前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇展示技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
服务器
惠普
惠普的BladeSystem C-Class刀片服务器系统使用了能量智控这一关键技术以实现节能降耗,通过内置的仪器对刀片机箱内的能耗和散热情况进行精确地监控,并对电源和散热的分配进行调节。
HP Integrity服务器的虚拟化和整合技术可以大幅节省电源和散热成本,并且还提供了新的电源管理技术,如面向ProLiant产品的电流调节器,可以在不影响性能的前提下应对能耗挑战。
此外,惠普的动态智能散热技术能够让数据中心的成本降低20%~45%,并将二氧化碳的年排放量减少18000吨;模块化散热系统可以将一个机架的标准散热能力提升到原来的3倍,也就是30千瓦;借助惠普电流限定技术,用户还可以将服务器密度提高40%。
戴尔
戴尔的PowerEdge M1000e是一款高度模块化的刀片服务器,该产品采用了FlexIO技术,拥有比其上一代刀片服务器更多的I/O插槽,可对I/O架构进行灵活高效的升级和扩展。因此,用户只需要添加级联或堆叠模块,即可完成对刀片服务器I/O能力的扩展。可以说,这种模块化的设计简化了用户升级和优化系统的难度,同时也让企业能灵活地应对业务上的各种变化,这对于企业来说就是一种资源的节约。
此外,戴尔的刀片服务器还采用了智能节能(Energy Smart)技术,并在高能效机柜、低能耗风扇和动态电源管理等方面都做了节能设计。以动态电源管理技术为例,该技术可以让用户自行设置电源功率的阀值,让刀片服务器在用户自己认可的功率范围内工作,从而避免能源的不必要消耗。
联想
联想万全R525是一款能够诠释节能环保理念的服务器,其支持联想自有的LECOT能耗优化技术,产品采用高转换效率的部件,以帮助服务器节省在电源转换中消耗的电能;支持动态的按需供电技术,可以节省服务器空闲状态下不必要的电能消耗,“1+1”热插拔冗余电源模块提供的高转换效率能有效地降低系统功耗;通过侦测关键部件的工作状况,实时地调节系统功耗和散热量,以节省不必要的功率消耗,减少用户在电能方面的投入,并大幅降低用户运营成本。
此外,万全R525配备有机柜规划工具,该工具以机柜为单位精确地计算输入功率、散热量峰值及重量,能帮助用户进行机柜供电、散热及承重规划,以降低整体机房固定资产拥有成本。
富士通
富士通的绿色刀片服务器FUJITSU PRIMERGY BX620S4采用了多方位的环保设计理念,该产品具有负载均衡、高可用性和高度的横向可扩展性,这些无疑都提高了服务器的集成效率和使用效率,同时也大幅度降低了环境负荷。
此外,FUJITSU Systemwalker RCVE虚拟化管理软件有效地减少了刀片服务器的系统管理工作量,降低了系统的总拥有成本。Systemwalker RCVE管理软件只需要简单的步骤即可将刀片服务器连接到现有的SAN环境中,这就简化了SAN环境中服务器的管理难度,并降低了因人为错误造成的损失。与此同时,通过VMware HA及一台共用的备用服务器,物理服务器和虚拟服务器可以自动恢复,这就让虚拟化技术的节能优势得到了更好的发挥。
浪潮
浪潮英信NF290D2是一款低功耗、稳定可靠、高性价比的2U双路全能服务器,散热系统、模块化及热插拔的冗余设计使其在有限的空间内实现了可靠性、可扩展性和高性能。
事实上,浪潮在服务器领域的绿色节能方面的设计主要包括以下三个方面:第一,在物理服务器上进行的设计,比如整个机箱风道的设计尽量利用物理或流体力学的方法,用尽量少的风扇和功耗达到同样的散热目的,并进一步地降低能耗;第二,采用高效的电源处理和电源管理,比如晚上12点服务器基本不工作,这时系统会自动降低电源消耗,如果白天是1000瓦,那么夜间则降到600瓦、500瓦或者更低;第三是管理,浪潮专门推出了一套基于业务的功率管理系统,其能够实时地反映出业务情况的负载,并且反映出服务器的负载,还可以调整服务器业务的部署,甚至服务器的功耗情况。
交换机
惠普
HP ProCurve Switch 8212zl是惠普“绿色”交换机的代表,其是一款具备高性能和高可用的机箱式交换机平台,支持统一的核心到边缘适应性网络解决方案;其平台与软件高可用性的特性,可以确保系统持续运行并提高网络生产效率。
在降低能耗方面,HP ProCurve使用了各种节能技术,如LLDP-MED可变风扇等;尽可能采用基于机箱的交换机;在不工作的时候关闭PoE;根据实际应用选择电源和UPS。
此外,HP ProCurve系列几乎所有产品都提供终身保修、软件升级、技术支持和第二工作日替换等免费服务,这些对于减少碳排放和节约成本起到了至关重要的作用,因为产品的使用寿命会因终身保修而延长,用户就不用频繁地更换设备,也不用再处理老设备带来的电子废料。
迈普
为了实现交换机的绿色节能,迈普应用了多种技术优化产品设计。首先,通过采用高性能的交错式PFC控制技术提高交换机电源模块的电源转换效率,这将传统的电源转换效率从70%~80%提高到了85%。
其次,全面应用了以太板卡的以太端口休眠功能,对于不用的端口或者没有数据传输的端口大幅降低了接口芯片的功耗,对于GE电口的8根网线全部传输数据时的高功耗也实现了有效的降低,当使用闲置端口休眠或不使用时,能够降低40%左右的功耗。同时,采用高密度的业务板卡降低功耗,通过提高板卡的密度来降低单端口的功耗。
此外,大容量的主机、灵活的业务板卡升级功能设计延长了设备的使用寿命;优化的整机结构设计,加强了整机的散热性能,竖插槽的设计则利用了自然散热的原理大幅降低了散热设备的功耗。
极进
极进网络的BlackDiamond 8810是一款标准的万兆核心交换机,作为服务网络骨干或数据中心的核心交换机,其工作时间一般都是7×24小时,因此低能耗设计带来的电力节省就相当可观了。该设备可以安装最多6个电源模块,每个电源模块功率为1200W,用户可以根据需求灵活配置电源模块数量,且所有的板卡均采用低能耗设计。
此外,BlackDiamond 8810采用了高可靠的模块化交换机操作系统ExtremeXOS,同时也集成了一些节电环保特性,如支持PoE(以太网供电)接口模块,这样就可以自动地按时间计划激活系统;休眠端口功能,例如下班时间PoE网络端口可以按计划自动休眠,停止为无线网AP或IP电话供电,上班时间再激活端口,从而进一步节省电力消耗。
存储
UIT
UIT绿色存储的核心是设计运行温度更低的处理器和更有效率的系统,生产更低能耗的存储系统或组件,降低产品所产生的二氧化碳,而其所应用的主要技术是MAID(Massive Arrays of Idle Disks,大规模非活动磁盘阵列存储)――在正常状态下所有的磁带都放置在磁带库的槽位中,需要某盘磁带时才将它放在磁带机中,然后进行数据读写。而在大部分时间,大多数磁带是处在非工作状态的。
UIT BM3800B是UIT推出的一款具有MAID绿色存储功能的光纤通道存储设备,其在绿色节能方面具有以下几个重要的功能和特点:磁盘或磁盘RAID组可以在没有读写访问时依据策略下电;下电磁盘自动按照策略进行故障检查;磁盘在下电以后,一旦有读写请求,磁盘自动上电,RAID组可重新提供正常访问;降低能耗,电能节约可达到30%;减少环境和管理成本;更长的磁盘使用寿命。
日立
日立认为,存储基础架构对能源的消耗是与磁盘数直接挂钩的,而非储存的数据量,所以容量的密度越大就意味着能耗效率越高,因此利用虚拟化来部署分层存储和实施通用管理架构能够大大提高资源的利用率。
日立的USP产品不仅配有基于控制器的虚拟化引擎,还可以将控制器与存储介质相分离,允许企业将其直连式存储系统、网络附加式存储系统和存储区域网络都整合到一个存储平台中,使用户可以在短短几秒钟内将存储空间分配(或解除分配)给某个应用。
此外,日立还基于USP V平台在企业级虚拟层实现了Thin Provisioning(动态精细化预配置)功能:USP V与Hitachi Dynamic Provisioning(动态与配置)软件的结合使用户能够在一个整合的解决方案中同时获得外部存储虚拟化的好处以及由Thin Provisioning带来的电力和冷却成本方面的优势。
飞康
飞康在两年前就与COPAN合作,将MAID(大规模非活动磁盘阵列)技术导入了VTL,这就节省了设备闲置时所消耗的电能;其新一代VTL具备重复数据删除技术,可以帮助用户节省大量备份所需的磁盘空间;IPStor具备的存储资源按需分配(Thin Provisioning)功能,更将存储资源的利用率从低于30%提高到80%以上,使用户现有的存储投资能得以继续利用。
此外,飞康VTL企业版可以扩展远程复制功能,用户可以利用WAN广域网络将备份数据复制到远程,并实现异地灾备。在执行远程复制时,本地和远程的VTL会自动比对单一存储区内有没有相同数据,只有不重复的数据才会被复制并传输到远程,这可以减少95%的网络带宽使用率。
SEPATON
SEPATON实现“绿色”存储的关键技术手段主要是重复数据删除、自动精简配置及数据压缩等,其中重复数据删除和自动精简配置最能大幅度削减能源消耗。SEPATON的DeltaStor软件利用其“内容已知(ContentAware)”架构,以字节为单位进行全面的数据比较,以确保数据的完整性,并且在主要数据传输路径之外执行重复数据删除,使其性能不受影响。Deltastor软件能提供多节点可扩展性,并可以处理PB级数据。
据悉,利用DeltaStor技术后,存储数据占用的空间相比以前为1∶50,这样就节约了高达62%的数据中心空间,以及85%的能源和散热成本。同时,采用ContentAware架构,SEPATON为日后扩大容量、提高性能打下了基础,在面临数据中心需求不断变化的情况下,可以有效地保护用户已有的投资,避免造成浪费。
昆腾
据悉,Quantum DXi系列磁盘备份系统能够在整个企业中扩大重复数据删除技术的优势,重复数据删除技术可以使磁盘需求降低90%甚至更多。借助该技术还能够实现快速备份和还原,并减少了对介质的使用,对电源和冷却的要求也更低,整体数据保护和保留成本还相应降低。
Quantum DXi7500是一款高可用性企业磁盘备份系统,可以作为磁盘备份系统运行,在这种情况下,利用传统的虚拟磁带库接口就能提供更高的吞吐量,同时也可以作为启用了重复数据删除功能的磁盘备份和远程复制系统。
此外,DXi7500还拥有直接磁带创建功能,让用户能够将存储在磁盘上的备份数据自动迁移到磁带上以进行更长期的保留,而这一操作是在后台进行的,因此对用户的介质服务器或备份SAN没有任何影响。
华赛
华赛将绿色环保的每一个细节都落实到了OceanStor磁盘阵列的产品设计中。
关键词 计算机软件;移动设备;信息展示;多通道
Abstract 中图分类号 TP 311文献标识码A doi:10.3969/j.issn.1003-6970.2011.01.022
Abstract An Overview of Mobile Information Presentation Techniques
关键词 FENG LingQIAO Lin
(Department of Computer Science & Technology, Tsinghua University, Beijing 100089,China)
【Abstract 】 The popularity of hand-held mobile devices is growing. Compared with traditional desktop computers, these mobile devices have distinct limitations, including tiny display, low resolution, scarce computing resources, bandwidth fluctuation, ad-hoc communication, voluntary disconnection, etc., presenting new challenges to mobile human-computer interaction. In this survey paper, we overview some recently developed techniques for diverse information presentation on mobile devices through visual, audio, and tactile channels.
