首页 > 文章中心 > 机械系统设计论文

机械系统设计论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇机械系统设计论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

机械系统设计论文

机械系统设计论文范文第1篇

机械臂的模型仿真采用MatLab平台下的RoboticsToolbox工具箱,从而可以很方便地对机械臂运动学的理论进行学习和验证。工具箱内部包含了很多机械臂运动学方面的功能函数,如机械臂的坐标变换及机械臂正逆运动等。通过调用Link和Robot两个功能函数,利用Denavit-Hartenberg参数表来描述机械臂各个连杆间的位移关系,可以在三维空间为机械臂的每一个连杆建立一个坐标系或相对于机械臂底座的相对坐标系,进而确定每一个杆件的位置和方向。在建立多个运动坐标的时候,为了方便,一般建立一张关节和连杆参数的D-H参数表。根据图4所示的结构模型建立的参数如表1所示。利用表1建立的D-H参数表来进行机械臂数学模型的运动仿真,在Matlab中将6个关节初始角度按照表1设置为θ1=90°、θ2=0°、θ3=0°、θ4=-90°、θ5=90°、θ6=0°。通过调节工具箱中每个自由度对应的活动范围可以实现机械臂任一关节的位姿运动。

2机械臂控制系统硬件实现

采摘机械臂要实现其特定的动作离不开控制系统的支持,其控制系统主要由AVR主控板和舵机控制扩展板组成,此外还有一些辅助的硬件模块。例如,使其系统稳定工作的开关电源模块、调整工作姿态的键盘模块、实现人机对话的显示模块和语音播报模块。同时,为了实现在上位机上的监控,设计了基于MAX232的串行通信接口。

3机械臂控制系统软件实现

机械臂控制系统软件主要由主控板控制程序和上位机监控程序两部分组成。采摘机械臂主程序流程如图8所示。整个程序主要是通过键盘模块上按键的控制来切换操作模式,也可以在上位机设计的监控软件中来进行模式的选择判断。主程序主要由单自由度功能模式、多自由度功能模式、轨迹规划功能模式这3种工作模式组成,通过这3种工作模式,可以完整的展示采摘机械臂的整体自由度配合情况。为了在上位机上实现对机械臂的监控,借助于Labview软件设计了机械臂上位机控制系统。Labview使用的是图形化编辑语言G编写程序,产生的程序是框图的形式[6]。根据需求选择合适的控件并进行合理的布局,就可以构建一个美观的仪器仪表界面。设计的控制界面如图9所示,该界面包含有六个舵机的数据监控转盘、串口通讯设置、速度调节滑块、按键模块。通过RS232通信协议该监控软件可以实时的实现对六个自由度转角和方向的控制,其中舵机转盘上的数值代表脉宽值,其可调整的范围为500~2500μs,代表舵机相应的角度为0°~180°。在上位机上的控制信号发送给AVR主控制板,主控制板对接收到的上位机数据进行分析处理,将需要的运动形式及参数发送给舵机控制板,各个舵机根据接收到的控制数据进行相应的动作响应。

4结语

机械系统设计论文范文第2篇

本系统高压发泡机以高性价比的台达DVP系列PLC和台达的DOP的人机界面为核心控制单元,有多组工作模式多组配方工艺参数选择,且可自主编辑工艺参数,流量注入精确稳定,压力流速可控可调,故障报警实时监控。实践证明,相比老式发泡机,PLC控制系统的设备性能稳定可靠,易于操作,工作效率大幅提高。发泡机控制系统充分利用了现代先进技术,提高了劳动生产率,改善了劳动条件,减轻了工人的劳动强度,保持稳定的发泡倍数,克服了人为的不稳定因数,具有良好的应用前景。

发泡机是利用塑料颗粒作为发泡包装的原料,可以对精密仪器、电子类产品、工艺品、插花等多类怕震、怕压的产品进行现场的发泡包装。发泡机作为一种机电一体化产品,在现代工业生产的自动化控制中占有重要的地位。高压发泡机广泛用在各种行业,可用于汽车装饰、保温墙喷涂、保温管道制造、自行车和摩托车车座海绵的加工等等。

