2co2+3h2o
②乙醇的催化氧化反应2 ch3ch2oh +o2= 2ch3cho+2h2o
③乙醇被强氧化剂氧化反应
ch3ch2oh
六、乙酸(俗名:醋酸)ch3cooh
1、物理性质:常温下为无色有强烈刺激性气味的液体,易结成冰一样的晶体,所以纯净的乙酸又叫冰醋酸,与水、酒精以任意比互溶
2、结构:ch3cooh(含羧基,可以看作由羰基和羟基组成)
3、乙酸的重要化学性质
(1) 乙酸的酸性:
弱酸性,但酸性比碳酸强,具有酸的通性
①乙酸能使紫色石蕊试液变红
②乙酸能与碳酸盐反应,生成二氧化碳气体利用乙酸的酸性,可以用乙酸来除去水垢(主要成分是caco3):2ch3cooh+caco3=(ch3coo)2ca+h2o+co2↑乙酸还可以与碳酸钠反应,也能生成二氧化碳气体:2ch3cooh+na2co3= 2ch3coona+h2o+co2↑上述两个反应都可以证明乙酸的酸性比碳酸的酸性强。
(2) 乙酸的酯化反应
关键词:高中化学;创新思维;创新能力
一、引言
高中教育面临着高考的巨大压力,教学任务繁重且内容复杂,高中教育中经常出现课程紧张、教学枯燥且方法单一等情况。在这样背景下我国教育部门开始推行课程改革,丰富教学方法、创新教学模式,激发学生兴趣。高中化学作为典型的应用型学科,与实际生活有着紧密联系,且课程内容多为实验,很容易引起学生兴趣。高中化学教师应调整教学方法,培养学生的创新思维与创新能力。
二、高中化学教育特点
高中化学课堂教学不同于其他课程,主要表现为知识渐序性与开放性等特点。分析高中化学教材可以发现,教材编排存在明显的渐序性特点。与以前高中化学教材相比,新的教学知识点内容衔接更加紧密,已初步形成知识体系。此外,改革后的教材内容更加注重与初中知识的衔接,学生更加容易学习与掌握知识点;其次,高中化学课堂教育还表现出明显的开放性,教学中涉及许多化学实验,因此其教学与其他课程相比存在一定的开放性。
三、高中化学教育现状
(一)教学方式的不合理
高中化学教学主要体现在课堂上,教学方式直接关系到教学质量。但实际中存在教学方式与学生接收效果相脱节的情况。首先,部分高中化学教师教学方式陈旧,造成很多学生失去学习兴趣;其次,化学学科具备一定特点,部分教师不能适当安排实验课程,有时天天实验课,让学生产生疲劳感;最后,一些教师不能创新教学思路,教学方式过于刻板,课堂氛围严肃,影响教学效果。
(二)教师整合能力不足
高中化学课程教学中增加复习课堂,有效整合化学知识。但部分高中化学教师整合化学知识时,存在能力不足的问题。主要表现为教师不能将课堂化学知识转化为实际教学内容,或不了解学生的实际情况,教学步骤与学生情况脱离。
四、培养学生创新思维与能力的措施
(一)创新实验教学方法
众所周知,对于高中生来说,即将面临高考,学习枯燥,压力大,而高中化学作为一门趣味性较强的学科,刚好可以在繁忙中调节学生枯燥的学习和生活,刺激学生的创造性思维和能力。同时它也是高中化学教学中培养学生创新性思维和能力的重要部分。因此,高中化学老师应该将化学实验课程重点利用,在加强学生直观体验的同时,开发学生的创新思维以及能力。比如,在学习钠与水化学反应过程中,钠是漂浮在水面上融成闪亮光点,四处游动,产生白色的火花,同时酚酞溶液变红。在这个过程中,老师应该注意引导学生观察这些变化,帮助他们确定思考的方向,小心提示,从趣味性方面培养他们的创新性能力和思维。
