首页 > 文章中心 > 永磁传动技术论文

永磁传动技术论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇永磁传动技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

永磁传动技术论文

永磁传动技术论文范文第1篇

关键词:电动物流汽车;电机;现状与趋势

中图分类号:F253.9 文献标识码:A

Abstract: With the development of China's express delivery business blowout, a rapid growth in the number of logistics vehicles. In the context of energy constraints, environmental pollution, our government put the development of electric vehicles as a logistics solution to energy and environmental problems and realize the sustainable development of one of the major initiatives, the auto production enterprises will also electric car logistics as an important strategic direction grab the commanding heights of the auto industry in the future, the key components of the motor for electric vehicle logistics is currently using more ac asynchronous motor, permanent magnet synchronous motor and switched reluctance motor, the motor has advantages and disadvantages of each. From the angle of technological development, permanent magnetic motor will be a development trend. At the same time, from the point of automotive electrical installation convenience, etc, will be electric logistics hub motor car driving mode of the ideal.

Key words: electric automobile logistics; the motor; current situation and trend

动物流汽车是新能源汽车中发展较快的一个类型。新能源汽车用的驱动电机要满足频繁启/停、加减速,爬坡或低速时能提供较大转矩,在高速行驶时提供小转矩高转速,而且变速范围要宽。由于新能源汽车车载能源为动力电池,容量有限,为获得最大的行驶里程,大多数车辆都采用了能量回馈技术,即在汽车制动时,通过控制器将车轮损耗的动能反馈到电池中,并使电机处于发电状态,将发出的电输送到电池中[1]。因此,电动汽车的驱动机不能单纯的称为电动机,而应称为电机。

科技部要求新能源汽车技术研发将重点围绕电机驱动与电力电子、动力电池与电池管理等6个技术方向展开。考核指标为电机控制器峰值功率密度≥17kW/L,最高效率≥98.5%,匹配电机额定功率20kW至60kW,功能安全满足ISO26262标准ASCIL C级的要求,设计寿命达到15年或40万公里;装车应用≥10 000套[2]。

1 电动物流汽车对电机的要求

与工业生产机械、家用电器等的电机相比,电动物流汽车用驱动电机的工作比较特殊:

(1)电机工况复杂:电动汽车经常启停、加减速、上下坡等,电机的输出转矩和功率变化频繁。

(2)电机在冲击、振动的环境下工作:电动汽车的颠簸和振动都会传递给电机,此外,电机还要承受汽车在紧急制动、急转弯、急加速时的惯性力。

(3)车载电源能量有限:电动汽车的电源能源是有限的,当能量用尽时,需要停止运行,进行充电或添加燃料来恢复其消耗的能量。

(4)电机本身也是负载:电机及其控制器本身的质量也是车辆质量的一部分。

与工业用电机相比,针对电动物流汽车的驱动特点所设计的电机有着特殊的性能要求:

(1)电动物流汽车驱动电机要满足频繁的启停、加减速、转矩控制的动态性能要求较高,电机要有自动调速功能,能减轻使用者的操作强度,提高驾驶的舒适性,并且控制响应能达到与燃油车油门踏板同样的要求。

(2)在允许范围内尽量采用高电压,可减小电机和逆变器及其它装备的尺寸。

(3)为了减少整车的重量,通常取消多级变速器,这就要求在低速或爬坡时,电机可以提供较高的转矩,通常来说要能够承受4~5倍的过载。

(4)调速范围要宽,还需要在整个调速范围内保持较高的运行效率。

(5)电机设计时尽量设计为高额定转速,同时尽量采用铝合金外壳,各种控制器装备的质量和冷却系统的质量等也要求尽可能小,有利于减少电动汽车的重量。

(6)电动汽车应具有最优化的能量利用,具有制动能量回收功能,再生制动回收的能量一般要达到总能量的10%~20%。

(7)电机工作环境较差,要求电机要有很好的可靠性、耐高低温和耐潮性好、噪声低运行,同时还要保证电机的制造成本低。

(8)为保证安全,需要安装高压保护设备。

(9)结构要简单以便于维修,价格还要低廉。

2 电动物流汽车常用电机类型

直流电机、交流异步电机、永磁同步电机和开关磁阻电机是电动物流汽车常用的动电机。直流电机应用最早,这种电机的特点是控制性能好、成本低,但其重量过大、效率低、电刷和滑环的存在增加维护成本,尤其是电刷的磨损会带来安全隐患。

电动物流汽车对车用电机的要求不断提出新的要求,随着电控、机械制造和材料等技术的进步,交流异步电机、永磁同步电机和开关磁阻电机的性能将更为优越,是目前应用较为广泛的电动物流汽车用电机。电动物流汽车常用电机的性能和优缺点比较及应用车型如表1、表2所示。

3 电动物流汽车用电机发展趋势

3.1 永磁同步电机

由于永磁同步电机效率高、转矩密度高、高效区宽、调速范围宽、重量轻等优点,电机永磁化是未来电机的发展趋势之一[4]。

3.2 轮毂电机

轮毂电机技术又称为车轮内装式电机技术,是一种将电机、传动系统和制动系统融为一体的轮毂装置技术。轮毂电机可采用永磁无刷、直流无刷、开关磁阻等电机类型。由于电机处于车轮轮毂内,受体积限制,要求电机为扁形结构,即电机短而粗。

轮毂电机具有:更方便的底盘布置,更灵活的供电系统,更好的汽车底盘主动控制性能,最优的驱动力分配等技术优点。

由于采用了电动轮驱动的形式,没有了机械传动系,使车厢的空间更大,底盘布置更灵活,底盘通用性增强。同时,汽车的电源供电系统无论是采用燃料电池、超级电容或者蓄电池,或者是它们的组合,都不受限制,原来的机械硬连接动力传动形式也变为电缆进行供电的软连接形式。