发泡机最早出现于国外,其原始机型是采用叶轮高速旋转制泡,故又名“打泡机”。后来随着技术的不断进步,发泡机的技术含量不断提高,新的机型不断出现,形成了不同的技术体系。我国早在20世纪50年代就开始使用发泡机,但不是专用的发泡机型,而是采用砂浆搅拌机。即将发泡剂直接加入砂浆搅拌机或混凝土搅拌机,让发泡剂和砂浆或混凝土一起搅拌生成泡沫。20世纪70年代前后,开始出现专用的发泡剂,即高速叶轮发泡机。以后又不断技术升级和换代,如今已发展为以高压充气为主体的第三代机型,基本可满足泡沫混凝土的需要挤出技术的发展越来越具有如下特色:一方面要求挤出系统高效率,另方面又要求挤出系统具有灵活性、广泛适应性。应用广泛的高效挤出系统应兼颐这两个方面。其中发泡机控制系统将直接影响该产品的发泡倍数的稳定。发泡机控制系统的发泡倍数受原料添加重量和发泡好后粒子的总量决定,蒸汽压力和气压不直接影响发泡倍数。因此,为这类发泡机开发出一种可以保持稳定的发泡倍数的控制系统是一个有着较大实际意义的课题。

机械系统设计论文范文第3篇

根据国家机械设计制造及其自动化专业毕业培养标准中对毕业能力要求之4“具有设计机械系统、部件的能力”要求,整合现有教学内容,形成了基础知识递增和设计能力递进的机械设计类课程教学环节结构。其中先修课程包括数学类、工程力学、机械制图、公差与技术测量等基础课和专业基础课。为达到“具有设计机械系统、部件的能力”的毕业要求,设计了课程教学及课内实验、基础设计能力培养、创新设计能力培养三个能力递进培养环节。

2机械设计类课程教学及课内实验

课程教学及课内实验教学环节分为机械原理和机械设计两个部分,每部分。含课内实验,课程内容及培养目标如下:机械原理课程是一门培养学生机械机构运动设计与分析的技术基础课,主要研究机构的结构分析、运动分析和动力分析,常用机构设计的基本理论和方法,机械系统传动方案的规划与设计,其主要任务是培养学生:第一,理论联系实际的学风,设计实践能力和创新精神。第二,掌握机构运动方案设计的能力。第三,具有机械系统运动简图的绘制,计算机辅助机构分析和设计的能力。机械原理实验教学是机械原理课程教学中的实践环节。在实验中通过安排部分课程基本理论的验证性实验,使学生进一步加深对课堂教学内容的理解。通过增设一些综合性、设计性实验,培养学生基本知识、基础理论与实际项目需求的理论知识应用能力,同时培养学生创新意识和能力。通过设立较多的选修实验,促进学生的个性发展。机械设计课程是一门培养学生机械设计能力的技术基础课,在教学内容方面着重掌握机械设计的基本知识、基本理论、基本方法和创新思维,通过对本课程的学习,使学生掌握常用机构和机器中各种通用零件的基本理论和基本知识,初步具有机械结构方面的分析、设计能力,同时注意培养学生正确的设计思想和严谨的工作作风。机械设计实验教学通过设立部分验证性实验,使学生进一步加深理解课堂教学的内容;通过设立一些综合性、设计性实验,培养学生理论联系实际的能力及机械结构设计的创新意识和创新能力;通过强调学生参与实验的全过程,培养学生的动手操作能力;通过设立较多的选做实验,满足学生的求知欲,促进学生的个性发展。

3基础设计能力培养

机械设计课程设计是机械设计基础类课程的重要实践性环节,通过对机械传动装置和简单机械的设计,使学生综合运用机械设计课程和其他先修课程的理论和实际知识,熟悉机械设计的一般规律,掌握机械通用零部件及简单机械的设计理论及设计方法。培养学生理论联系实际的正确设计思想,树立工程意识,培养独立分析和解决工程实际问题的能力,为毕业设计和以后从事工程设计工作打下良好的基础。课程的教学目的:第一,学习机械设计的一般方法、步骤,掌握机械设计的一般规律。第二,学会从机器的功能要求出发,合理选择传动机构的类型,制定传动设计方案,正确计算零件的工作能力,确定它的结构、形状、尺寸及材料,并考虑制造工艺、使用、维护、经济和安全等问题,培养机械设计能力。第三,进行机械设计基本技能训练,例如计算、绘图,运用标准、规范、手册、图册和设计资料,以及使用经验数据和处理数据等。第四,通过编写设计说明书,提高学生文字表达能力,掌握撰写技术文件的有关要求;培养学生运用计算机撰写论文的能力。第五,训练学生用CAD绘图的能力。机械综合课程设计是形成机械装备设计能力的重要实践性教学环节。内容以车床或铣床的主传动系统设计为主线,以所学过的机械制造装备的基础知识为支撑,完成主传动系统设计、操纵装置布置、工程分析计算等环节的训练。其目的是在相关先修课程学习后,进行机械结构设计综合训练,使学生掌握机械系统分析和设计的基本步骤和方法,培养和锻炼学生综合运用所学知识解决实际工程问题的能力。