【Key words】computer software; mobile device; information presentation; multi-channel
0 Introduction
Mobile devices have gained increasingly popularity due to its portability nature. People use these small mobile devices to manage personal information, do simple work with poor processing requirements, or remotely control PCs and computerized appliances [1]. Nowadays, the use of mobile devices has penetrated into the domains of education, business, military, etc.
Compared with traditional desktop computers, mobile devices have many limitations in terms of 1) small-sized display with poor resolution, few colors, and different width/height ratio from the normal setup; 2) constrained CPU processing and memory capacities; 3) slow connection with fluctuated bandwidth; and 4) unfriendly user input facilities (ordinarily used keyboard and handwriting demand lots of screen space, incurring quite inaccurate results) [2,3].
Due to these large differences, the classic desktop solutions cannot directly be adopted to mobile user interface design. [4,5] made a good summary of the main challenges in mobile human-computer interaction. In this study, we are particularly concerned about information presentation on mobile devices. After a brief description of the major challenges upon mobile information presentation, we overview some latest development of information presentation techniques for mobile devices through diverse channels including visual, audio, and tactile channels.
1 Main Challenges for Mobile Information Presentation
The inherent characteristics of mobile devices lead to the following design considerations for mobile information presentation.
-Mobile devices have limited interaction facilities. Constrained by small screen size, poor-quality sound output, and tiny keypad, no-handed or simple interaction operations during information presentation are always preferred. In line with human's perceptual and cognitive ``top-down" behavior, outputting the most useful or high-leveled information and then letting users decide whether or not to retrieve details further constitute a good strategy for information output [5].
-Mobile devices are portable. Users carrying mobile devices can enter multiple and dynamic contexts embedded with various sensors and networks. These unreliable or patchy sensors may also bring incomplete and varying context information. It would be desirable to permit users to configure output to their needs and preferences (e.g., content precision, text size, brightness, etc.) to tailor to the user's current environment [4,5].
-Mobile users have poor focus. User focus is a massive issue, as in a mobile environment, frequency of interruptions is likely to be much higher than on desktops. The information presentation process shall be easily stopped, started, and resumed with little or no effort to enable to switch user’s attention from the device to his/her activity itself. Besides, a multi-modality option via sound or tactile channel can be adopted to prevent user's too much attention in reading the content on mobile devices [5].
-Mobile devices have a widespread population. Simple user interface should be designed, because users often don't have any formal training in their technologies. Besides, it must allow for personalization, providing users the ability to change settings themselves. Also, the information presentation should be visually pleasing and fun as well as usable to offer enjoyment [5].
Among the challenges, one prototypical big problem facing mobile device user interface designers is how to effectively and efficiently present a large amount of information contents on tiny screens. The most common strategy on desktop computers with relatively large screens is using scrollable viewports that reveal a subpart of the data [6]. However, this strategy can hardly be applied to mobile devices, since people often use mobile devices on-the-go, making it difficult for them to drag scroll bars. In addition, as scrollable viewports present only a subpart of data while hiding most of the data, they provide very limited contextual information to users [6]. Therefore, many human-interface researchers are trying new methods to enable and enhance information presentation on mobile devices, utilizing visual, audio, and/or tactile channels. We review these great efforts in the following sections.
2 Information Presentation via Visual Channel
The ways to visually present contents vary from the types of contents (e.g., Web pages, texts, images, maps, or structured data, etc.) to be displayed [2].
2.1 Web Page Presentation
Mobile Web search receives great attention nowadays. Web contents, mostly designed for desktop computers, are badly suited for mobile devices [7,8]. Currently, the majority of commercially available mobile web browsers use single-column viewing mode to avoid horizontal scroll. But this approach tends to have much more vertical scrolls and destroys the layout of original view.
Based on small- and large-scaled user studies, [9,10] provided a list of general principles for Web page display. They are: 1) developing phone-based applications to enable direct and simple access to focused valuable contents; 2) trimming the page-to-page navigation down to a minimum; 3) providing more rather than less information for each search result; 4) using simple hierarchies which are similar to the phone menus that users are already familiar with; 5) adapting for vertical scrolling or reducing the amount of vertical scrolling by simplifying the text to be displayed; 6) reducing the number of users' keystrokes; 7) providing a quick way for users to know whether a search result points to a conventional HTML page or a small screened optimized page; 8) pre-processing conventional pages for better usability in small screen contexts; and 9) combining theoretical and empirical evaluation to gain further insights [9].
In order to deliver adaptive Web contents to mobile devices, researchers attempt to re-author web pages by means of presentation optimization, semantic conversion, or zooming, etc., which can be done at server side, intermediate side, or client side [11].
1) Re-authoring Web Pages at Server Sides
Server-side adaptation provides Web page authors maximum control over content delivery to mobile devices [11]. [12] reported a system which used the W3C's Document Object Model (DOM) API to generate an XML tree-like structure, as well as the Extensible Style Sheet Language Transformations (XSLT) to generate Wireless Markup Language (WML) and HTML content for display on mobile devices. This system could also adapt to users' dynamic contexts. [13] presented another system which could adapt multimedia Web documents to optimally match the capabilities of the client's mobile devices. In a scheme called InfoPyramid, content items on a Web page were transcoded into multiple resolution and modality versions, so that they could be rendered on different devices. Customers could select the best parameters from the InfoPyramids to meet the resource constraints of the client's devices while still guarantee the most “value” [13].
2) Re-authoring Web Pages at Intermediate Sides
Proxies typically apply intermediate adaptation [11]. Today, many of web page visualization efforts fall into this category. Without changing the layout of original web pages, [14] reduced the size of images which were larger than that of mobile screens and removed media which mobile devices did not support. [7] described a scaled-down version to fit the mobile devices screen. Images embedded in a web page and the Internet address bar were removed; and the font size of textual contents was adjusted by the user [7]. The focus+context visualization was also employed in the display of mobile Web. Users could choose what they are interested in with a large font size, while other information in the surrounding area can be displayed in a reduced font size [7].
Currently, Web page transcoding is a widely used approach. [7,15] applied a DOM tree generation and navigation technique for mobile Web interface. Content blocks with extracted labels and their relationships in a web page were automatically identified in the DOM tree. A Web page on mobile devices was represented as a hierarchical structure of content blocks. At the beginning, the highest level of a generated DOM tree was given to the user. If the user was interested in some sub-topics, s/he could click the node to expand it to the next level. Some researchers proposed to do a Web-page semantic segmentation based on a DOM tree [16,17], because they think DOM tree is in disorder in semantic sense. [17] applied type analysis based on the refined typing system to generate blocks.
[18] considered to split a Web page's structure into smaller but logically related units. A two-level hierarchy was used with a thumbnail representation at the top level to provide a global view and an index to a set of subpages at the bottom level for detailed information. [19] introduced heuristics for structure-aware Web transcoding which considered a Web page's structure and the relative importance of its components. [8] proposed to display a web page as a thumbnail view, but preserving the original page layout, so that users could identify the overall page structure and recognize pages they previously viewed. This method provides readable text fragments which allow users to disambiguate the desired information from similar looking areas. When users zoom in for the interesting information, the original unabbreviated version of the page will be shown. During the zooming operation, the thumbnail view and the detail views look similar, so that users can recognize the thumbnail view corresponding to the detail view [8]. [20,21] proposed to show Web pages in a modified original layout, where texts and images on a Web page are scaled to fit the display width. First, the size of the text relative to the rest of the page contents is modified and the browser viewport is limited. Second, a scaled down version of the whole page is overlaid with an indication of the current viewport at the top. Web contents can also be taken out of table cells and shown one after another in the order specified in markup files.