轮毂电机的控制响应快、精度高,并且每个驱动轮由各自的控制器控制,可以实现最理想的控制效果。轮毂电机也有比如密封和起步电流/扭矩间的平衡关系,以及转向时驱动轮的差速问等题,但从电机驱动技术的特点和发展趋势来看,轮毂电机将是电动物流汽车最理想的驱动方式。

4 结束语

2015年,我国快递业务总量达到211亿件,同比增长54%,相比去年提高8%。随着整个快递业务量的爆发,物流车辆的增长数量也得到了快速增长。在能源制约、环境污染等大背景下,我国政府把发展电动物流汽车作为解决能源及环境问题、实现可持续发展的重大举措之一,各汽车生产企业也将电动物流汽车作为抢占未来汽车产业制高点的重要战略方向[5]。在政府与企业的共同努力下,我国电动物流汽车近几年展现出良好的发展势头。电机作为电动物流汽车上的关键零部件,其技术、产品品质等还要提升,行业标准还不完善,整个行业还处于起步阶段,关键技术方面还落后于发达国家。因此,加快新一代电机等技术研发,已成为我国“十三五”规划的重点突破方向。

参考文献:

[1] 李登辰. 轮边驱动电动汽车高速齿轮系统的设计与研究[D]. 青岛:青岛科技大学(硕士学位论文),2014.

[2] 刘重才. 电动物流车放量催生电机需求[N]. 上海证券报,2015-12-10(A06).

[3] 陈艺端. 改进转子结构互感耦合开关磁阻电机性能的研究[D]. 北京:北京交通大学(硕士学位论文),2014.

永磁传动技术论文范文第2篇

论文摘要:交流电动机固有的优点是:结构简单,造价低,坚固耐用,事故率低,容易维护;但它的最大缺点在于调速困难,简单调速方案的性能指标不佳,这只能够依靠交流调速理论的突破和调速装置的完善来解决。本文论述了交流调速传动的现状和发展

交流传动系统之所以发展得如此迅速,和一些关键性技术的突破性进展有关。它们是功率半导体器件(包括半控型和全控型)的制造技术、基于电力电子电路的电力变换技术、交流电动机控制技术以及微型计算机和大规模集成电路为基础的全数字化控制技术。为了进一步提高交流传动系统的性能,国内外有关研究工作正围绕以下几个方面展开:

1 采用新型功率半导体器件和脉宽调制(PWM)技术

功率半导体器件的不断进步,尤其是新型可关断器件,如BJT(双极型晶体管)、MOSFET(金属氧化硅场效应管)、IGBT(绝缘栅双极型晶体管)的实用化,使得开关高频化的PWM技术成为可能。目前功率半导体器件正向高压、大功率、高频化、集成化和智能化方向发展。典型的电力电子变频装置有电压型交-直-交变频器、电流型交-直-交变频器和交-交变频器三种。电流型交-直-交变频器的中间直流环节采用大电感作储能元件,无功功率将由大电感来缓冲,它的一个突出优点是当电动机处于制动(发电)状态时,只需改变网侧可控整流器的输出电压极性即可使回馈到直流侧的再生电能方便地回馈到交流电网,构成的调速系统具有四象限运行能力,可用于频繁加减速等对动态性能有要求的单机应用场合,在大容量风机、泵类节能调速中也有应用。电压型交-直-交变频器的中间直流环节采用大电容作储能元件,无功功率将由大电容来缓冲。对于负载电动机而言,电压型变频器相当于一个交流电压源,在不超过容量限度的情况下,可以驱动多台电动机并联运行。电压型PWM变频器在中小功率电力传动系统中占有主导地位。但电压型变频器的缺点在于电动机处于制动(发电)状态时,回馈到直流侧的再生电能难以回馈给交流电网,要实现这部分能量的回馈,网侧不能采用不可控的二极管整流器或一般的可控整流器,必须采用可逆变流器,如采用两套可控整流器反并联、采用PWM 控制方式的自换相变流器(“斩控式整流器”或 “PWM整流器”)。网侧变流器采用PWM控制的变频器称为“双PWM控制变频器”,这种再生能量回馈式高性能变频器具有直流输出电压连续可调,输入电流(网侧电流)波形基本为正弦,功率因数保持为1并且能量可以双向流动的特点,代表一个新的技术发展动向,但成本问题限制了它的发展速度。通常的交-交变频器都有输入谐波电流大、输入功率因数低的缺点,只能用于低速(低频)大容量调速传动。为此,矩阵式交-交变频器应运而生。矩阵式交-交变频器功率密度大,而且没中间直流环节,省去了笨重而昂贵的储能元件,为实现输入功率因数为1、输入电流为正弦和四象限运行开辟了新的途径。