4创新设计能力培养

学生创新设计能力培养包括机械产品创新设计与仿真和机械创新设计与制作两个环节:机械产品创新设计与仿真是学生以项目组的形式自主开展的为期一年的研发与制作项目,在学院的统一命题下完成一项任务。提高学生自主学习、问题求解、团队协作、项目管理、综合创新等方面的能力和素质。机械创新设计与制作是结合学生已有的知识储备,充分发挥学生的创新设计思维,通过机构综合模拟现实自然界生物的动作行为,并辅以相应的控制系统达到机构的协调运动。在教师的启发和指导下,学生以组为单位自主地进行相关内容科技文献检索、方案设计、虚拟仿真、绘制加工图纸、撰写设计说明书并进行答辩,通过工程实践培养学生灵活运用所学机械设计知识的能力。

5结论

机械系统设计论文范文第4篇

[关键词]游戏引擎;机械动力仿真;虚拟现实技术

中图分类号:TP391.9;TD672 文献标识码:A 文章编号:1009-914X(2014)33-0225-02

一、引言

三维游戏由于引擎技术在建模技术、物理引擎技术、复杂环境的高质量实时渲染技术、动画技术、人工智能技术、对象的行为控制技术等各方面不断的完善和强大,已经极大地引起了人们的关注和重视。游戏引擎不再仅用于游戏娱乐产业的开发,更多的渗透到了教育软件开发、虚拟现实应用、动画影视(特技)制作、军事训练、实时模拟等人类生活的各个领域。极大地改变了人们的生活方式和思维方式。

游戏引擎技术尤其物理引擎技术不断的研究发展,让我们意识到仿真虚拟机械动力的可能性。利用游戏引擎虚拟机械运动,将为开发教育游戏中的虚拟物理实验、网上数字科技馆、娱乐型游戏中的机械道具和多样化游戏任务等具有重要的应用价值和研究意义。

传统的机械动力仿真技术和虚拟现实技术虽然在一定程度上也能虚拟机械的运动,但是由于那些技术不可避免的弊端对机械动力仿真技术应用在其他领域形成了瓶颈。传统的机械工业仿真技术缺乏交互性,设计复杂,表现单调。随着多媒体技术、计算机动画技术、虚拟现实技术、网络技术等技术的渗入,以VRML(Virtual Reality Modeling Language虚拟现实造型语言)或Cult3D为代表的技术给机械仿真领域带来了交互性,但是由于传统的虚拟现实技术固有的特性,如运动行为的硬编码、交互性差、画面不流畅、系统实现复杂等,使得基于游戏引擎技术虚拟机械动力的技术具有很大的优势和更大的发展前景。

本论文研究的技术充分利用了游戏平台的优势,它不仅具有传统虚拟现实系统所有的优点,而且具有3D游戏般的交互性和逼真的动力学模拟。从开发角度而言,游戏引擎的实时渲染能力、快速的计算能力、组件化、可重用性以及面向对象的编程方式等,都使得应用游戏引擎成为一种非常便捷和有效的仿真技术手段。本文描述了利用游戏引擎模拟简单的机械动力实例的核心技术。

二、机械动力仿真技术研究背景

概念设计是机械设计过程中的最初阶段,主要目的是获得产品的本质形状。[3]机械仿真技术的发展为机械工业概念设计注入了新的活力。计算机运算处理能力的提高为机械系统的仿真提供了更好的基础。

我国机械系统传统的计算机辅助工具多数是AutoCAD, Pro/E, Solid Works, Solid Edge, 3D MAX等2D和3D软件,此类建模软件含有大量的图形文件,容量较大,不利于网上传输和远程控制。同时这种方式建立的三维模型是静态的,动画是设计者事先设计好的一副副二维动画,用户只是被动的接受,而不能按照自己的意愿进行实时交互式仿真。