3) Re-authoring Web Pages at Client Sides
A client device can use style sheets to format contents in a browser [11]. For instance, the font size of textual contents can be adjusted by users [7]. Together with the above intermediate-side approaches, by storing user's operations with the DOM tree in a profile, the system could automatically generate a DOM-tree with branches expanded or hidden according to users' interests [7].
Along with the popularity of mobile Web search, Google's PDA mobile Web search interface differs from its XHTML interface in the following three main aspects [22]: 1) it only offers Web and Image searches; 2) it displays the same snippet as desktop search, and 3) no trancoding is performed before displaying a clicked link. In [23], the mobile search interface provided automatic search result categories to present the user with an overview of the result set. In addition, the interface utilized a focus+context method to help present the result list. Researchers have also proposed many novel approaches to mobile search by considering context information. [24] provided a novel interface which is well-adapted to the need of mobile users. They provided historical query and result selection data for users to navigate through on an interactive map-based interface.
Mobile devices and mobile Internet bring extremely challenging to mobile search. In order to understanding the needs of mobile search, many researchers [22,25,26] studied mobile search patterns. [25] conducted a large-scale study on English mobile queries from the US, Europe, and Asia, which were submitted from mobile devices using Yahoo!. They found the following characteristics of mobile queries. 1) Personal entertainment is the most popular queries, and users are searching for a broad category personal entertainment. 2) Mobile query pattern is still dynamic. 3) There exist meaningful variations in the regional query pattern in terms of the quantitative statistics. 4) There are interesting differences among users query of various search applications in terms of their topical interests of their queries. [25,26] examined wireless search patterns for a major carrier in the United States by analyzing Google search queries. Compared with their study in 2005, they found some interesting trends [26]. 1) Users type faster. 2) More queries had at least one click. 3) There are more explorations within one session. 4) Mobile queries are becoming less homogeneous. 5) There are more high-end devices. 6) The percentage ofqueries is increasing.
Compared with queries in desktop, research in [22] showed the diversity of queries in mobile environments was far less. This might be due to the enormous amount of efforts (in terms of time and key presses) needed for users to enter query terms, so that each session on mobile devices had significantly fewer queries than sessions initiated on the desktop [22].
Users for the most part tended to search similar contents as desktop queries, and the percentage ofqueries was vastly larger [22]. [22] also analyzed Google's XHTML search and Google's PDA search histories related to how and why typical users use mobile Web search, in order to better understand mobile search users. Google's PDA interface is similar to Google's XHTML interface [22], but it has the following three main differences. 1) The PDA interface only offers Web and Image searches; 2) The PDA interface displays the same snippet as desktop search. 3) No trancoding is performed before displaying a clicked link. In [23], the mobile search interface provided automatic search result categories to present the user with an overview of the result set. In addition, the interface utilized a focus+context method to help present the result list.
Researchers also have proposed many novel approaches to mobile search by considering context information. [27] proposed a query prediction system for helping enter a query. The system redefined the prediction dictionary after considering contextual signals, such as knowledge of the application being used and the location of the user. Combining context features, [24] provided a novel interface which is well-adapted to the need of mobile users. They provides historical query and result selection data for users to navigate through on an interactive map-based interface [24].
2.2 Text (Lengthy Document) Presentation
Two popular ways to view lengthy documents on small screens in the literature are Rapid Serial Visual Presentation (RSVP) and Leading Format Presentation (LFP) [28,29]. 1) RSVP presents one or more text words at a time at a fixed location on the screen [30]. Two variants of RSVP, namely, Adaptive RSVP and Sonified RSVP, were detailed in [31,32]. Adaptive RSVP adjusts each text chunk exposure time with respect to content (e.g., the number of characters and words to be exposed) as well as to context (e.g., the result of content adaptation, the word frequencies of the words in the chunk, and the position of the chunk in sentence being exposed). Sonified RSVP plays appropriate sound when a certain text chunk is displayed. 2) LFP method scrolls the text in one line horizontally or vertically across the screen [29,30,31]. Considering that sentence boundary is important in reading, a sentence-oriented presentation manner was developed for a small window, which presented complete sentences one at a time [30].
In general, sentences can be read more accurately and more natural in the RSVP format than in the LFP format [32,33]. This is because when human's eyes process information during fixed gazes, it is more comfortable that the text moved successively rather than continuously. However, the experiments of [34] showed that comprehension for smooth scrolling times square was at least as high as that for RSVP at presentation rates ranging from 100 to 300 words per minute. [35] compared RSVP with three-line and ten-line LFP presentation method, and found out that readers favored the slower speed, and were equally satisfied with the three methods. But [35] supported the use of RSVP, because even with no experience with RSVP reading, participants were able to read just as accurately and were just as satisfied as the other two, and more participants were comfortable at faster speeds with RSVP than the others.
2.3 Image Presentation
To visualize data-intensive images on mobile devices, an intuitive solution is to compress and transcode images to reduce data transmission and processing. JPEG 2000 detailed a progressive transmission mechanism which allowed images to be reconstructed by different pixel accuracy or spatial resolution and be delivered to different target devices of different capabilities [36]. [37] introduced a non-uniform resolution presentation method, in which resolution was the highest at the fovea but falls off away from the fovea. [38] classified images according to image type and purpose, and transcoded images to adapt to the unique characteristics of the devices with a wide range of communication, processing, storage, and display capabilities, thus improving the delivery.
Besides treating an image as a whole, [39,40,41] proposed to separate region-of-interest and deliver the most important region to the small screen according to the human's attention model. They used RSVP presentation technique to simulate the attention shifting process, and noticed that there was an important psycho physiological activity - visual attention shifting. Image browsing on small devices could be improved by simulating the fixation and shifting process in a way similar to RSVP. An image was decomposed into a set of regions which were displayed serially, each for a brief period of time. [39] further described a generic and extensible image attention model based on three attributes (i.e., region of interest, attention value, and minimal perceptible size) associated with each attention object. [40,41] tried to find an optimal image browsing path based on the image attention model to simulate the human browsing behavior. [42] developed a level-of-detail technique to adapt tree and/or cluster images on mobile devices. For tree images designed to visualize a hierarchy of categories, small rectangles in deep layers can be merged into a single larger rectangle. When users tap a rectangle, the tapped one will be enlarged to occupy the whole screen. For cluster images, details of the cluster image including the spheres in the user groups are neglected, when the user is looking at an overview of the visual presentation.
2.4 Map Presentation
Maps play an important role in mobile location-based services. However, they are often too large to be fully displayed on mobile device screens [2]. To this end, [43] used 3D arrows to point towards the objects and by the side of the arrows, the information about distance and name of point objects was provided with text. The 3D arrows were semi-transparent for comfortable visual. City Lights [44] was another attempt to provide a lot of types of off-screen objects information in that direction. It placed along each of border of a window.“Halo” [45] and zooming [46] are two popular methods used in map navigation task, where zooming allows the user to continuously move in and out of level of detail by using distance to the plane, and “Halo” represented off-screen locations as abstract “streetlamps” with their lights on the map. The map was overlaid with translucent arcs, indicating the location of off-screen places. Each arc was part of a circular ring that surrounds one of the off-screen locations. The arcs on the map allowed viewers to recognize the missing off-screen parts, and let viewers understand its position in space well enough to know the location of the off-screen targets. [46] compared user performance between “Halo” and zooming methods. Their work shows that ``Halo" is helpful for low numbers of distracting targets, and zooming helps independently of the number of distracters. They hence suggest that the interface can combine the effect of these two methods, so that the joint performance keeps the desirable feature of the individual performance.
2.5 3-Dimensional Object Presentation
To visualize 3D model on mobile devices, Virtual Reality Modeling Language (VRML) and Extensible 3D(X3D) allow a content developer to re-use a large collection of existing Web-Based 3D worlds in the mobile context and develop content for different platforms with the same tools [47]. For location-aware presentation of VRML contents on mobile devices, the user interface was divided into two parts: an upper area where the actual 3D world was visualized and a lower area providing status information and tools for users to navigate the 3D world, setting the system and moving the viewpoint [47]. [48,49] used an integrated camera to visually track physical mobile interaction. [48] provided a 3D interface which can track the movement of a target by analyzing the video stream of the handheld computer camera. The position of the target can directly be inferred from the color-codes that are printed on it [48]. [49] proposed an interaction technique that uses the position of the mobile device in relation to a tracked point as input, as it is believed that the possibility of using mixed interaction spaces is what distinguishes camera-based interaction from other types of sensor-based interaction on mobile devices.
2.6 Calendar Presentation
Showed an interesting fisheye calendar interface called DataLens on PDAs. On the interface[50,51], users could first have an overview of a large time period with a graphical representation of each day's activities. Then, users could tap on any day to expand the area representing that day and reveal the list of appointments in context [51]. The “semantic zooming” approach used in DataLens was utilized to visually represent objects differently depending on how much space is available for displaying. The graphical views were scaled to fit the available space, while the textual views used a constant-sized font, and the text was clipped to fit in the available space [51]. On the DataLens, four views (tiny view, agenda view, full day view, and appointment detail) are available.
There were also some work to explore the visualization of quantitative information on mobile devices. [52] used bars with colors to present negative and positive values, instead of splitting the scarce screen space into two smaller areas.
2.7 Database Presentation
Current approaches for desktop-based database interfaces fall into two categories, i.e., visual interfaces and keyword-based interfaces [53]. In the visual database interface category, visual query specification interfaces (e.g., QBE [54] and XQBE [55]) and forms-based query interfaces (e.g., GRIDS system [56] and FoXQ system [57]) have both received considerable attentions. In the keyword-based interface category, designers equip database systems with an IR-style keyword-based search interface and the systems automatically discover and display the hidden semantic structures that the keyword query carries [53].