随着电压型PWM变频器在高性能的交流传动系统中应用日趋广泛,PWM技术的研究越来越深入。PWM利用功率半导体器件的高频开通和关断,把直流电压变成按一定宽度规律变化的电压脉冲序列,以实现变频、变压并有效地控制和消除谐波。PWM技术可分为三大类:正弦PWM、优化PWM及随机PWM。正弦PWM包括以电压、电流和磁通的正弦为目标的各种PWM方案。正弦PWM一般随着功率器件开关频率的提高会得到很好的性能,因此在中小功率交流传动系统中被广泛采用。但对于大容量的电力变换装置来说,太高的开关频率会导致大的开关损耗,而且大功率器件如GTO的开关频率目前还不能做得很高,在这种情况下,优化PWM技术正好符合装置的需要。特定谐波消除法(Selected Harmonic Elimination PWM——SHE PWM)、效率最优PWM和转矩脉动最小PWM都属于优化PWM技术的范畴。普通PWM变频器的输出电流中往往含有较大的和功率器件开关频率相关的谐波成分,谐波电流引起的脉动转矩作用在电动机上,会使电动机定子产生振动而发出电磁噪声,其强度和频率范围取决于脉动转矩的大小和交变频率。如果电磁噪声处于人耳的敏感频率范围,将会使人的听觉受到损害。一些幅度较大的中频谐波电流还容易引起电动机的机械共振,导致系统的稳定性降低。为了解决以上问题,一种方法是提高功率器件的开关频率,但这种方法会使得开关损耗增加;另一种方法就是随机地改变功率器件的导通位置和开关频率,使变频器输出电压的谐波成分均匀地分布在较宽的频带范围内,从而抑制某些幅值较大的谐波成分,以达到抑制电磁噪声和机械共振的目的,这就是随机PWM 技术。 转贴于

2应用矢量控制技术、直接转矩控制技术及现代控制理论

交流传动系统中的交流电动机是一个多变量、非线性、强耦合、时变的被控对象,VVVF控制是从电动机稳态方程出发研究其控制特性,动态控制效果很不理想。20世纪70年代初提出用矢量变换的方法来研究交流电动机的动态控制过程,不但要控制各变量的幅值,同时还要控制其相位,以实现交流电动机磁通和转矩的解耦,促使了高性能交流传动系统逐步走向实用化。目前高动态性能的矢量控制变频器已经成功地应用在轧机主传动、电力机车牵引系统和数控机床中。此外,为了解决系统复杂性和控制精度之间的矛盾,又提出了一些新的控制方法,如直接转矩控制、电压定向控制等。尤其随着微处理器控制技术的发展,现代控制理论中的各种控制方法也得到应用,如二次型性能指标的最优控制和双位模拟调节器控制可提高系统的动态性能,滑模(Sliding mode)变结构控制可增强系统的鲁棒性,状态观测器和卡尔曼滤波器可以获得无法实测的状态信息,自适应控制则能全面地提高系统的性能。另外,智能控制技术如模糊控制、神经元网络控制等也开始应用于交流调速传动系统中,以提高控制的精度和鲁棒性。

3广泛应用微电子技术

随着微电子技术的发展,数字式控制处理芯片的运算能力和可靠性得到很大提高,这使得全数字化控制系统取代以前的模拟器件控制系统成为可能。目前适于交流传动系统的微处理器有单片机、数字信号处理器(Digital Signal Processor--DSP)、专用集成电路(Application Specific Integrated Circuit--ASIC)等。其中,高性能的计算机结构形式采用超高速缓冲储存器、多总线结构、流水线结构和多处理器结构等。核心控制算法的实时完成、功率器件驱动信号的产生以及系统的监控、保护功能都可以通过微处理器实现,为交流传动系统的控制提供很大的灵活性,且控制器的硬件电路标准化程度高,成本低,使得微处理器组成全数字化控制系统达到了较高的性能价格比。

永磁传动技术论文范文第3篇

【关键词】数控车床;维护保养

1.数控车床维护保养工作的基本条件

数控车床的身价从几十万元到上千万元,一般都是企业中关键产品、关键工序的关键设备,一旦故障停机,其影响和损失往往很大。但是,人们对这样的设备往往更多地是看重其效能,而不仅对合理地使用不够重视,更对其保养及维修工作关注太少,日常忽视对保养与维修工作条件的创造和投入,故障出现临时抱佛脚的现象很是普遍。因此,为了充分发挥数控车床的效益,我们一定要重视日常维护工作,创造出良好的维修条件。

1.1人员条件

数控车床电气维修工作的快速性、优质性关键取决于电气维修人员的素质条件。

首先要有高度的责任心和良好的职业道德;知识面要广,要学习并基本掌握有关数控车床的各学科知识,如计算机技术、模拟与数字电路技术、自动控制与拖动理论、控制技术、加工工艺以及机械传动技术,当然还包括基本数控知识;应经过良好的技术培训,数控技术基础理论的学习,尤其是针对具体数控车床的技术培训,首先是参加相关的培训班和车床安装现场的实际培训,然后向有经验的操作、维修人员学习,而更重要且更长时间的是自学;勇于实践,要积极投入数控车床的维修与操作的工作中去,在不断的实践中提高分析能力和动手能力;掌握科学的方法,要做好维修工作光有热情是不够的,还必须在长期的学习和实践中总结提高,从中提炼出分析问题、解决问题的科学的方法;学习并掌握各种电气维修中常用的仪器、仪表和工具。

1.2物质条件

准备好通用的和专用的数控车床电气备件;常备电器元件应做到采购渠道快速畅通;必要的维修工具、仪器仪表等,最好配有笔记本电脑并装有必要的维修软件;要有完整的数控车床技术图样和资料;数控车床使用、维修技术资料档案。

1.3关于预防性维护

预防性维护的目的是为了降低故障率,其工作内容主要包括下列几方面的工作:

要分配专门的操作人员、工艺人员和维修人员,所有人员都要不断地努力提高自己的业务技术水平;建档针对每台车床的具体性能和加工对象制定操作规章,建立工作与维修档案,要经常检查、总结、改进;建立日常维护保养计划,保养内容包括坐标轴传动系统的、磨损情况,主轴等,油、水、气路,各项温度控制,平衡系统,冷却系统,传动带的松紧,继电器、接触器触头清洁,各插头、接线端是否松动,电气柜通风状况等等,及各功能部件和元件的保养周期。