(二)引入生活因素,活跃课堂氛围
高中化学知识中的概念就是化学概念,其反映化学事物、化学性质及化学性质等本质属性。所有概念都可以分成内涵与外延两部分,前者指的是事物特有属性,后者则是适用的一切范围,两者成反比状态,也就是内涵越广,外延越小。实际教学中可以引入生活因素。例如,为增加教学的趣味性,笔者在新课导入前准备一段憨豆先生洗衣服的视频,并思考洗衣服失败的原因,激起学生上课兴趣,通过举例引出分类法。大量举例让学生意识到分类的重要性。师:大家平时洗衣服时是怎么分类的?生:颜色深浅;布料性质;内衣外衣……师:为什么分类结果不一样?生:分类标准有差别。这时教师展示一些图片,如垃圾回收、超市货架等,总结日常生活中分类极大地方便了人们的生活。这点在化学学习中同样发挥着重要作用。
(三)有效整合化学复习题
化学复习过程中需要整合归纳各知识点,教学中化学教师也应该总结教学内容。例如在高三化学复习阶段,可以分类归纳化学知识点,依据各知识点特点详细划分习题。知识点分类结束后总结教学工作进展,反复推敲。可以通过填空题训练比较简单的基础知识,强化记忆夯实基础。记忆时不要死记硬背,而是应该全面理解知识点,通过理解训练加强记忆。通过复习题系统整合,发挥习题训练的作用。例如:现代汽车安全程度越来越高,安全气囊作为保障驾驶员安全的重要装置,在实际中发挥着重要作用。当汽车剧烈碰撞后,安全气囊内迅速充满气体保护驾驶员,气囊内化学反应:10NaN3+2KNO3→?K2O+5Na2O+16N2↑,若反应后还原产物比氧化产物少1.75mol,下列判断正确的是(CD)A.反应生成标况下N242.0LB.反应中KNO3被氧化的量为0.25molC.转移电子物质的量为1.25molD.N原子被氧化的物质的量3.75mol解析:此项选择题考查的知识点为氧化还原反应,结合电荷质量守恒定律,我们可以判断出反应中的N2不是单纯的氧化或还原产物,而是两者的综合。结合题目中给出的条件反应后还原产物比氧化产物少1.75mol,可以计算出N2体积为44.8L,因此判断A选项错误;参与反应的KNO3被还原而不是被氧化,直接判断B选项错误;借助方程式计算出反应中16molN2转移10mol电子,结合已知条件得出生成N2为2mol,转移的电子量为1.25mol,C选项正确;结合化学反应方程式,判断出还原产物比氧化产物少14mol,有30mol的氮原子物质的量参与氧化反应,其物质的量为3.75mol。D选项正确。最后判断出此题目为多项选择,正确答案为C、D两项。
五、结语
综上所述,高中化学教育中教师要及时转变教学观念与思维模式,发挥学生主体性,塑造轻松的学习氛围,引导学生利用课堂知识解决实际问题。化学作为一门实验学科,教师引导学生创新性思考,培养学生质疑精神,在课堂上发表自己观点与看法,不断进行创新性思考。希望通过本文论述,为推进高中化学教育水平贡献一份力量。
参考文献:
[1]陈丽芳.新课程背景下高中化学习题课高效课堂的有效性[J].现代阅读(教育版),2013,(9):11.
[2]赵国富.新课程理念下高中化学有效教学策略研究[J].现代阅读(教育版),2013,(10):62.