虚拟现实技术作为一种更为人性化的交互技术,近几年来逐渐渗透到各个应用领域。虚拟现实技术的沉浸特征、交互特征和构想特征,刚好弥补了上述传统方法的不足。因此,运用虚拟现实的方法实现机械设计系统成为必然。传统的机械仿真都是代码编写控制的运动效果,没有实现通过物体间力的作用而让物体产生运动,所以不免比较生硬,不能具有可复用性和柔性。

综上可知,机械工业虚拟仿真技术由于其复杂性、综合性决定了开发的困难,因此势必需要一些工具来辅助开发,游戏引擎由于其本身的特点,成为开发机械工业虚拟系统的有力工具。

三、游戏引擎技术

1.三维游戏引擎

一般而言,三维游戏引擎包括:引擎内核、三维图形引擎、物理引擎、人工智能系统、3D模型和图像库、网络引擎、输入系统。三维游戏引擎中各子系统关系可由(图1)表示。

2.游戏引擎技术的优势

(1)利用游戏引擎可以简化系统制作的复杂度,缩短开发时间,降低制作成本。

(2)游戏引擎中强大的物理引擎为该机械动力仿真系统提供了保障,这也是不同于其他虚拟现实技术的闪光点。

(3)该游戏引擎能快速嵌入到网页中运行,因此,极大的活跃了网页式三维虚拟现实技术,因为传统的三维网页虚拟技术在WEB中运行效果不是很好,运行缓慢,效果单调,交互性差,游戏引擎技术的支持在一定程度上可弥补这些不足。

(4)游戏引擎的最大特点是可以实时渲染,这样使得开发者可以及时浏览和调整系统。Unity3D游戏引擎甚至可以支持在程序运行时改动场景中物体的属性。这样的实时性改变,使得开发者能迅速获得最佳的设置效果值。

(5)基于游戏引擎技术开发的机械动力仿真系统,具有游戏般的交互能力,活跃了机械展示的表达方式。

(6)在游戏引擎平台上的二次编程代码被称为“脚本”,大多数脚本语言都是面向对象的编程特点,具有封装、多态、可复用性等特性。简单易学,使虚拟系统设计者易于开发应用。

四、主要结论

3D游戏引擎技术最大的特点就是它把一个程序中可以重复利用的部分,以精巧的模块组织起来,将其规格化、最佳化,以利于程序重用技术。利用引擎不仅可以开发出“景物真实、动作真实、感觉真实”的三维系统,更重要的是利用它我们可以节省大量的人员和资金,简化系统制作的复杂度,缩短开发时间,降低制作成本,并且游戏引擎普遍具有的FPS(First Person Shooting第一人称射击游戏)特性,这一特点可以巧妙的应用于交互设计中。游戏引擎的实时渲染、动态编译和可视化编辑功能有效解决了传统的虚拟现实技术中存在的渲染耗费时间和硬件成本的问题。

3D游戏引擎最吸引人的是它的强大的PhysX物理引擎和真实的图形渲染引擎。强大的功能会提升研究的成功性。从开发方面考虑,该引擎的脚本语言近似c#或javascript,使得开发轻车熟路,而且脚本是动态编译的,运行速度和汇编接近,不会因为脚本的问题而影响系统的执行效率。从方面考虑,该引擎支持跨平台,而且用该引擎开发的作品可以通过网页直接运行,是3D虚拟现实作品轻松实现网页漫游的良好解决方案。

参考文献

[1] 杨红娟,周以齐,石柏成,陈成军.机械系统虚拟现实建模方法的研究.中国图像图形学会.642~646.

[2] 刘强,刘春全.机械动力仿真软件在抽油机运动学上的应用.装备制造技术,2008年,第12期.49~51.