2.数控车床维护保养工作内容

数控车床具有集机、电、液为一体的自动化机床,经各部分的执行功能最后共同完成机械执行机构的移动、转动、夹紧、松开、变速和换刀等各种动作,可见做好数控车床的日常维护保养将直接影响机床性能。数控车床日常维护主要包括机床本体、主轴部件、滚珠丝杠螺母副、导轨副、电气控制系统、数控系统等维护。

2.1外观保养

每天做好机床清扫卫生,清扫铁屑,擦干净导轨部位的冷却液。下班时所有的加工面抹上机油,防止生锈;每天注意检查导轨、机床防护罩是否齐全有效;每天检查机床内外有无磕、碰、拉伤现象;定期清除各部件切屑、油垢,做到无死角,保持内外清洁,无锈蚀。

2.2主轴的维护

在数控车床中,主轴是最关键的部件,对机床的加工精度起着决定性作用。它的回转精度影响到工件的加工精度,功率大小和回转速度影响到加工效率。主轴部件机械结构的维护主要包括主轴支撑、传动、等。

定期检查主轴支撑轴承:轴承预紧力不够,或预紧螺钉松动,游隙过大,会使主轴产生轴向窜动,应及时调整;轴承拉毛或损坏应及时更换;定期检查主轴恒温油箱,及时清洗过滤器,更换油等,保证主轴有良好的;定期检查齿轮,若有严重损坏,或齿轮啮合间隙过大,应及时更换齿轮和调整啮合间隙;定期检查主轴驱动皮带,应及时调整皮带松紧程度或更换皮带。

2.3滚珠丝杠螺母副的维护

滚珠丝杠传动由于其有传动效率高、精度高、运动平稳、寿命长以及可预紧消隙等优点,因此在数控车床使用广泛。其日常维护保养包括以下几个方面:

定期检查滚珠丝杠螺母副的轴向间隙:一般情况下可以用控制系统自动补偿来消除间隙;当间隙过大,可以通过调整滚珠丝杠螺母副来保证,数控车床滚珠丝杠螺母副多数采用双螺母结构,可以通过双螺母预紧消除间隙;定期检查丝杠防护罩:以防止尘埃和磨粒黏结在丝杠表面,影响丝杠使用寿命和精度,发现丝杠防护罩破损应及时维修和更换;定期检查滚珠丝杠螺母副的:滚珠丝杠螺母副剂可以分为脂和油两种。脂每半年更换一次,清洗丝杠上的旧脂,涂上新的脂;用油的滚轴丝杠螺母副,可在每次机床工作前加油一次。

2.4导轨副的维护

导轨副是数控车床的重要的执行部件,常见的有滑动导轨和滚动导轨。导轨副的维护一般是不定期,主要内容包括:

检查各轴导轨上镶条、压紧滚轮,保证导轨面之间有合理间隙。根据机床说明书调整松紧状态,间隙调整方法有压板间隙调整间隙、镶条调整间隙和压板镶条调整间隙等;注意导轨副的:导轨面上进行后,可以降低摩擦,减少磨损,并且可以防止导轨生锈。根据导轨状况及时调整导轨油量,保证油压力,保证导轨良好;经常检查导轨防护罩:以防止切屑、磨粒或冷却液散落在导轨面上引起的磨损、擦伤和锈蚀。发现防护罩破损应及时维修和更换。

2.5电气控制系统的日常维护

数控车床电气控制系统是机床的关键部分,主要包括伺服与检测装置、PLC、电源和电气部件等,其日常维护包括以下几个方面:

(1)定期检查电气部件,检查各插头、插座、电缆、各继电器触点是否出现接触不良,短路故障;检查各印制电路板是否干净;检查主电源变压器、各电机绝缘电路是否在1MΩ以上。平时尽量少开电气柜门,保持电气柜内清洁。

(2)伺服电动机的维护。

应用于进给驱动的伺服电动机多采用交流永磁同步电动机,其特点是磁极是转子,定子的电枢绕组与三相交流电枢绕组一样,但它有三相逆变器供电,通过转子位置检测其产生的信号去控制定子绕组的开关器件,使其有序轮流导通,实现换流作用,从而使转子连续不断地旋转。转子位置检测器与转子同轴安装,用于转子的位置检测,检测装置一般为霍尔开关或具有相位检测的光电脉冲编码器。

【参考文献】

[1]李叶龙.数控机床与PLC的关系[J].赤峰学院学报(自然科学版),2009,(06).

永磁传动技术论文范文第4篇

摘要:为提高伺服系统中无刷直流电机的控制效果,设计了以DSP为核心的无刷直流电机控制系统方案。本控制系统的主要优势在于利用数字信号处理器的高速实时运算处理功能,易于实现各种高效的控制算法,很好地解决了伺服系统中PWM信号的生成、电动机速度反馈和电流反馈等问题。并结合模糊控制算法进行了仿真研究,达到无刷直流电机的高精度伺服控制的目的。

关键词:无刷直流电机;DSP;PWM控制;Simulink仿真

在伺服传动系统中,无刷直流电动机(BLDCM)是一种新型的无级变速电动机,其结构简单可靠、维护方便、运行效率高及惯量小和控制精度高等优点,广泛应用于伺服控制精密数控机床、加工中心、机器人等领域[1]。随着BLDCM应用领域的推广,对系统的动静态性能、鲁棒性、控制精度等要求越来越高。

本文以三相四极无刷直流电动机为研究对象,结合PID控制和模糊控制各自的优势,设计了一套基于TI 公司的C2000系列TMS320F2812 DSP为核心的全数字永磁无刷直流电动机的闭环调速系统,以期满足BLDCM伺服控制系统的高精度、快速性、稳定性和鲁棒性的要求。