However, for mobile devices with a much smaller display, users may feel too heavy and even unreadable when presented with a complete query result satisfying a query condition at one time, calling for new database presentation strategies in the mobile domain. [58] thus conducted a study on how to selectively and dynamically present database contents on small screens. Five selection strategies, namely, Context-based Selection, Context-Cluster-based Selection, Attribute-Cluster-based Selection, Frequency-Based Selection, and Recent Frequency-Based Selection, were designed in order to choose the most potentially useful attributes to be displayed on the screen. The two well-developed methods, i.e., leading format and serializing format for dynamically displaying database query results on small screens were employed. The five methods on both synthetic data and real data were evaluated. The context-based and context-cluster-based strategies were superior over the rest according to the average selection accuracy, while the context-based approach also cost the least selection time. The majority of the users in the experiment found the serial display manner more comfortable and helpful than the leading display manner to get their wanted information from the screen.
further designed a graphical database interface for mobile devices. In this method[59], as soon as a connection was made, the relations in the database were displayed on their interface. Initially, only “top-level” relations were shown, and for the sake of conserving screen space, a nested relation structure was imposed on non-nested database systems. On the interface, users could select any number of relations, and display all the possible join paths between them. The resulting join was displayed on an auxiliary screen, which showed the actual SQL query and the actual answer set for that query [59].
3 Information Presentation via Audio Channel
Given the hard-handling and limited screens, it is beneficial to make use of the speech channel of mobile devices. [60] illustrated a comprehensive list of reasons for audio output. First, voice is portrayed as the most naturalistic way to interact with a system, so speech interface is more natural for interaction. Second, speech interface helps increase interaction efficiency, because speech is faster than any other common communication method like typing and writing. Third, voice interaction avoids “hand-busy” and “eye-busy” operations which happen to the visual interface. Fourth, people tend to think that telephony network is often more trustworthiness than Web. Finally, speech interface can serve as a good input manner, where speech recognition avoids password input [60]. Ease-of-use and the speed of interaction are the two most important requirements for voice interface, and voice interface must be an integral part of the whole user interface of the device, but should not be overused due to the miss-recognition [61].
evaluated reading performance on mobile devices for both a handheld visual display and a speech-synthesis audio display. They found that the audio interface allowed users to better navigate their environment. These findings suggest that users may benefit from an audio display[62]. designed a multi-lingual speaker-dependent voice dialing user interface, which could support speech recognition and speech synthesis[61]. Users need not train the voice tag, and the interface system can generate the tag automatically. [63] offered a speech interface model, where users can use a single personalized speech interface to access all services and applications. This approach decreased the misunderstanding and miss-recognition of multiple appliances.
4 Information Presentation via Tactile Channel
Apart from visual and audio channels, tactile sensation can also be explored for information presentation. The experiments done in [64] showed that a touch-based user interface can provide the elderly an easy-to-learn user interface paradigm. In addition, by tactile feedback, we can reduce possible mobile interaction mistakes, since audio feedback is difficult to apply when the environment is noisy, and visual feedback is also difficult as users have to pay much attention to others and the screen is small. In face, users can feel the vibration with their fingers as they press the screen [65]. [66] did text entry experiments and showed that users with tactile user interface could enter significantly more text, made fewer errors, and corrected more errors they did make.
used paper metaphor to design the switching of scrolling and editing operations[67], where a touch sensor is attached to a PDA. In map or Web browser, when a user does not touch sensor, the screen scrolls according to the movement of the pen when dragging, and when touching, the screen does not scroll and edit while dragging. In the photograph browser, when the user does not touch the sensor, the screen also scrolls the photograph, but when touching, if dragging the pen upward, the photograph is zoomed in; and if downward, the photograph is zoomed out. Dragging the pen left to right invokes clockwise rotation, and right to left invokes counter clockwise rotation [67].
Sometimes, it is necessary to switch among different user interaction modes on mobile devices. [68] outlined five switching ways between ink and gesture modes for a pen interface. Those mode switching techniques are “Pressing Barrel Button”, “Press and Hold”, “Using Non-Preferred Hand”, “Pressure-Based Mode Switching” and “Using the Eraser End of a Pen” [68].
5 Others
Except the above approaches, researches tried some novel methods to help mobile interface design. Considering that users often repeat certain tasks when they use mobile phone, [26] used shortcuts for these repetitive tasks. Some methods of producing shortcuts are evaluated, such as last performed, most frequent, C4.5 decision tree, Native-Bayes Base, and etc. They illustrated that the hybrid approach combining frequency and Native-Bayes approaches exhibits potentials for mobile device user interface.
6 Conclusion
In this survey paper, we gave an overview of recently developed techniques for mobile information presentation through the visual, audio, and tactile channels of mobile devices. The multiple presentation strategies compromise with each other to contribute the easy and convenient use of mobile devices.
References
[1] MYERS B A, NICHOLS J, WOBBROCK J O, et al. Taking handheld devices to the next level. Computer, 37(12), 2004.
[2] CHITTARO L. Visualizing information on mobile devices. Computer, 39(3):40C45, 2006.
[3] KÄRKKÄINEN L, LAARNI J. Designing for small display screens. In Proc. of the second Nordic conference on Human-computer interaction, pages 227C230, 2002.
[4] DUNLOP M, BREWSTER S. The challenge of mobile devices for human computer interaction. Personal Ubiquitous Comput., 6(4):235C236, 2002.
[5] GONG J, TARASEWICH P. Guidelines for handheld mobile device interface design. In Proc. the 2004 DSI Annual Meeting, 2004.
[6] HUOT S, LECOLINET E. Focus + context visualization techniques for displaying large lists with multiple points of interest on small tactile screens. Personal and Ubiquitous Computing, 4663:219C233, 2007.
[7] ZHANG D S. Web content adaptation for mobile handheld devices. Commun. ACM, 50(2):75C79, 2007.
[8] LAM H, BAUDISCH P. Summary thumbnails: readable overviews for small screen web browsers. In CHI ’05: Proc. of the SIGCHI conference on Human factors in computing systems, pages 681C690, New York, NY, USA, 2005.
[9] BUCHANAN G, FARRANT S, JONES M, et al. Improving mobile internet usability. In Proc. of the 10th international conference on WWW, pages 673C680, New York, NY, USA, 2001. ACM.
[10] JONES M, BUCHANAN G, THIMBLEBY H. Sorting out searching on small screen devices. In Proc. Mobile HCI, pages 81C94, 2002.
[11] LAAKKO T, HILTUNEN T. Adapting web content to mobile user agents. IEEE Internet Computing, 9(2):46C53, 2005.
[12] PASHTAN A, KOLLIPARA S, PEARCE M. Adapting content for wireless web services. IEEE Internet Computing, 7(5):79C85, 2003.
[13] MOHAN R, SMITH J R, LI C S. Adapting multimedia internet content for universal access. IEEE Transactions on Multimedia, 1(1):104C114, 1999.
[14] BERHE G, BRUNIE L, PIERSON J M. Modeling service-based multimedia content adaptation in pervasive computing. In Proc. of the first conference on computing frontiers on Computing frontiers, pages 60C69, 2004.
[15] ADIPAT B, ZHANG D. Adaptive and personalized interfaces for mobile web. In 15th Annual Workshop on Information Technolgies & Systems WITS, 2005.
[16] BALUJA S. Browsing on small screens: recasting web-page segmentation into an efficient machine learning framework. In Proc. of the 15th international conference on WWW, pages 33C42. ACM, 2006.
[17] YANG X, XIANG P F, SHI Y C. Semantic html page segmentation using type analysis. Intl. Symposium on Pervasive Computing and Applications, pages 669C674, 2006.
[18] CHEN Y, XIE X, MA W Y, et at. Adapting web pages for small screen devices. IEEE Internet Computing, 9(1):50C56, 2005.
[19] HWANG Y, KIM J, SEO E. Structure-aware web transcoding for mobile devices. IEEE Internet Computing, 7(5):14C21, 2003.
[20] ROTO V, KAIKKONEN A. Perception of narrow web pages on a mobile phone. In Proc. of Human Factors in Telecommunications, 2003.
[21] ROTO V, POPESCU A, KOIVISTO A, et al. Minimap: a web page visualization method for mobile phones. In Proc. of the SIGCHI conference on Human Factors in computing systems, pages 35C44, 2006.
[22] KAMVAR M and BALUJA S. A large scale study of wireless search behavior: Google mobile search. In Proc. of the SIGCHI conference on Human Factors in computing systems, pages 701C709, 2006.
[23] HEIMONEN T, KÄKI M. Mobile findex: supporting mobile web search with automatic result categories. In MobileHCI ’07: Proceedings of the 9th international conference on Human computer interaction with mobile devices and services, pages 397C404, New York, NY, USA, 2007.
[24] CHURCH K, SMYTH B. Who, what, where & when: a new approach to mobile search. In IUI ’08: Proceedings of the 13th international conference on Intelligent user interfaces, pages 309C312, New York, NY, USA, 2008.
[25] YI J, MAGHOUL F, PEDERSEN J. Deciphering mobile search patterns: a study of yahoo! mobile search queries. In WWW ’08: Proceeding of the 17th international conference on World Wide Web, pages 257C266, New York, NY, USA, 2008.
[26] KAMVAR M, BALUJA S. Deciphering trends in mobile search. Computer, 40(8):58C62, 2007.
[27] KAMVAR M, BALUJA S. The role of context in query input: using contextual signals to complete queries on mobile devices. In MobileHCI ’07: Proceedings of the 9th international conference on Human computer interaction with mobile devices and services, pages 405C412, New York, NY, USA, 2007.