[3] 石其乐.简易型虚拟现实技术的实现.宁夏工程技术,2003 年8 月,第2 卷第3期:227~245

机械系统设计论文范文第5篇

关键词:问题; 先进制造技术; 前沿科学; 应用前景

论文

制造业是现代国民经济和综合国力的重要支柱,其生产总值一般占一个国家国内生产总值的20%~55%。在一个国家的企业生产力构成中,制造技术的作用一般占60%左右。专家认为,世界上各个国家经济的竞争,主要是制造技术的竞争。其竞争能力最终体现在所生产的产品的市场占有率上。随着经济技术的高速发展以及顾客需求和市场环境的不断变化,这种竞争日趋激烈,因而各国政府都非常重视对先进制造技术的研究。

1 当前制造科学要解决的问题

当前制造科学要解决的问题主要集中在以下几方面:

(1)制造系统是一个复杂的大系统,为满足制造系统敏捷性、快速响应和快速重组的能力,必须借鉴信息科学、生命科学和社会科学等多学科的研究成果,探索制造系统新的体系结构、制造模式和制造系统有效的运行机制。制造系统优化的组织结构和良好的运行状况是制造系统建模、仿真和优化的主要目标。制造系统新的体系结构不仅对制造企业的敏捷性和对需求的响应能力及可重组能力有重要意义,而且对制造企业底层生产设备的柔性和可动态重组能力提出了更高的要求。生物制造观越来越多地被引入制造系统,以满足制造系统新的要求。

(2)为支持快速敏捷制造,几何知识的共享已成为制约现代制造技术中产品开发和制造的关键问题。例如在计算机辅助设计与制造(CAD/CAM)集成、坐标测量(CMM)和机器人学等方面,在三维现实空间(3-Real Space)中,都存在大量的几何算法设计和分析等问题,特别是其中的几何表示、几何计算和几何推理问题;在测量和机器人路径规划及零件的寻位(如Localization)等方面,存在C-空间

(配置空间Configuration Space)的几何计算和几何推理问题;在物体操作(夹持、抓取和装配等)描述和机器人多指抓取规划、装配运动规划和操作规划方面则需要在旋量空间(Screw Space)进行几何推理。制造过程中物理和力学现象的几何化研究形成了制造科学中几何计算和几何推理等多方面的研究课题,其理论有待进一步突破,当前一门新学科--计算机几何正在受到日益广泛和深入的研究。

(3)在现代制造过程中,信息不仅已成为主宰制造产业的决定性因素,而且还是最活跃的驱动因素。提高制造系统的信息处理能力已成为现代制造科学发展的一个重点。由于制造系统信息组织和结构的多层次性,制造信息的获取、集成与融合呈现出立体性、信息度量的多维性、以及信息组织的多层次性。在制造信息的结构模型、制造信息的一致性约束、传播处理和海量数据的制造知识库管理等方面,都还有待进一步突破。

(4)各种人工智能工具和计算智能方法在制造中的广泛应用促进了制造智能的发展。一类基于生物进化算法的计算智能工具,在包括调度问题在内的组合优化求解技术领域中,受到越来越普遍的关注,有望在制造中完成组合优化问题时的求解速度和求解精度方面双双突破问题规模的制约。制造智能还表现在:智能调度、智能设计、智能加工、机器人学、智能控制、智能工艺规划、智能诊断等多方面。

这些问题是当前产品创新的关键理论问题,也是制造由一门技艺上升为一门科学的重要基础性问题。这些问题的重点突破,可以形成产品创新的基础研究体系。

2 现代机械工程的前沿科学

不同科学之间的交叉融合将产生新的科学聚集,经济的发展和社会的进步对科学技术产生了新的要求和期望,从而形成前沿科学。前沿科学也就是已解决的和未解决的科学问题之间的界域。前沿科学具有明显的时域、领域和动态特性。工程前沿科学区别于一般基础科学的重要特征是它涵盖了工程实际中出现的关键科学技术问题。

超声电机、超高速切削、绿色设计与制造等领域,国内外已经做了大量的研究工作,但创新的关键是机械科学问题还不明朗。大型复杂机械系统的性能优化设计和产品创新设计、智能结构和系统、智能机器人及其动力学、纳米摩擦学、制造过程的三维数值模拟和物理模拟、超精度和微细加工关键工艺基础、大型和超大型精密仪器装备的设计和制造基础、虚拟制造和虚拟仪器、纳米测量及仪器、并联轴机床、微型机电系统等领域国内外虽然已做了不少研究,但仍有许多关键科学技术问题有待解决。