1总体方案设计

系统设计采用三相四极无刷直流电动机PWM控制方案,逆变桥的通电方式采用两两导通方式。该系统主要由三相四极无刷直流电动机、控制器、电子开关电路和位置检测器四部分组成[2]。其结构框图如图1所示。

功率驱动方式采用三相Y型全桥驱动电路,如图2所示。本系统实现的关键就是通过位置环、速度环和电流环三闭环结构最终实现位置的伺服控制。从闭环结构上看,位置环在最外面,是本系统的主环,电流调节环和速度调节环在里面,两者都是为位置环而服务,电流调节器和速度调节器采用PI调节器,位置调节器采用PID调节器,以TMS320F2812微控制器为控制核心,以功率MOSFET管构成逆变器。通过改变逆变器开关器件的PWM占空比来改变电机电枢端电压,以实现电机转速的调节[2-4]。

2硬件设计

图3给出了基于TMS320F2812 DSP的无刷直流电机控制系统硬件结构框图。

本系统主要由辅助电源、控制器及电路、电动机驱动电路、检测电路和系统保护电路等几部分组成。无刷直流电动机的调速原理为:TMS320F2812控制器通过捕获单元捕捉无刷直流电动机转子位置传感器HALL1、HALL2、HALL3高速脉冲信号,检测转子转动位置,并根据转子的位置发出相应的指令改变PWM信号的当前值,进而改变直流电机驱动电路(三相桥式逆变电路IGBT)中功率管的导通顺序,实现电机转速和转动方向的控制。

下面重点介绍系统中的转子位置检测电路、相电流检测电路、驱动电路、系统保护电路等。

2.1转子位置检测电路

本设计方案中,位置检测环节采用了3个位置间隔120°分布的霍尔传感器,由霍尔器件所输出的转子位置脉冲信号送到功率变换电路后,经处理后送入DSP的CAP单元,DSP通过读取霍尔元件的状态值,来确定转子的当前位置,再通过改变PWM的占空比改变MOSFET管的导通顺序,改变 IGBT 的导通顺序,实现电机的换相和电机转速的调节[5]。

霍尔位置传感器输出的信号先由阻容滤波电路处理,然后再经过六路施密特触发反相器SN74HC14N整形后送入DSP的CAP单元进行处理计算。由于霍尔位置传感器输出为5V电平信号,为了与DSP的3.3V电平相匹配,需要进行电平逻辑转换,在此通过施密特触发器输出端串联匹配电阻的方法来实现。三相霍尔位置检测电路如图4所示。

2.2相电流检测电路

在对电路中电流信号进行检测时,由于霍尔元件输出的电流较小,故采用在直流侧母线中串采样小电阻的方法,先将电流信号转化为电压信号,然后再经过放大隔离处理后送入模数转换器A/D。其中光耦隔离器件选择的是6N137。电流检测电路图如图5所示。

其中R22(0.05Ω/3W)为直流侧母线端的采样电阻,首先将电阻两端的压降信号经过阻容滤波电路滤波,然后经过运算放大器放大,以满足TMS320F2812中A/D转换单元的采样范围(0~3V) 的要求。电路中采用了单路高精度双极性运算放大器OP07。图中的二极管D6起稳压保护作用,确保AD0的输入电压在0~3V的范围内,另外,通过光藕合器6N137将干扰路径切断,减小噪声的干扰。

2.3驱动电路

驱动电路采用IR公司生产的高性能三相桥式逆变器驱动芯片IR2136,它只用一路驱动电源便可同时输出6路驱动信号,且IR2136拥有完善的保护功能,使整个电路更加简单可靠。

由于IR2136芯片本身没有逻辑信号与功率信号之间相互隔离功能,因此本设计中DSP产生的6路PWM脉冲信号经光耦隔离后才作为IR2136的6路脉冲输入,进而控制MOSFET管的导通和关断。通过输出端口HO1、HO2、HO3分别控制三相逆变桥电路的上桥臂T1、T3、T5的导通和关断,通过输出端口LO1、LO2、LO3分别控制三相逆变桥电路的下桥臂T4、T6、T2的导通和关断,从而实现控制电机转速的正反转。图6为由IR2136构成的驱动电路。

2.4系统保护电路

在无刷直流电动机控制系统中,保护电路可以保护控制器DSP免受过压、过流的影响,还可以保护电机的驱动电路免遭破环[6]。整个系统的保护电路由隔离电路和驱动保护两部分组成。

(1)隔离电路的设计

光耦隔离电路的作用是避免主回路中的强电信号对控制回路中的弱电信号造成干扰,实现不同电压之间的信号传输。如图7所示(以一路PWM信号为例),该隔离电路可实现对DSP的6路PWM输出信号与IR2136之间光耦隔离,并实现驱动和电平转换功能。

(2)功率驱动保护电路的设计

功率驱动保护电路包括自保护电路和过电流过电压保护电路。为保证系统中功率转换电路和电机驱动电路安全可靠工作,DSP还提供PDPINTA输入信号,利用它可方便地实现系统的各种保护功能[6]。各路故障信号经过光耦隔离后送入到PDPINTA引脚,图8给出具体保护电路。例如:当有过压或过流现象时,IR2136的引脚FAULT会输出制动信号,拉低PDPINTA引脚输入电平,此时DSP 内部定时器停止计数,所有的PWM输出引脚全部置为高阻态,同时也产生一个中断信号,通知CPU有异常情况发生,这就是IR2136的硬件保护功能。

3系统与上位机的通讯

系统中用 SCI 接口完成与上位机的通讯功能,采用RS-232接口实现通信。通过上位机可以给定位置量,同时控制过程中电机的速度、电流、位置反馈量等参数,也可以实时地发送给上位机显示;SPI接口完成串行驱动数码管显示的功能。通过数字 I/O 扩展的键盘设定位置给定量,并由数码管显示。