[28] MILLS C B, WELDON L J. Reading text from computer screens. ACM Computing Surveys (CSUR), 19:329 C 357, 1987.
[29] LAARNI J. Searching for optimal methods of presenting dynamic text on different types of screens. In Proc. of the second Nordic conference on Human-computer interaction, pages 219C222, New York, NY, USA, 2002.
[30] RAHMAN T, MUTER P. Designing an interface to optimize reading with small display windows. Human Factors, 41(1):106C117, 1999.
[31] GOLDSTEIN M, OQVIST G, BAYAT-M M, et al. Enhancing the reading experience: Using adaptive and sonified rsvp for reading on small displays. In Proc. Workshop on Mobile Devices at IHM-HCI, 2001.
[32] ÖQUIST G, GOLDSTEIN M. Towards an improved readability on mobile devices: Evaluating adaptive rapid serial visual presentation. In Mobile HCI ’02: Proc. of the 4th International Symposium on Mobile Human-Computer Interaction, pages 225C240, London, UK, 2002. Springer-Verlag.
[33] JUOLA J F, TIRITOGLU A, PLEUNIS J. Reading text presented on a small display. Applied Ergonomics, 26(3):227C229, 1995.
[34] KANG T J, MUTER P. Reading dynamically displayed text. Behaviour & Information Technology, 8:33C42, 1989.
[35] BERNARD M L, CHAPARRO B S, RUSSELL M. Examining automatic text presentation for small screens. In Proc. Human Factors and Ergonomics Society 45th Annual Meeting, pages 637C639, 2001.
[36] CHRISTOPOULOS C, SKODRAS A, EBRAHIMI T. The jpeg2000 still image coding system: an overview. IEEE Transactions on Consumer Electronics, 46(4):1103C1127, 2000.
[37] CHANG E C, MALLAT S, YAP C. Wavelet foveation. Applied and Computational Harmonic Analysis, 9(3):312C335, 2000.
[38] SMITH J R, MOHAN R, LI C S. Content-based transcoding of images in the internet. In Proc. 1998 Intl. Conf. on Image Processing, pages 7C11, 1998.
[39] CHEN L Q, XIE X, FAN X, et al. A visual attention model for adapting images on small displays. Multimedia systems, 9(4):353C364, 2003.
[40] MA W Y, ZHANG H J, XIE X, et al. Browsing large pictures under limited display sizes. IEEE Transactions on Multimedia, 8(4):707C 715, 2006.
[41] LIU H, XIE X, MA W Y, et at. Automatic browsing of large pictures on mobile devices. In Proc. ACM Multimedia 2003, pages 148C155, 2003.
[42] WANG Y, ZHOU L Z, FENG J H, et al. 2d/3d web visualization on mobile devices. In Proc. WISE 2006, pages 536C547, 2006.
[43] CHITTARO L, BURIGAR S. 3D location-pointing as a navigation aid in virtual environments. In AVI ’04: Proceedings of the working conference on Advanced visual interfaces, pages 267C274, New York, NY, USA, 2004.
[44] ZELLWEGER P T, MACKINLAY J D, GOOD L, et al. City lights: contextual views in minimal space. In proc. CHI2003, pages 838C839, 2003.
[45] BAUDISCH P, ROSENHOLTZ R. Halo: A technique for visualizing off-screen locations. In Proc. CHI 2003, pages 481C488, 2003.
[46] ROHS M, ESSL G. Sensing based interaction for information navigation on handheld displays. In MobileHCI ’07: Proceedings of the 9th international conference on Human computer interaction with mobile devices and services, pages 387C394, New York, NY, USA, 2007.
[47] BURIGAT S, CHITTARO L. Location-aware visualization of vrml model in gps-based mobile guides. In Proc. the tenth Intl. Conf. on 3D Web technology, pages 57C64, 2005.
[48] HACHET M, POUDEROUX J, GUITTON P. A camera-based interface for interaction with mobile handheld computers. In I3D ’05: Proceedings of the 2005 symposium on Interactive 3D graphics and games, pages 65C72, New York, NY, USA, 2005.
[49] HANSEN T R, ERIKSSON E, LYKKE-OLESEN A. Mixed interaction space: designing for camera based interaction with mobile devices. In CHI ’05: CHI ’05 extended abstracts on Human factors in computing systems, pages 1933C1936, New York, NY, USA, 2005.
[50] BEDERSON B B, CLAMAGE A, CZERWINSKI M P, et al. A fisheye calendar interface for PDAs: Proving overviews for small displays. ACM TOCHI, 11(1):90C119, 2004.
[51] BEDERSON B B, CLAMAGE A, CZERWINSKI M P, and et al. Datelens: A fisheye calendar interface for pdas. ACM TOCHI, 11(1):90C119, 2004.
[52] CHITTARO L, CAMAGGIO A. Visualizing bar charts on wap phones. In Proceedings of the 4th International Symposium on Mobile Human-Computer Interaction, pages 414C418, 2002.
[53] JAGADISH H V, CHAPMAN A, ELKISS A, et al. Making database systems usable. In Proc. SIGMOD Conf., pages 13C24, 2007.
[54] ZLOOF M. Query-by-example: the invocation and definition of tables and forms. In Proc. Conf. on Very Large Databases, pages 1C24, 1975.
[55] BRAGA D, CAMPI A, CERI S. XQBE (XQUERY by example): A visual interface to the standard xml query language. ACM Trans. Database Syst., 30(2):398C443, 2005.
[56] SABIN R E, YAP T K. Integrating information retrieval techniques with traditional db methods in a web-based database browser. In Proc. of the 1998 ACM symposium on Applied Computing, pages 760C766, 1998.
[57] ABRAHAM R. Foxq - xquery by forms. In Proc. the 2003 IEEE Symposium on Human Centric Computing Languages and Environments, pages 289C290, 2003.
[58] QIAO L, FENG L, ZHOU L Z. Information presentation on mobile devices: Techniques and practices. In APWeb, pages 395C406, 2008.
[59] ALONSO R, HABER E M, KORTH H F. A database interface for mobile computers. In Proc. Globecom Workshop on Networking of Personal Communication Applications, 1992.
[60] FAN Y, SALIBA A, KENDALL E A, et al. Speech interface: an enhancer to the acceptance of m-commerce applications. In Proc. ICMB 2005, volume 00, pages 445C451, 2005.
[61] ISO-SIPILA J, MOBERG M, ACOUSTICS O V. Multi-lingual speaker-independent voice user interface for mobile devices. In IEEE ICASSP, volume 1, page 1, 2006.
[62] VADAS K, PATEL N, LYONS K, et al. Reading on-the-go: a comparison of audio and hand-held displays. In MobileHCI ’06: Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, pages 219C226, New York, NY, USA, 2006.
[63] PAKUCS B. Butle: a universal speech interface for mobile environments. Lecture notes in computer science, 3160, 2004.
[64] HÄIKIÖ J, WALLIIN A, ISOMURSU M, et al. Touch-based user interface for elderly users. In Mobile HCI, pages 289C296, 2007.
[65] POUPYREY I, MARUYAMA S. Tactile interfaces for small touch screens. In Proc. User Interface Software and Technology, pages 217C220, 2003.
[66] BREWSTER S, CHOHAN F, BROWN L. Tactile feedback for mobile interactions. In Proc. SIGCHI Conf. on Human factors in computing systems, pages 159C162, 2007.