信息科学、纳米科学、材料科学、生命科学、管理科学和制造科学将是改变21世纪的主流科学,由此产生的高新技术及其产业将改变世界的面貌。因此,与以上领域相交叉发展的制造系统和制造信息学、纳米机械和纳米制造科学、仿生机械和仿生制造学、制造管理科学和可重构制造系统等会是21世纪机械工程科学的重要前沿科学。

2.1 制造科学与信息科学的交叉--制造信息科学

机电产品是信息在原材料上的物化。许多现代产品的价值增值主要体现在信息上。因此制造过程中信息的获取和应用十分重要。信息化是制造科学技术走向全球化和现代化的重要标志。人们一方面对制造技术开始探索产品设计和制造过程中的信息本质,另一方面对制造技术本身加以改造,以使得其适应新的信息化制造环境。随着对制造过程和制造系统认识的加深,研究者们正试图以全新的概念和方式对其加以描述和表达,以进一步达到实现控制和优化的目的。

与制造有关的信息主要有产品信息、工艺信息和管理信息,这一领域有如下主要研究方向和内容:

(1) 制造信息的获取、处理、存储、传递和应用,大量制造信息向知识和决策转化。

(2) 非符号信息的表达、制造信息的保真传递、制造信息的管理、非完整制造信息状态下的生产决策、虚拟管理制造、基于网络环境下的设计和制造、制造过程和制造系统中的控制科学问题。

这些内容是制造科学和信息科学基础融合的产物,构成了制造科学中的新分支--制造信息学。

2.2 微机械及其制造技术研究

微型电子机械系统(MEMS),是指集微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整微型机电系统。MEMS技术的目标是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。MEMS的发展将极大地促进各类产品的袖珍化、微型化,成数量级的提高器件与系统的功能密度、信息密度与互联密度,大幅度地节能、节材。它不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统无法完成的任务。例如用尖端直径为5μm的微型镊子可以夹起一个红细胞;制造出3mm大小能够开动的小汽车;可以在磁场中飞行的像蝴蝶大小的飞机等。MEMS技术的发展开辟了技术全新的领域和产业,具有许多传统传感器无法比拟的优点,因此在制造业、航空、航天、交通、通信、农业、生物医学、环境监控、军事、家庭以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。

微机械是机械技术与电子技术在纳米尺度上相融合的产物。早在1959年就有科学家提出微型机械的设想,1962年第一个硅微型压力传感器问世。1987年美国加州大学伯克利分校研制出转子直径为60~120μm的硅微型静电电动机,显示出利用硅微加工工艺制作微小可动结构并与集成电路兼容制造微小系统的潜力。微机械技术有可能像20世纪的微电子技术那样,在21世纪对世界科技、经济发展和国防建设产生巨大的影响。近10年来,微机械的发展令人瞩目。其特点如下:相当数量的微型元器件(微型结构、微型传感器和微型执行器等)和微系统研究成功,体现了其现实的和潜在的应用价值;多种微型制造技术的发展,特别是半导体微细加工等技术已成为微系统的支撑技术;微型机电系统的研究需要多学科交叉的研究队伍,微型机电系统技术是在微电子工艺的基础上发展的多学科交叉的前沿研究领域,涉及电子工程、机械工程、材料工程、物理学、化学以及生物医学等多种工程技术和科学。转贴于

目前对微观条件下的机械系统的运动规律,微小构件的物理特性和载荷作用下的力学行为等尚缺乏充分的认识,还没有形成基于一定理论基础之上的微系统设计理论与方法,因此只能凭经验和试探的方法进行研究。微型机械系统研究中存在的关键科学问题有微系统的尺度效应、物理特性和生化特性等。微系统的研究正处于突破的前夜,是亟待深入研究的领域。

2.3 材料制备/零件制造一体化和加工新技术基础

材料是人类进步的里程碑,是制造业和高技术发展的基础。每一种重要新材料的成功制备和应用,都会推进物质文明,促进国家经济实力和军事实力的增强。21世纪中,世界将由资源消耗型的工业经济向知识经济转变,要求材料和零件具有高的性能以及功能化、智能化的特性;要求材料和零件的设计实现定量化、数字化;要求材料和零件的制备快速、高效并实现二者一体化、集成化。材料和零件的数字化设计与拟实仿真优化是实现材料与零件的高效优质制备/制造及二者一体化、集成化制造的关键。一方面,通过计算机完成拟实仿真优化后可以减少材料制备与零件制造过程中的实验性环节,获得最佳的工艺方案,实现材料与零件的高效优质制备/制造;另一方面,根据不同材料性能的要求,如弹性模量、热膨胀系数、电磁性能等,研究材料和零件的设计形式。进而结合传统的去除材料式制造技术、增加材料式覆层技术等,研究多种材料组分的复合成形工艺技术。形成材料与零件的数字化制造理论、技术和方法,如快速成形技术采用材料逐渐增长的原理,突破了传统的去材法和变形法机械加工的许多限制,加工过程不需要工具或模具,能迅速制造出任意复杂形状又具有一定功能的三维实体模型或零件。