4系统仿真

本文对速度环采用增量式PID控制和参数自整定模糊PID控制两种控制算法,利用北京雅合全公司生产的型号为45ZWN24-25的三相四极无刷直流电动机,对实验结果进行分析。图9、图10分别对应两种算法在电机启动时的转速响应曲线。

分析电机启动时转速启动曲线可知,两种控制算法都有一定的超调。增量式PID控制算法电机启动达到稳态的时间大约为2.8s,超调量为8.27%;而参数自整定模糊PID控制算法电机启动达到稳态的时间大约为2.2s,超调量为4.58%,可见,采用参数自整定模糊PID控制算法之后,有效地降低了超调量,缩短了电机启动的时间,提高了电机的控制精度。

5结束语

本文设计了以TMS320F2812为核心的数字直流伺服系统,很好地解决了高精度伺服控制系统中PWM信号的生成、电机速度反馈及电机电流反馈问题,并实现了保护功能,使系统硬件得到了极大地简化,提高了系统的可靠性。并结合参数自整定模糊PID控制算法实现了电机的高精度伺服控制,实验结果验证了该方法的有效性。

参考文献

[1]郭庆鼎,赵希梅.直流无刷电动机原理与技术应用[M].北京:中国电力出版社,2008:4-7.

[2]何小红.无位置传感器无刷直流电动机控制系统的设计[D].硕士学位论文.陕西:西安科技大学,2009.

[3] Mohan BM,Sinha A. Analytical structure and stability analysis of a fuzzy PID controller. Applied Soft Computing. 2008:74958.

[4] 白浩.永磁无刷直流电动机控制系统的研究[D].硕士学位论文.天津:河北工业大学,2004.

[5]邓钧君,马瑞卿,王翔.基于软件锁相环的无刷直流电机高精度速度控制系统[J]. 测控技术,20106 :428-434.

[6]夏长亮.无刷直流电动机控制系统[M].北京:科学出版社,2009:31-44,182-203.

作者简介

永磁传动技术论文范文第5篇

论文关键词:电气工程技术;电气学科;发展史

一、电气工程技术的发展史

电气工程(Electrical Engineering)是现代科技领域核心学科之一,传统的电气工程定义为用于创造产生电气与电子系统的有关学科的总和。21世纪的电气工程概念已经远远超出这一范畴,如今电气工程涵盖了几乎所有与电子、光子有关的工程行为。电气工程的发展程度直接体现了国家的科技进步水平,因此,电气工程的教育和科研在发达国家大学中始终占据重要地位。

1.电磁学理论的建立及通讯技术的发展

大自然中的雷电使人类对电有了最早、最朴素的认识,天然磁石吸铁是人类对磁现象的最早观察,然而,人类对电磁现象的研究始于16世纪的英国,1663年德国科学家盖利克发明了摩擦起电的仪器,1729年英国科学家发现电荷可以通过金属传导等等,这是人类对电的早期实验,之后又出现了一系列具有里程碑意义的发现与发明。

(1)库仑定律。1785年法国物理学家库仑通过扭秤测量静电力和磁力总结出:两个电荷之间的作用力与它们间距离的平方成反比,与它们所带电荷量的乘积成正比,这就是著名的库仑定律。这一发现的历史意义在于它标志着人类对电磁现象的研究从定性阶段进入了定量阶段。

(2)“伏打电池”。1799年意大利物理学家伏特经过反复实验发现把任何潮湿物体放到两个不同金属之间都会产生电流,一年后伏特发明了世界上第一个电池,自此人类对电的研究由静电扩大到了动电,开辟了电学研究的新领域。

(3)奥斯特发现电流的磁效应和安培右手定则。1820年奥斯特偶然发现通电铂丝周围的小磁针发生轻微晃动,之后他经过反复实验证实了这一发现。其后安培进行了更深入的研究,提出了右手定则,发现了电流方向与磁针转动方向之间的关系。安培还通过实验发现了两个通电导体和两个通电线圈之间相互作用的规律,从而奠定了电动力学的基础。

(4)法拉第发现电磁感应。英国科学家法拉第是第一个成功完成磁生电实验的人,并归纳出产生感应电流的五种情况:一是变化着的电流;二是变化着的磁场;三是运动的稳定电流;四是运动的磁场;五是在磁场中运动的电线。法拉第把这一现象叫做“电磁感应”。电磁感应的发现使生产电成为可能,至今,发电机、电动机、变压器都是运用电磁感应原理工作的。

(5)麦克斯韦建立电磁场理论。英国数学家、物理学家麦克斯韦总结了前人的一系列成果,用数学方程式表示电磁场,建立了完整的电磁理论体系,揭示了光、电、磁本质上的统一,并预言了电磁波的存在。1873年他出版的电磁场理论经典著作《电磁学通论》是里程碑式的自然科学理论巨著。

任何科学发明与发现都是许许多多的科学家不懈努力的成果,德国物理学家欧姆、高斯、赫兹,美国物理学家亨利,俄国物理学家楞次等等都为电磁理论的形成作出过贡献,本文不在一一类举。

电磁理论的建立为无线电通信揭示的发展奠定了基础,19世纪通信技术取得了突破性成果,先后发明了有线电报、有线电话和无线通信。

2.电工技术的初期发展

人类社会发展历程中经历了三次工业革命,对人类的进步起到了巨大的作用。第一次工业革命从18世纪中叶到19世纪中叶,以瓦特发明的蒸汽机为标志,以机械化为特征,中心在英国;第二次工业革命从19世纪后半期到20世纪中叶,以工业生产电气化为主要标志,其成果是电力、钢铁、化工“三大技术”与汽车、飞机和无线电通信“三大文明”,其中心在美国和德国;第三次工业革命从20世纪中叶到21世纪初,以社会生产、生活信息化为特点,又叫新技术革命。第二次工业革命就是从电工技术初创和应用开始的。