第6届手机国际展会于3月26-28日在北京举行。此次展会以“亚洲和手机通信”为主题,吸引了众多手机产业的中外相关企业参展,其中,日本厂商多达50家,村田制作所(muRata)就是其中之一。该公司主要展示的是泛网通信和汽车电子产品。另外,最令人注目的是具有鲜明特色的、集其优势产品与技术于一身的产物,即会骑自行车的机器人――村田顽童。
村田制作所的工程师演示了村田顽童的独特技艺:以超低速在平衡木上行驶而不会倒下,平衡木的宽度与村田顽童的车轮相同。它不倒的原因在于配置在鞍形支架下的陀螺传感器,只要感觉到一丝晃动,就会检测出车体的倾斜,一旦检测出自行车的倾斜,即通过旋转村田顽童心中的大辐板,产生消除倾斜的力。如此反复,以调节平衡。通过收发命令的蓝牙模块、用于电眼照相机的透光性陶瓷透镜、电池、电源模块、电容器、电磁干扰滤波器等部件,以及该公司的控制技术、电路设计方法、软件工具等实现了这种能力。所以,村田顽童是该公司优势技术与产品的整和产物。其中,最为突出的就是陶瓷电容器、陀螺传感器、噪声消除元器件和蓝牙模块。目前,村田制作所的陶瓷电容器已经占据35%的全球市场份额,噪声消除元器件也有30%的市场占有率。此外,其蓝牙模块也在手机中得到了广泛的应用,并且开始计划向在过去两年里创造了便携式音频播放器市场神话的iPod方向发展。
村田制作所还以“车体控制、安全、舒适、信息化”为切入点,重点介绍了其在汽车市场上的综合应对能力以及产品和技术,特别是传感器,该公司将主要面向汽车间距感测、气囊等安全系统力推新品。同时,车身控制和导航应用也是其传感器的重点发展方向。该公司的振动陀螺传感器采用压电陶瓷制造,并融合了最新的MEMS技术,通过独特的振荡子结构,实现了较强的抗振和抗冲击能力,结合其稳定的温度特性,可为汽车导航系统的高性能化提供保证。
另外,实现泛网通信也是村田制作所一直追求的目标,特别是以手机、DVD录像机、笔记本电脑等信息家电为中心,集中展示了他们的相关产品和技术。该公司在移动通信用滤波器的小型化方面具有一定的特色。它们的GIGAFIL介质滤波器与初期型号产品相比,实现了1/2000的小型化。而为将同样的功能从介质滤波器转换到表面波(SAW)滤波器而开发的SAW收发器具有更小的体积,顺应了移动电话小型化的发展潮流。
村田制作所企划管理集团宣传部部长大岛幸男表示:“我们今后将有3个重点发展方向,即无线通信、传感器和节能。此次展出的产品和技术,特别是村田顽童,对整个产业的各个领域都有很大的应用和借鉴价值。”
【关键词】博物馆 数字化展览 展示技术
博物馆是国家和地区进行文化和文物保护的重要途径,其作用主要体现在对文物的展示以及相关知识的教育和传播上。博物馆作为人类社会中的一种文化传播形式,其特点也在随着社会的发展而不断发生着深刻的变化。近年来数字技术的发展为博物馆的功能完善提供了有效的途径和良好的工具。数字技术在博物馆建设管理中的应用不仅提高了展览的观赏性、艺术性,还能使各项工作的组织更加的协调、安全、有序,为参观者带来更好的感官享受,同时也进一步提高文化宣传和教育的效果。博物馆的数字化展示主要是通过算机技术的应用将博物馆中的实体文物转换成相应的虚拟信息,参观者可以根据自己的需求选择合适的信息进行浏览,这样不仅提高了博物馆的工作效率,还能更好的体现服务的人性化和多样化,完善了博物馆的功能。
1 博物馆展示设计的产生与发展
博物馆兴起于18世纪的工业革命以后。在当时人们已经初步认识到了博物馆对文化教育与宣传的作用,并开始利用博物馆进行一些历史文化知识的学习。博物馆在发展初期主要发挥了教育功能。为了更好的扩大其影响,很多博物馆逐渐将藏品与存储藏品的库房进行分开设置,这样就能腾出更多的空间进行藏品的展示。这就是最初的博物馆展示。从20世纪初期开始,博物馆的发展方式开始产生一定的变化。自然科学博物馆首先在英国出现。这种博物馆改变了传统的藏品陈列方式,在传统的文字说明基础上开始增加了相应的图片、图解以及模型对藏品进行更加深入的介绍。随后,英国的自然科学博物馆又最早开始使用标准化的博物馆陈列柜,并对陈列柜的材质进行了严格的筛选,以确保更大的储物空间[1]。到了21世纪,博物馆的发展向着更加多样化、人性化和数字化的方向发展。博物馆属于社会的非盈利机构,其主要的功能是向大众展示一些文物以及这些文物背后所包含的文化意蕴和内涵。博物馆中的藏品不仅是历史遗迹,也是人类文明发展的见证。现代博物馆博物馆的建设还是一门综合性的学科,结合了心理学、建筑学、美学等多个领域。博物馆还具有很强的研究和学术价值,是信息交流和传播的重要途径。与此同时,博物馆也是权威的机构,能够为大众提供最为专业性的文物知识,因此,博物馆也具有普及教育的功能。
2 博物馆展示的特点
2.1 博物馆展示信息传递的载体
进行博物馆展示设计的主要目的是为了促进信息传递的效果和效率。从这一层面上来说,展示设计的实质是一种信息传播的媒介。信息的传播是需要有一个完善的系统的,并不是简单的信息接收和传递,在这一过程中还需要对信息进行相应的处理和加工。而展示设计就是通过各种媒体的应用为信息的传递创建这样一个体系,并引导参观者参与到信息传播的过程中,以体验的方式对信息进行直观的感受。计算机技术以及信息技术的发展使得数字技术成为了博物馆信息传播过程中的重要环节。当前许多新建成的博物馆都是数字技术与信息技术结合的产物,在实际应用的过程中也展现出了良好的效果。
2.2 博物馆展示设计是多学科交叉的综合体
现代的博物馆展示设计是多个学科交叉综合的产物,其中涉及的学科包括传播学、建筑学、美学、社会学等。现代博物馆将艺术与科技进行了完美的融合,有效的汲取了各个学科的精髓,又在此基础上形成了其自身的特点和发展规律。
2.3 博物馆展示的交互性
展示是博物馆进行知识和文化传播的主要途径,也是实现与参观者互动的一种方式。要形成良好互动的关键在于沟通的有效性。要形成一个良好的沟通,必须满足三个要求。首先,信息必须有良好的针对性。面对不同的沟通对象时,所采用的信息内容和形式也是有所不同的。其次,在信息沟通的过程中需要根据反馈对信息进行及时的调整。最后,沟通的过程必须是双向的,只有这样才能确保良好的沟通效果。在进行博物馆的展示设计时,首先要考虑的是信息沟通的对象是谁,其次需要根据沟通的对象选择合适的沟通方式,以达到理想的沟通效果,实现信息与参与者之间良好的互动。
3 博物馆展览方式的类型和设计特点
3.1 从观众感官行为上分类
从感官上划分,博物馆的类型可以分为视觉符号的传递以及听觉符号的传递两种类型。博物馆中有很多藏品都是通过视觉信息进行传递的,包括图片、文字、雕塑、视频等。除了视觉符号外,听觉符号也是博物馆中信息传递的重要方式之一,例如许多藏品前都会有语音提示,这是通过红外装置感知参观者的位置,当参观者位于展示品的附近时就能自动产生语音提示。多种形式的感官符号极大的丰富了信息传递的途径,也能提高展品展示的效果。
3.2 从展示内容上分类
博物馆的展示内容主要有两种类型,分别是实体展品为中心以及媒介信息为中心的展览方式。以实体展品为中心的展览方式是最为传统的。这种展览方式将展品以最客观直接的方式呈现在参观者面前,没有过多的说明,观众主要通过对展品的观察和欣赏来形成自己对展品的理解。当前,我国大多是博物馆仍然采用这种传统的展览方式。这种展览方式的特点是展品以实物为主,在展览的过程中展品就是重点和中心。这种展览方式能够充分的体现展品自身的价值和意义,并将展品内涵以最完整、原始的方式呈现出来。观众通过视觉、听觉等感官对展品进行直观的感受。
第二种展览方式是以媒介信息为中心的展览方式。信息技术、数字技术的发展使得网络平台在博物馆中的应用日益广泛,同时也为媒介信息为中心的展览方式发展奠定了基础。通过数字媒体技术的应用,能够为参观者建立一个既具有空间引导意义,又具有信息自动展示的综合服务系统。随着信息技术的进一步发展和普及,信息技术在未来也将成为博物馆建设过程中的核心技术。博物馆本身作为信息传播的重要方式,也具有很大的价值,以媒介信息为中心的展览方式在实体展品的基础上提供了更加丰富的展示形式,能够更好的体现出博物馆的文化底蕴,凸显博物馆的教育意义。
3.3 从物的表现方式上分类
物的表现方式有很多种,主要的类型包括剧情发展展览方式、场景陈列展览方式、形式对比展览方式、重点陈列展览方式、聚集陈列展览方式等。这几种展览方式各有其特点。剧情展览方式是将整个博物馆的展览过程看成一个开端、发展、、结尾的剧情发展过程[3]。简单的来说,剧情发展展览方式就是将展品通过讲故事的方式介绍给观众。这种展览方式不仅显得逻辑清晰有条理,而且具有较强的趣味性,能够帮助参观者对博物馆的展品形成系统性的了解。一般历史革命博物馆、地方志博物馆都会采用这种展览方式,将历史事件通过剧情的方式串联起来,让参观者根据一定的时间或逻辑顺序进行参观。
第二种是场景陈列展览方式。这种展览方式一般是通过选取某一事件,采用雕塑、模型等方式进行展品的展示。选取出来的事件一般具有较强的代表性,对参观者有较大的吸引力和感染力。例如,大庆石油博物馆就选取了“王进喜打井”这一耳熟能详的事件,以王进喜打井的工具以及其日常生活中的工具作为主要的陈列对象,将当时打井的景象进行了重现,并通过声、光、电等效果进行艺术的渲染。
第三种展览方式是形式Ρ日估婪绞健3S玫亩员确绞桨括古今对比、新旧对比、色彩对比等方式。这种对比的展示形式能够给观众留下更加直观的感受和深刻的印象。大英博物馆在进行雕塑的展示时就采用了这种方式,通过巨型雕塑和小型浮雕的对比让参观者感受到展品的魅力。