2.4 机械仿生制造

21世纪将是生命科学的世纪,机械科学和生命科学的深度融合将产生全新概念的产品(如智能仿生结构),开发出新工艺(如生长成形工艺)和开辟一系列的新产业,并为解决产品设计、制造过程和系统中一系列难题提供新的解决方法。这是一个极富创新和挑战的前沿领域。

地球上的生物在漫长的进化中所积累的优良品性为解决人类制造活动中的各种难题提供了范例和指南。从生命现象中学习组织与运行复杂系统的方法和技巧,是今后解决目前制造业所面临许多难题的一条有效出路。仿生制造指的是模仿生物器官的自组织、自愈合、自增长与自进化等功能结构和运行模式的一种制造系统与制造过程。如果说制造过程的机械化、自动化延伸了人类的体力,智能化延伸了人类的智力,那么,"仿生制造"则可以说延伸了人类自身的组织结构和进化过程。

仿生制造所涉及的科学问题是生物的"自组织"机制及其在制造系统中的应用问题。所谓"自组织"是指一个系统在其内在机制的驱动下,在组织结构和运行模式上不断自我完善、从而提高对于环境适应能力的过程。仿生制造的"自组织"机制为自下而上的产品并行设计、制造工艺规程的自动生成、生产系统的动态重组以及产品和制造系统的自动趋优提供了理论基础和实现条件。

仿生制造属于制造科学和生命科学的"远缘杂交",它将对21世纪的制造业产生巨大的影响。

仿生制造的研究内容目前有两个方面:

2.4.1 面向生命的仿生制造

研究生命现象的一般规律和模型,例如人工生命、细胞自动机、生物的信息处理技巧、生物智能、生物型的组织结构和运行模式以及生物的进化和趋优机制等;

2.4.2 面向制造的仿生制造

研究仿生制造系统的自组织机制与方法,例如:基于充分信息共享的仿生设计原理,基于多自律单元协同的分布式控制和基于进化机制的寻优策略;研究仿生制造的概念体系及其基础,例如:仿生空间的形式化描述及其信息映射关系,仿生系统及其演化过程的复杂度计量方法。

机械仿生与仿生制造是机械科学与生命科学、信息科学、材料科学等学科的高度融合,其研究内容包括生长成形工艺、仿生设计和制造系统、智能仿生机械和生物成形制造等。目前所做的研究工作大多属前沿探索性的工作,具有鲜明的基础研究的特点,如果抓住机遇研究下去,将可能产生革命性的突破。今后应关注的研究领域有生物加工技术、仿生制造系统、基于快速原型制造技术的组织工程学,以及与生物工程相关的关键技术基础等。 3 现代制造技术的发展趋势

20世纪90年代以来,世界各国都把制造技术的研究和开发作为国家的关键技术进行优先发展,如美国的先进制造技术计划AMTP、日本的智能制造技术(IMS)国际合作计划、韩国的高级现代技术国家计划(G--7)、德国的制造2000计划和欧共体的ESPRIT和BRITE-EURAM计划。

随着电子、信息等高新技术的不断发展,市场需求个性化与多样化,未来现代制造技术发展的总趋势是向精密化、柔性化、网络化、虚拟化、智能化、绿色集成化、全球化的方向发展。

当前现代制造技术的发展趋势大致有以下九个方面:

(1) 信息技术、管理技术与工艺技术紧密结合,现代制造生产模式会获得不断发展。

(2) 设计技术与手段更现代化。

(3) 成型及制造技术精密化、制造过程实现低能耗。

(4) 新型特种加工方法的形成。

(5) 开发新一代超精密、超高速制造装备。

(6) 加工工艺由技艺发展为工程科学。

(7) 实施无污染绿色制造。