关键词:问题驱动式教学;高中化学;复习课
新课程标准要求教师在教学中要以学生为主体,引导学生正确解答问题,让学生参与到学习过程中,主动而非被动地接受知识。在高中化学复习课中,应用问题驱动式教学能够帮助学生有效整合化学知识点,让学生更系统、有条理地复习化学知识,进而提升化学复习课的学习效率。下面就问题驱动式教学在高中化学复习课中的应用进行探讨。
一、有效设计问题
高中化学复习课的目的在于帮助学生巩固旧知识,在复习中发现没有掌握的问题,让学生系统整体化学知识点,构成完整的知识结构。问题驱动式教学在高中化学复习课中的应用,教师在提出问题的环节,应当注意问题的深度,不能仅限于简单的旧知识巩固,应当通过有深度的问题让学生更深入、全面地了解知识。
在设计问题时,教师可以将问题与社会热点相联系,由于某一社会热点会涉及多方面的化学知识,这就有利于学生对多方面化学知识的巩固。例如,在减肥这一热点问题中,教师可以引出相关知识点,如何有效进行减肥,学生会答少吃甜食,多进行有氧运动,这就涉及糖类的化学式、三羧酸循环和氧化磷酸化的问题。由这一类型社会热点问题让学生将本不连贯的化学知识串联起来,达到高效复习的目的。
二、有效解决问题
有效提出问题后,教师可以循序渐进地引导学生有效解答问题,让学生在巩固零散知识的同时,主动地整理归纳知识点,在反思总结中构建完整的知识结构。
例如,在学习物质的量时,学生在解决相关问题后,教师可以顺势提出由物质的量延伸出的物质的量浓度、气体体积、物质质量等的计算问题,让学生通过一个小的知识点,将这一系列知识点的计算公式串联起来,形成系统的知识框架。此外,教师还可以设计开放型问题,让学生自行讨论关于某一类化学知识点所能联想到的其他知识点,小组探讨,互相解决问题,有效提高复习课的教学效率。
总而言之,教师在教学过程中应当灵活运用问题驱动式教学法,有效设计化学问题,引导学生高效解决问题,在反思解答中总结化学规律,进而提高化学复习课的效率。
关键词: 高中化学 学科特点 学习方法
化学是一门研究物质组成、结构、性质及变化规律的自然学科。要想使学生学好化学,取得高分,就必须让学生充分了解高中化学学科的特点,掌握一定的学习方法。
一、高中化学的学科特点
1.抽象性
在初中,主要通过定性分析的方法,从直观的自然现象入手让学生了解化学的概念与理论,学习最基础的化学知识。教师习惯于让学生死记硬背化学概念和公式。而到了高中,化学课程中包含大量的定性与定量分析,侧重于抽象思维,在抽象思维的基础上建立化学概念和规律。[1]如氧化还原反应的概念理论性就非常强,而且十分抽象,需要学生运用抽象思维能力,从而掌握其含义。
2.复杂性
高中化学教学内容有深度、有难度、化学方程式多,需要学生狠下工夫,花更多的时间和精力去学习。初中阶段的化学反应相对比较简单,而高中则相对较复杂,比如氯化钠与浓硫酸制氯化氢的化学反应,就需要在不同的情况下进行,很多学生对类似这样复杂的知识点感到难以理解。
3.以实验为基础
化学是一门以实验为基础的学科,因此以实验为基础是高中化学的典型特征。实验能为化学学习提供必要的感性材料,有利于学生理解化学概念和原理,形成科学的思想和观念。[2]同时在实验过程中,也能够让学生身临其境,亲手尝试操作一些实验器具,增加学习的乐趣,激发学习化学的热情。而且在实验过程中的观察及过程后的总结,也能让学生更深刻地理解化学反应的过程和原理,增强学生学习高中化学的主动性,培养学生运用化学解决问题的能力。