第四种展览方式是重点陈列展览方式。这种展览方式一般应用于主题博物馆的展示上,展览的过程围绕一个主题展开,根据主题突出展示的重点。例如,常州的中华恐龙园博物馆就采用了重点陈列展览的方式,将恐龙作为展示的重点,根据不同时代、不同类型对展品进行了分类。
3.4 从交互方式上分类
博物馆在与观众进行沟通时最重要的手段是展品的展示,而交互作为信息沟通的主要渠道,承担着主要的信息传达功能。信息的传递是由传递对象、传递渠道、双向沟通这三个方面组成的。在进行博物馆的设计时需要从人、物、场景、时空这几个方面入手,做好这几个方面要素的协调与统筹,为参观者提供多感官的体验,实现与信息的积极互动。博物馆的信息传递并不是简单的信息收发,而是具备信息处理和调整功能的互动式传递。强调交互式的信息传递方式能够将以往以展品为主的被动参观模式转变为以参观者需求为主体的主动参观模式,更好的调动参观者主动参与的意识。例如,上海的科技博物馆建造了一个可以模拟地震效果的电动盒子,置于这个盒子中可以让观众身临其境的体会到不同震级地震的感受,这种直观的体会比大量的文字和图解演说更加的有效。
第二种类型是空间交互展览方式。博物馆的展示空间分为实体空间、虚拟空间、心理空间等三个方面。通过对博物馆的空间进行划分可以引起参观者在心理上的变化,从而与展览的环境形成一定的互动,建立一定的联系。人与环境的互动可以加强环境在人心理上的感染力。
第三种形式是数字智能交互展览的方式。数字技术的应用催生了一系列数字博物馆的产生,如虚拟博物馆、网络博物馆等。数字博物馆为参观者提供了更大的选择空间,他们可以根据自己的需求和喜好选择合适的参观方式。在数字博物馆中,用户也能得到与实体博物馆中相类似的感官体验,可以说数字博物馆是对实体博物馆的一种重要的补充,而且在过程上更加的便捷、快速。
4 博物馆中数字化展示技术的应用研究
4.1 静态平面数字展示技术
静态平面数字展示技术一般是借助照相机、扫描仪等设备对博物馆里的实体展品进行拍摄或扫描,然后通过处理软件对相应的图像进行裁剪、修改与美化处理,最后将其转化为数字图像信息。在博物馆展览中,静态平面数字展示技术的具体应用包括:(1)博物馆可以借助静态平面数字展示技术将一些展品更加清洗的呈现在观众面前;(2)数字展示技术可以解决实物展览中的一些缺陷和不足,大大增加博物馆资源的利用率;(3)由于一些非常珍贵的物品极易受到空气的氧化从而出现破坏,此时可以借助该技术有效解决问题。
4.2 静态立体数字展示技术
博物馆展览中通过静态立体数字展示技术可以对馆藏资源进行有效的呈现,其一般可以借助三维软件对藏品进行实物建模,随后通过Maya、3DMAX等计算机处理软件对立方体、球体等常见几何元素进行针对性的平移、旋转、拉伸等操作,进而构建出一个所需要的立体场景。通过专门的设备仪器对展品的具体结构数据进行详细的测量,对每个展品的表面采样点进行系统的采集,从而获取三维空间坐标,通过数字化可以实现展品立体化数字展示。静态立体数字展示技术与多种数字化图形处理技术结合在一起,可以将一些传统几何建模更加逼真的呈现出来。
4.3 动态平面的数字展示技术
动态平面技术主要有数字化平面交互技术、数字化二维动画技术、数字化影视媒体技术。其中FLASH动画是数字化二维动画技术最为典型的技术;Authorware是数字化平面交互技术中较为典型的技术。越来越多的博物馆开始对自身的网络信息系统进行不断的补充和完善,从而将一些无法展示的展品借助投影、触摸屏等数字展示技术更好的呈现在观众面前,进一步增加馆内资源的科普教育、教学展示。
4.4 动态空间的数字展示技术
动态空间主要是指三维数字动画技术,其一般是借助计算机软件设置和设定展品的尺寸,从而构建出展品的三维立体模型。然后还可以根据展品的实际情况来设定模型的摄像头、运行轨迹、展示场景及光线材质,最终就可以得到我们所需要的三维立体动画。目前,常见的3D软件主要有Maya和3DMax,其一般是借助三维数字动画技术来讲馆藏中一些实物展品信息更好的呈现在观众面前,以达到预期的展览效果。
5 结语
在21世纪的今天,数字技术与网络技术的结合在现实生活中的应用日益广泛,数字技术强大的虚拟现实功能能够在网络空间中为用户提供仿真的三维展示效果,将实体展示与虚拟展示有效的结合起来,为博物馆的发展开辟了新的方向。
参考文献:
[1]严允.博物馆中的数字化展览及展示技术研究[J].文艺生活・文艺理论,2015(08):35-37.
申请号:201410138359.5
类型:发明
申请人:北京威尔泰特数控设备有限公司
项目简介
法兰(Flange),又叫法兰凸缘盘,凡是在两个平面周边使用螺栓连接同时封闭的连接零件,一般都称为“法兰”。法兰盘是在生产生活中大量使用的标准件之一。我国是世界上主要的法兰盘生产地,具有庞大的产业群,其中北京威尔泰特数控设备有限公司可提供自主研发的数控法兰盘专用机床,用于法兰盘的高效率生产,提升生产企业在行业的竞争力。
北京威尔泰特数控设备有限公司是专业从事高效率数控专用机床研发、制造的公司,是新型的技术创新企业,为制造业提供合适的装备。经过多年的发展,公司取得了系列优异成绩,也得到了政府的认可与支持,技术研发实力强大。
该公司发明的法兰盘制造装置,在以计算机数字控制(CNC)系统为核心、集成自动化控制技术的电气控制系统控制下完成法兰盘零件所需的全部机械加工内容,并在法兰盘的外圆打印相应的标识。相较于传统的制造方法,具有以下优势:1、工艺紧凑,减少设备数量。在一台设备上即可完成原来需要5台以上的设备才能完成的工作;2、机械加工车间厂房需求减少,节省厂房建设投资;3、减少工人数量,大幅度降低人工成本;4、大幅度降低工人劳动强度;5、易于实现一个工人看守多台设备,进一步降低人工成本;6、设备适合 24 小时连续工作,有利于产量的稳定提高;7、节省能源;8、减少工序间物流转运成本以及减少工序间转运造成的工件损坏;9、提高工件加工精度;10、提高工件质量的一致性。
近年来,研制成功的多种类型设备的实际应用,有力地促进了回转支承以及风力发电轴承制造技术的发展,提升高精度轴承的制造能力,形成了多项专用技术。
面对不断发展的科技产业,该公司将继续秉持着“艰苦奋斗、务真求实、能拼善创、追求卓越”的核心精神,以“优质、高效、诚信、共赢”的理念,保持国内领先地位,打造法兰盘制造行业的民族品牌。
合作方式:技术转让;技术许可;创业融资;股权融资
一种可调式限流节水水龙头
专利号:ZL 201420081413.2
类型:实用新型
专利权人:李连庆
项目简介
现在大部分工厂及公共场所安装在洗手盘上的水龙头手柄,开关活动角度是在90°―360°,这些水龙头出水量大。其实洗手时往往不需要如此大的出水量,加上人们“一开即开最大”的使用习惯,又或者是在擦洗手液时也不关闭水龙头,导致洗手过程中50%左右的水是浪费掉的。市面上有不少出水量较小、可节约用水的感应式及延时式等水龙头,但这些水龙头的价格都比较昂贵,且后续维修量大,一般工厂及公共场所安装后较容易损坏。
该发明人针对现在工厂及公共场所的实际使用情况及人们的使用习惯,经过多年实践研究,研发了一种适用于工厂和一些公共场所的可以控制水龙头最大出水量的可调式限流节水水龙头。主要是由水龙头本体、水龙头柱、节水环、固环螺丝和水龙头扳手构成,水龙头柱与水龙头本体固定连接,节水环呈环状,节水环设有上固环螺丝的螺丝孔和一凹口朝上的节水环凹槽,节水环套在水龙头柱上,水龙头扳手设在水龙头柱的上方,水龙头扳手的下部设有卡在节水环凹槽里的扳手凸头。固环螺丝为六角螺丝,与固环螺丝嵌合的固环螺丝刀呈“L”形。节水环外径为30mm,节水环凹槽深度为1.3mm。
该水龙头的特点为:1、每个水龙头可按当时使用情况而调节出水量,做到按需给水,也可用于临时关闭(如维修或防止小孩玩水时);2、平行出水量。如:一排并列几个或多个水龙头同时使用的、前面的出水量可调小一些,避免前面的很大水,后面的很小水或无水;3、调节方便,松开固环螺丝后,便可以调节节水环,让节水环围绕水龙头柱水平转动,来设定扳手凸头可以转动的最大值,也就是设定水龙头扳手能打开到最大的状态(最大出水量),最大的状态可以根据客户的不同需要、不同场合来自由设定。很适用于工厂和一些公共场所,调节好节水环可以控制水龙头的最大出水量,进而达到强制性节约用水的目的。4、外表美观,结构简单,生产方便,材料成本低,节水效果明显,有利于广泛推广。
合作方式:技术转让;许可生产
一种改良结构的单缸双作用往复式活塞泵
申请号:201310493644.4
类型:发明
申请人:钟小玉
项目简介
该活塞泵是在申请人多年实践经验积累的基础上研究发明而成,其优点:泵体内有自动循环装置,如果出口阀未打开或出口管道被堵死时,泵继续在运转,泵体内的流体压力继续升高,升高到设定压力或超过时,循环装置会自动打开,流体在活塞腔与进口腔之间循环运转,所以泵零件和电机不会超负荷或损坏,保证安全运转;进、出口阀组件取消了弹簧、阀片,大大提高了进、出口阀的使用寿命,噪音明显降低,此改革在国内属于首创;自紧式密封结构密封效果好,使用寿命长;往复式驱动装置结构简单、磨擦少、能耗低、制造方便、材料省、造价低、安装、修理方便,替代传统的曲轴连杆传动,是往复传动的一项大改革;单缸双作用能耗低,震动少,噪音低,符合国家倡导的节能环保政策,一旦深入开发,广泛应用,将带来良好的经济和社会效益。
合作方式:技术转让
人物简介