(1)直流发电机的诞生。1831年英国企业家研制出了史上第一台发电机——蒸汽动力永磁发电机;1832年法国科学家匹克斯发明了世界上第一台直流发动机;1866年西门子发明了自激式励磁直流发电机;1870年格拉姆发明了实用自激直流发电机,结构可靠,电流稳定,输出功率大,被各国广泛采用作为照明灯电源。

(2)远距离输电和电力工业技术体系的初步建立。1875年法国巴黎火车站建成世界上最早的一座火力发电厂。爱迪生不仅发明了灯泡,他还在1882年建立了美国第一家直流发电厂,装有6台直流发电机,通过电缆输送照明用电,不过当时的最大输送距离只有1.6km。之后爱迪生还建立了一座水电站,形成了电力工业体系的雏形。

(3)交流发电机电荷电动机的诞生。1876~1878年俄国人亚布洛切科夫成功试验了单相交流输电技术。1885年,英国工程师菲尔安基设计的第一座交流单相发电站建成。同年,美国人威斯汀豪率领的团队完成了交流发电、供电系统,并创建了交流配电网。1883年,美籍电气工程师特斯拉发明了世界上第一台感应电动机,5年后他又发明了两相异步电动机和交流电传输系统。1888年,俄国工程师德布罗夫斯基和德尔伏发明了三相交流制。1891年,德国安装了世界上第一台三相交流发电机,并建成了第一条三相交流输电线路。自此,三相异步电动机得到了广泛应用,电能逐步取代了蒸汽成为动力源,电力工业得到了迅速发展。

3.电工理论的建立

(1)电路理论的建立。关于电路的早期研究有:1778年伏特提出了电容的概念,给出了导体上储存电荷的计算方法Q=CU;1826年欧姆发表了欧姆定律;1831年法拉第提出了电磁感应定律;1832年亨利提出了磁通量计算公式。

1845年德国物理学家基尔霍夫提出了关于任意电路中电流、电压关系的基本定律:电流定律(任意时刻电路中任何一个节点的各条支路电流的代数和为零);电压定律(任何时刻电路中任意一个闭合回路的各元件电压的代数和为零)。这两个定律发展了欧姆定律,奠定了电路系统分析的基础。

1853年英国物理学家汤姆逊推导出了电路震荡方程,并得出了莱顿瓶发电过程中电流在反复震荡且不断衰减的结论,并计算出震荡频率与R、L、C参数之间的关系,奠定了动态电路分析的基础。1855年,汤姆逊还建立了长距离电缆的等效电路模型。

1893年美籍电气学家施泰因梅茨提出了计算交流电路的方法——“相量法”,其实用、易懂,至今在分析正弦交流电路时依然沿用此法。

其间,赫尔姆霍兹提出的等效发电机原理、基尔霍夫建立的长距离架空线路参数电路模型、亥维赛德找出的求解电路暂态过程运算法、傅立叶用数学方法建立的热传导定律等等都对电工理论的丰富和完善起到了重要作用。

(2)电网络理论的建立。通信技术的兴起推动了电网络理论的发展。1924年,福斯特给出了电感和电容二端网络的电抗定理,建立了由给定频率特性设计电路的电网络理论。

1945年美国科学家伯德总结出了分析线性电路和控制系统的频域分析方法。1953年梅森创建了采用信号流图分析复杂回馈系统的方法,并被广泛应用。20世界50年代美国科学家达默制成了第一批集成电路,从此电路理论中增加了对含源器件的电路分析和综合。20世纪70年代在L.O.Chua等科学家的努力下,器件建模理论逐渐日趋完善。20世纪中期计算机的出现使电网络的计算机辅助分析和设计成为电路理论研究中的基本手段。

4.新技术革命对电气工程技术的推动

20世纪中叶开始的第三次技术革命又称为新技术革命,以核能、宇航和电子计算机这三大技术为主要标志。这个时期的主要理论是信息论、系统论和控制论,这三大理论的创立为通信工程技术和现代科学技术的研究提供了全新的科学方法。

(1)计算机的升级换代对电气工程技术的推动。自19世纪第一台计算机问世以来,经过几十年的发展,计算机给人类社会带来了翻天覆地的变化,人类社会从此走进了信息时代。1952年出世的第一代计算机使用的是真空电子管,不仅体积巨大,而且耗电量惊人。1959年~1963年生产的第二代计算机用晶体管替代了真空电子管,大大提高了运算速度,减少了耗电量,减小了体积,运用在了军事和科研领域。1964年~1970年生产的第三代计算机用集成电路替代了晶体管,不仅极大地提高了运算速度而且降低了成本,计算机开始进入到了普及阶段。1971年至今生产的第四代计算机使用了超大规模集成电路,实现了计算机网络化,计算机普及到了个人。计算机的升级换代推动了控制技术的发展,形成了计算机管理生产系统,提高了生产效率和产品质量。

(2)电子信息技术的发展。电子信息技术是计算机技术和电信技术相结合而形成的技术手段。20世纪通信技术得到了迅猛发展,人类社会生活也由此发生了巨大变革,人类从此进入信息时代。

1920年人们发现电离层对无线电短波有反射作用。1935年人们发现了雷达并广泛应用于军事和民用通信领域。1964年美国发射了第一颗地球同步静止轨道通信卫星,突破了大气层对无线电波的屏蔽,实现了宇宙范围的无线电通信。20世纪70年代计算机网络系统的建立使人们开始通过互联网获取信息。20世纪80年代以后寻呼机和移动电话逐步得到广泛使用,现今信息服务业已成为世界上发展最快的新兴行业之一。