4.需要记忆的知识点多
有人说,化学既是理科,又是文科,这不无道理。因为化学的内容杂、知识点多,很多实验结论只能靠学生自己去记忆。特别是高中化学,对很多化学方程式的记忆既要联想其实验的过程,又要牢记反应的物质、条件、结果。只有准确记住了参与反应物质的物理化学性质、实验操作方式、化学方程式,才能正确地解题。
5.注重实践
化学是一门注重实践的学科,它来源于生活也应用于生活,它与人们日常的生产、生活紧密联系。学习化学是为了在实际生活中应用化学解决问题。所以在学习化学的过程中,要从实际生活出发,从熟知的日常生活中感受化学的产生发展过程,体会其中的化学机理,学会将化学知识应用于实践中,解决生活中遇到的种种问题。在应用化学知识解决现实问题的过程中,学生能够逐渐增强社会责任感。
二、高中化学的学习方法
1.注重实验
化学是一门以实验为基础的学科,很多化学知识,比如化学概念、基本原理、元素化合物性质等,都是通过实验获得的。[3]在做化学实验之前,学生要充分了解实验目的、实验步骤、实验过程、化合物性质、实验仪器,特别是需要注意的各种事项,确保实验过程安全顺利地进行。在实验过程中,需要让学生规范操作、注意观察、抓住本质的现象,时刻提防可能出现的问题,对实验过程中产生的现象、出现的问题做好实验记录。实验结束后,与小组成员讨论,对整个实验进行总结归纳,得出实验结论,同时针对出现的问题,提出合理可行的解决方案。
2.加强记忆积累
首先,学生接触化学的学习较语文、数学等学科晚,有个逐渐适应的过程;其次,相对于初中化学的知识量少,内容相对较简单的特点,高中化学的知识点非常多,不仅需要强化记忆训练,还要对其原理规律有较深刻的理解;最后,要掌握一定的记忆方法和技巧,切不可死记硬背,要有针对性地记忆、有重点地记忆、有技巧地记忆,要先理解了再记忆。化学规律的掌握不仅要靠长期积累,而且要依赖正确合理的记忆方法和技巧。
3.培养良好的学习习惯
良好的学习习惯是学好高中化学的保障。在学习化学的各个环节中,比如:预习、听课、记录、实验、作业、复习等,都要运用一定的方法。把课前预习发现的问题带到课堂上,有针对性地听讲,课后及时复习上课内容,做好练习,同时要把平时练习、考试做错的题目整理出来,细心揣摩,专心思考,最终攻克问题。遇到不懂的问题,及时向老师请教,把问题搞明白。
4.抓住典型与关键
学好高中化学,不在于老师讲得多,学生做得多,而是要让学生抓住关键和典型,学会总结归纳,从典型习题中获取所学知识。[4]比如可以利用一题多解的典型习题,让学生学会举一反三,锻炼学生的发散思维,让学生从中总结化学原理和规律,达到良好的化学学习效果。
总之,要使学好高中化学,就必须让学生了解化学科学的基本特点,理解化学变化的本质规律,并且要掌握一定的学习方法,注重实验基础、加强化学知识的记忆积累、抓住典型知识、养成良好的学习习惯等。只有正确合理地运用这些方法,才能学好高中化学。
参考文献:
[1]唐圣华.从高中化学的特点谈学习方法的变革指导[J].成功(教育),2011(23):10.
[2]贾志明.简析高中化学教材特点,构建学生化学科学素养[J].教育与教学研究,2009(6):24.