该申请人钟小玉毕业于浙江乌溪江化工学院,化工机械专业,50多年来一直从事本专业工作。在工作期间,多项改革都获得良好的效果和奖励,如320公斤大气压的4M8K2高压机油的冷却装置,离心机油的冷却装置离心泵的机械密封、320公斤大气压的循环压缩机的无油等项目的改革,都取得了良好的经济和社会效益。该申请人设计的单缸双作用往复活塞泵(专利号:ZL201320647713.8)、自紧式密封结构(专利号:ZL 201320647725.0)、 往复式驱动装置(专利号:ZL201320647670.3)都获得了专利证书,且已公开。
空气水农业系统
专利号:ZL201320649843.5
类型:实用新型
专利权人:清华大学 北京田园兰德科技有限责任公司
项目简介
如果水资源短缺问题能够得以解决,未来的沙漠地区可望变成人类的粮食和能源基地。空气水农业系统就是针对该问题设计的一个综合考虑能量、水分和植物生长的可持续农业系统。该系统的原理是利用农业温室等设施防止植物蒸腾和蒸发的气态水直接进入大气环境;利用气态水回收装置对农业温室及环境空气中的气态水进行回收和液化,所得液态水再进入农田供作物生长。
该系统的创新点是在田间尺度实现农业生产用水的循环利用。其核心思想是利用局地环境中能量不平衡所造成的温度差来直接利用空气中的水汽和回收蒸发与蒸腾出来的农业耗水,这样可以在水资源消耗量极低的条件下完成农业生产。因此在未来的农业生产中,水资源有可能不再是一个限制因素。沙漠中的太阳能丰富,将太阳能生产与农业生产相结合,可将沙漠变成农业和能源生产新基地,从根本上解决目前存在的粮食安全和生态环境等问题。目前正在腾格里沙漠试验进行试验和验证。该技术是由清华大学与北京田园兰德科技有限责任公司联合发明,清华大学目前由地球系统科学研究中心的喻朝庆负责,北京田园兰德科技有限责任公司主要由尹华负责。
合作方式:创业融资
电话控制的电动门锁
专利号:ZL201420109205.9
类型:实用新型
专利权人:付方安
项目简介
该锁借助于手机电话这样普及而又成熟和尖端的平台,采用低端下岗的手机电话,作接收信号之用,操作简单与正常使用手机电话一样,稍加改装处理,插上SIM电话卡、插上电源就行。利用手机电话接收到来电信号,经处理芯片,驱动继电器开关,使微型电机开始工作。该锁机机械部位最大特点是结构简单、无故障,抗纵向、横向暴力强。其结构简单,机械强度高,无需钥匙,无法从室外破解,安全性高,并且较为经济地实现远程控制房门开,且已研制出二代模型。
合作方式:技术转让、技术入股、面议
全功能护理床
专利号:ZL201320821882.9
类型:实用新型
专利权人:车以能
项目简介
该全功能护理床是在申请人多年知识积累的基础上,经过多年实践研究而得,主要由头架、背架、臀板、腿板、脚板、底架和床身七大部分功能结构组成。该护理床除了具有传统电动护理床的电控翻背、左右翻身、坐卧躺姿态调整、饭桌等功能之外,还具有电控便孔板开闭、便盆进出、温水喷淋清洗臀部、暖风烘干臀部及相应的音响报警提示功能,此外还可方便的实现洗头、泡脚甚至洗澡。因此,该产品是一个功能全、傻瓜型的护理床,可为解决医院、老人居家养老、瘫患者、长期卧床者生存、健康、护理提供理想方案,很大地方便病患者及陪护人。
合作方式:专利权转让
通信基站发电机计时方法及装置
专利号:ZL 201110274964.1
类型:发明
专利权人:李小平
项目简介
该通信基站发电机计时装置包括:第一接触器、第二接触器、发电机、基站用电设备、发电机启动熄火装置、计时器、监控设备、集中监控机房,继电器K1的线圈K1.1,其两个常闭触点为K1.2、K1.3,市电指示灯L1,故障指示灯L2,发电指示灯L3。
该发明的工作原理:外电断电(停电)发电人员启动发电机发电时,发电计时器开始计时,当外电接通后(来电),发电计时器停止计时。通过安装基站发电计时器,准确统计出基站实际发电时长,每月通过发电计时器统计的发电时长与发电人员登记的发电时长对比,对发电人员超出发电计时器统计时长部分不予结算。该发明通过继电器和计时器实现了在市电断电后对发电机实际发电时间计时的功能,达到了及时、准确掌握实际发电情况的目的,有效的控制了代维人员瞒报虚报发电时间以及发电人员在市电来电后油机仍然运转导致的油料浪费,降低了基站发电费用成本。
合作方式:技术转让
一种温度实时显示式手机
专利号:ZL201420020780.1
类型:实用新型
专利权人:陈述尚
项目简介
该多功能手机属于新型功能结构的移动电话系列,其创新点:通过在人们日常使用的手机顶端中嵌入式设置温度传感器以感测手机所处地点的环境温度,并将信号传递给信号处理单元,信号处理单元经转换后通过电路板传送给处理芯片,在人们按下手机按键中的确认键打开手机屏幕时,显示屏闪亮的同时将显示出储存的数字温度。该技术具有以下优势:一是无需使用温度计等工具,即可知道当前地点、当前时刻的温度;二是随时随地打开手机即能看到实时温度,方便实用、快捷简便;三是产品设计结构简单,原理可靠,制造成本低;四是显示温度速度快,准确度高,集创新、实用、方便于一身,具有良好的市场前景和经济效益。
合作方式:专利权转让
一种药枕
专利号:ZL201420212814.7
类型:实用新型
专利权人:王斌
项目简介
该药枕,包括枕芯、药枕包、枕套,药枕包的内部填充药物,且内部设置多个弹性按摩条,枕芯连接药枕包,枕套包裹在枕芯和药枕包的外部,药枕包内部的弹性按摩条为2-4cm的乳胶条或记忆海绵条。通过药枕包内部的多个弹性按摩条保证了使用者的头部不会对药物产生直接挤压,药物不会从枕着头部的位置往旁边移动,提高了使用者的舒适度,也保证了药枕的药效充分发挥,该药枕原料易得、成本低、使用方便、适用范围广,一旦深入推广将带来良好的经济效益。
合作方式:创业融资;股权融资
一种便携式空气水中过滤器
专利号:ZL201420280962.2
类型:实用新型
专利权人:罗学哲
项目简介
该产品避免了被污染的空气吸入人体后对人们的身体造成损害的缺点,提供了一种便携式空气水中过滤器。其特点:外界的空气从进气腔的进气口进入后,通过与空气流入口连接的导气管进入到储水箱底部。储存在储水箱内的水对进入的空气进行净化,空气上升过程中,滤网再次对空气进行净化,净化后的空气经出气腔的空气流出口及顶部的出气口排出,后续人们可通过导管吸入出气口排出的净化空气。该装置通过水、滤网对空气进行净化,具有结构简单、使用方便、成本低等优点。
合作方式:创业融资;股权融资
SLBB复合益生菌制剂的研制与应用
申请号:201410092796.8
类型:发明
申请人:湛江德生物工程有限公司
项目简介
SLBB 复合益生菌制剂是根据益生菌的特效功能,按优缺互补的原则,优选十几种菌种,以不同菌种的繁殖生长率、用量,配制不同的培养基,分别进行扩大繁殖,均达到所需量时,按最合适的比例调配,进行终端复合发酵。SLBB 复合益生菌制剂终端复合发酵工艺先进,其优势:(1)车间达到所需要的洁净度和可调节发酵温度;(2)制作联通罐进行发酵,这种发酵方法不但节约能源、省劳动力,而且减少了产品污染环节、有效成分均匀、产品效果好。目前由于资金缺乏还不能大规模产业化生产,一旦深入推广将带来良好的经济效益。
合作方式:创业融资;股权融资
一种以桃树枝为主要原料制造纸的方法
申请号:201410297998.6
类型:发明
申请人:刘二保
项目简介
1、桃木纸生产原料:桃树春秋剪下来的废枝,檀木皮,龙须草。桃树皮100公斤可生产10公斤木浆。檀树皮50公斤可产10公斤木浆。龙须草50公斤可生产15公斤木浆。三种原料按比例加起来1公斤浆出0.9公斤纸。手工造纸共用水5吨,机械造纸共用水20吨。手工造纸的用水量是机械造纸的用水量的1/4,可减少废水排放量,利于环保。
2、废枝变废为宝,增加农民收入,一亩地桃树可增加500元的收入,激发农民大量栽培桃树,有助于防风治沙,减少对成材树的破坏,起到绿化环保效果。
3、桃木皮本身具有杀虫解毒的功效。手工造纸只用两种化学原料:漂白液,烧碱。新制造的纸存放一段时间,可将两种化学原料自然挥发,成为纯天然纸,可用于食品包装纸,卫生巾,卫生纸,纸杯等,让人用上更安全健康的生活纸。还可用作春联,剪纸,书画等,具有搭笔更清晰,逼真感更强等特效,用桃木纸做春联传承了我国传统文化,寓意全家幸福快乐。
合作方式:股权融资
手扶拖拉机用田边犁
专利号:ZL201420206777.9
类型:实用新型
专利权人:陈金数
项目简介
该手扶拖拉机用田边犁主要包括犁架、犁刀和连接架组成。犁刀设有三组,安装在犁架的下部。在犁架的上部设有用于固定犁架的连接架,犁架包括三根横杆和四根竖杆,第二横杆和第二竖杆垂直连接,留出可放置车轮的空隙。该产品能够保证在犁地的过程中车轮碾过的田边、中型田块里使用旋耕机时留下的田边等都可犁到,从实际应用情况来看,不会出现死角,特别适用于面积较小的土地。同时,整体结构简单、造价较低,具有便于推广的优点。针对目前中国垦地日益减少的情况,一旦深入推广,在减轻农民负担的同时也能提高农作物产量,将给国家和人民带来良好的经济和社会效益。
注:项目方可提供该犁的说明书、图纸、实物等。
合作方式:技术转让
自行车防盗锁
专利号:ZL201420450352.2
类型:实用新型
专利权人:石家庄固牌锁业有限公司
项目简介
现在自行车、摩托车和电动车被盗现象非常严重,主要原因在于自行车防盗锁均是由锁体和锁杆连接而成,这种锁杆不易被折断,但是其在外的锁眼部位很难防范采用撬、剪、捅等盗车的方式攻击,很容易被撬开,从而使锁具失效和车辆被盗。