电气工程技术发展史再次印证了这样两个真理:一是任何理论的创立和技术的进步都要靠众多科学家甚至一代代人的不懈努力而实现,特别是在学科相互融合交叉的今天。二是科学技术的每一次重大突破都会导致生产力的跨越式发展和人类社会的巨大进步,科技是第一生产力,创新是社会发展的推动力。

二、电气学科的形成与发展

按我国高等教育学科划分,电气信息学科类属工学门类(门类编号08),其下设五个一级学科:电气工程(一级学科编号0808)、电子科学与技术(0809)、信息与通信工程(0810)、控制科学与工程(0811)和计算机科学与技术(0812)。这五个学科有着相同的学科基础,都是研究电磁现象及其应用的基础学科与技术工程的综合,电能的突出优点在于:它既是易于传输的工业动力,又是非常可靠的信息载体。电子科学与技术、信息与通信工程和计算机科学与技术都是从电类专业派生出来的弱电学科,在19世纪末电工科学技术已形成了电力与电信两大分支。

我国电气工程一级学科下设五个二级学科:电机与电器(二级学科编号080801)、电力系统及其自动化(080802)、高电压与绝缘技术(080803)、电力电子与电力传动(080804)、电工理论与新技术(080805),电气工程包含的专业基础理论有电路原理、模拟电子、数字电子、微机原理与接口技术、单片机原理、自动控制原理、电磁理论、MATLAB仿真等。专业理论有电力系统及其暂态分析、电力电子、电机学、高电压与绝缘、电力拖动、输配电、工厂企业供电、电力市场等。

19世纪末欧美大学先后设立了电气工程(Electrical Engineering)专业,100多年来,其名称虽然没变,但内涵已随着科技的飞速发展有了非常大的变化。过去欧美的电气工程专业是以电力工程为主,现在电子技术和计算机已成为该专业的核心,美国一些著名高校甚至已不开设电力工程研究方向。有些大学把计算机技术从电气工程系分离了出去,单独成立了计算机科学系。

我国的电气工程始于1908年上海南洋公学的电机电工学科,就是上海交大的前身,距今也有100多年的历史了。1917年该校的电机专科设立了电讯门,即我国最早的无线电专业,如今的电子信息及计算机专业群都是由此发展演化而来的。1932年,清华大学设置了电机系。建国后,我国建立了一大批以工科为主的多科性大学,其中大多设立了电机工程系。1977年以后,大部分高校的“电机工程系”陆续更名为“电气工程系”,近几年来,部分高校又把“电气工程系”发展成为“电气工程学院”。我国的电气工程虽然与国外名称相同,但内涵有很大区别,我国大学一般都是强弱电分开,即电气类与电信类分设在不同的学院。

100多年以来,电气工程学科已发展成为覆盖多门类交叉学科、应用领域广阔的完善的学科,形成了强弱电结合、软硬件结合、机电结合的学科特点。

国外发达国家电气工程学科的发展呈现以下趋势:

(1)在学科中融入大量信息技术知识。在全球信息化的当今,信息技术以指数速度进步,它曾对电气工程学科的发展起到了巨大的推动作用,还将为电气工程领域的技术创新提供工具与技术支持,对电气学科的发展产生了决定性作用。国外发达国家的著名大学(如耶鲁大学、麻省理工学院等)大都把电气工程、通信工程、计算机工程放在同一学院,以利于在电气工程学科中融入大量的信息技术知识。

(2)与其他学科不断交叉融合,拓展了研究领域,大量的研究都是在跨学科领域开展的。

(3)与企业联系密切,科技成果转换能力强,引领产业技术更新。

三、电气技术的发展趋势

与电气工程学科相关的产业主要有电力工业、电气装备制造业以及几乎所有使用电力的行业,电气技术的发展与应用也主要集中在这些行业。

1.可再生能源技术

1995年全球可再生能源仅占一次能源的18%,预测到2050年可再生能源要占一次能源的22%,21世纪,光伏技术、风电技术、生物质发电技术等得到了快速发展。下面着重介绍人类的未来能源——氢能。科学家们一直致力于研究把氢能作为人类未来的能源,氢能有其他能源无与伦比的优势:

(1)清洁。其反应后的生成物为水和氮化氢,对环境没有污染。

(2)储量丰富。地球上的海水所含的氢用来发电就够人类用数亿年。

(3)热值高。单位重量的发热量叫热值,氢的热值是汽油的3倍,煤炭的4倍。现在世界上很多国家正在斥巨资研究这一能源,但目前还处在实验室阶段,距工业应用还有一段距离。

2.输电信技术

超导技术在电气工程中的广泛应用已成为发展趋势。

(1)超导储能系统。将电能转换为电磁能,利用超导线圈储存起来。超导储能系统是除电池储能系统之外的又一储能系统,其使用将提高电网的安全性。

(2)超导故障限流器。利用超导体超导与正常状态的转变特性,快速限制电力系统故障短路电流,保障电网安全。

(3)超导大容量电缆。可大大降低输电过程中的电耗,提高能源效率。

灵活交流输电技术(FACTS)。用大功率电子器实现对电力系统电压、参数、功率、相位角等的实时调节控制,以实现电力系统的安全稳定性和输电过程中的能耗。

相关期刊更多

电机技术

省级期刊 审核时间1个月内

上海市电气(集团)总公司

电机与控制学报

北大期刊 审核时间1-3个月

黑龙江教育厅

磁性材料及器件

部级期刊 审核时间1个月内

中国电子科技集团公司