【关键词】概念图;高中化学;教学;运用
高中化学学习指的是在老师的指导下学生有组织的、有计划的有目的的去学习并获得化学知识,从而来形成化学技能并在此过程中培养学生的能力与发展学生的智力。而在现代形式下,化学虽然是一门基础性学科,却和人们的生活密切相关,而化学学科还是能源科学、环境科学、材料科学以及生命科学等学科的基础。因此在教学中引进概念图教学,能够帮助学生更加清晰的来理解化学概念之间的关系,有利于学生形成完善的化学知识的网络体系。
1.概念图解析
概念图指的是在学习中用节点来代表概念,用连线来表示概念相互之间的关系的一种图示方法。在实际中运用概念图还可以把人脑中比较隐性的知识视觉化、显性化,从而便于人们之间交流思想和表达意见,概念图一般包括的元素有:节点、连线、层级以及命题。
2.在高中化学中运用概念图来构建复杂的知识
在高中化学中选择复杂的结构层次类型,对知识点内容进行归纳总结。绘制出清晰地维恩图,并用来比较辨析比较复杂的知识。
⑴用等级图来纵向构架知识点。运用等级图主要是把核心的概念给置顶,相同层次的概念来并列排列,不同层次的概念呈现纵向深入的排列,然后用箭头依次向下连接,一般涉及到层次较多的复杂的知识点时用这种图形比较好。这种图形在构建之后还要不断地修改,并完善,而且学生在进行概念的顺序排列时,还要对概念有透彻的理解,对能充分把握概念之间的知识点联系。这种形式的概念图在有很强的概括性与直观性。但是在教学中教师需要注意的是在纵向排列知识点的时候还要兼顾到知识点之间的横向层次联系,使绘制的知识点结构后比较清晰完整,这样也有利学生进行记忆。
⑵是用维恩图,也就是韦氏图,这主要是用来显示学习的元素发生的重合区域。当维恩图中有超过两个的集合概念时,就用圆圈之间的共同部分与不同部分,来分别表示概念之间的相同点与不同点。因此维恩图在教学中实际是对学习信心进行的分类、区别以及辨析。而使用的维恩图既可以表示集合之间的关系,也可以表示一个独立的集合。另外,在使用维恩图的时候还可以根据知识点的实际情况来进行延伸,可以把圆圈向外或者向内套环来表示概念之间的不同点或相同点。
3.概念图在高中化学教学中的功能
3.1 有利于教师进行教学设计
教师在规划教学设计或者是课程时,经常会使用到概念图。通常教师会先把要教授的主要知识点内容给罗列出来,之后在按照层次进行排列,排列之后在根据概念之间的关系来编制成一份比较清晰的概念图。这样教师在教学的时候就容易从整体上来把握教学内容,同时也可以把握好化学知识与其他学科之间的渗透,这样在教学时设计的教学计划就会更加清晰明朗,也有利于学生学习。
3.2有利于学生整合知识点,发展创造性思维
在化学教学中运用概念图,有利于学生在整合知识点的过程中加强对知识的认识与理解,而且也促进了学生对概念之间关系的理解。在某些章节的知识点结束之后,教师就可以运用概念图对知识点进行整合,从而帮助学生来更好的理解概念,这样在学习后就给学生形成了一定的知识体系框架,也促进学生对新旧知识点之间的联系,从而可以在整体上对知识点有较好的理解与把握。另外,学生在对知识点进行整合的过程中本身就是构建知识体系的过程,而建立起概念图可以让学生从部分到整体来理解知识点之间的联系,从而可以认识到概念之间的关系,容易产生创造性的理解,也容易更好的理解知识内容。
3.3用概念辐射图对知识进行归纳总结
在化学教学中运用概念辐射图,是把核心的概念放到中间部分,之后在根据概念的层次结构在图形中间进行层次的排列,其中,用箭头指向外周部分,而用不同的图标来锁定不同层次的概念,在分别用连接词来进行说明。在辐射图里,不同层次的概念内涵呈现递减的关系,各个节点的概念用排序字母和层级数来标示。在辐射图的局部经常要采用的是链式图,而节点概念之间箭头的指向按照一定的方向来进行,这样高度集中处理的信息之间既降低了记忆学习的难度,又提高了对信息加工处理的效率。
4.总结
在高中化学学习中主要强调了学生搜集处理信息以及分析解决问题的能力,而概念图学习是符合新课改要求的学习模式。在高中化学教学中运用概念图模式有利于教师对知识点的整合,并且也有利于学生在整合学习知识的同时加深对学习内容的理解,在实际中能够提高教学的效果,但是由于高中化学学习具有复杂性,涉及的知识点也很多,因此在实际中还需要对概念图学习模式进行不丢俺的探讨,更好的应用与教学中。
【参考文献】