前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电网技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
对消费者的具体用电情况进行收集、测量、分析以及储存,能够有效实现信息采集、实时通信、数据综合分析、需求响应以及双向计量。高级量测体系技术是智能营销基础技术、能源分布式接入以及用户双向互动的基础保障和重要技术支持。量测数据管理系统、通信网络以及智能电表是目前我国智能电网高级量测体系技术的主要组成部分。
二、智能电网技术在用电营销中的应用
(一)智能化抄表
随着我国智能电网技术的不断发展,智能化抄表不断应用于我国电力营销中,有效提高了我国用电营销效率。远程抄表和抄表设备智能化是目前我国电力营销中智能化抄表的主要体现。远程抄表即是利用智能电表上的后台控制系统和数据采集模块,采用低压配电线、通信网络、现场总线以及串口数据传输等通讯技术,远程自动抄录、统计用户智能电表用电表数据,同时进行自动计费。对于一些未能实施远程抄表的地区,抄表人员可以携带准确可靠、便于操作的智能化抄表设备进行实地抄表,及时掌握用户的用电信息。
(二)智能化自动配电系统
智能化自动配电系统即是综合运用微机控制技术、电力网络技术以及通讯网络技术,构建用电营销智能化系统,提升用电营销效率。目前,我国用电营销中的智能化自动配电系统具有覆盖范围广、供电可靠性高以及监控实时性强的优势,同时为远程抄表提供了信息交流基础。目前,我国智能化自动配电系统在功能方面不断完善,已能够兼容GPRS通讯网络,同时也有效实现了用电营业管理信息系统与自动抄表系统之间资源共享,有效提升了我国用电营销管理水平。
(三)营配信息通信一体化平台
营配信息通信一体化平台即是在拓扑关系、基础资源、客户资料模型以及电网设施的基础上,采用先进现代化信息传输技术,构建用户停屈媛媛国网陕西省电力公司电力科学研究院陕西西安710000电管理、供电稳定性管理、报装业扩辅助以及线损管理和电网CIS一体化的信息服务平台。主、辅、补充相结合的信道组合是目前我国营配信息通信一体化平台的主要传输通道,该传输线路以光纤为主要通道,宽带无线网络为辅助通道,并在传输过程中采用公共信息网络进行有效补充。目前,我国营配信息通信一体化平台了公共有效确保用户用电信息传输的正确性、完整性以及及时性,同时也便于电力企业对电力营销的实时监控和维护,推动了我国电力营销的不断发展。
(四)智能交互仪表
智能交互仪表即是利用网络将采集到的有价值的客户用电信息自行向电力相关部门传递的设备。智能交互仪表为双向交流沟通渠道,电力相关部门能够实时、准确地跟踪和监控电力传输和营销,对于电力运输及储存过程中出现的耗损情况和环节能够及时发现,同时采取相关解决措施,有效避免电网出现盗电现象。
三、结束语
在早期供电设施中,电压供给不足常导致系统不能正常运行。由于线路安装常处于农林茂盛地区或者远离闹市区,因此雷雨天气对其影响较大。另外,大气过电压和工频电压对电网的运行具有直接影响,导致设备运行故障。目前,弧光接地过电压较为常见,用户增加时,电网中的电流增大,会导致其出现弧光接地过电压,且很难控制。尤其是对于传统的10kV网络,设备运行时间较长,绝缘性能较差系统稳定性不高。从而影响设备的绝性能和安全运行。
2电网电力工程的技术问题的解决方案
1)控制电网故障造成的停电,优化电网转供电能力
传统的电网检修过程需停电检修,给客户造成不便。目前多数电力企业使用环网柜联络开关。环网柜核心为负荷开关和熔断器,其结构简单,多为便携式且经济适用。根据绝缘方式的不同,通常将其分为SF6绝缘和空气绝缘两种,多用于终端供电和环网供电的短路电流的开断和电流的分合。使用联络开关,有效的缩小了故障检修的停电范围,且可控制停电区间,从而实现区域检修。提高了传统单电源的稳定性与灵活性。
2)认真解决污闪问题
闪络问题在10kV配电网络中表现明显,为了确保其安全性,就要控制由于闪络导致的过电压和相间短路问题。实验数据显示,对于穿墙套管、支持绝缘子、连杆瓶等10kV设备应进行加装绝缘热缩管等防护设施,以防止污闪问题,促进电网的安全性和稳定性。
3)加强线路防雷措施
雷击造成的闪络问题最为明显,因此针对特殊地区、特殊环境下的雷击问题应增加防雷措施,安装必要的避雷设施能够有效的防止雷击造成的导线损坏,提高电网的安全系数。目前,很多企业选择使用针式瓷瓶进行防雷,但其对大导线线路并不适用。
3提高配网工程施工安全管理的技术问题措施
1)完善前期规划设计
在10kV配电网络设计过程中,要根据当地线路负荷是实际情况以及环境现状进行设计,使其额定电流能够满足当地居民同时用电时的最大电流,同时要避免浪费。根据线路设计的影响因素对其进行规划,有助于电网设备的稳定运行。
2)制定合理的施工方案
要求电力施工人员认真检查电路施工图纸、线路以及现场环境等,并以此来制定施工方案。配电网电力工程的安装过程和维修过程都要降低停电现象,时刻以满足客户需求为核心进行施工。
3)采用先进的技术进行定期维护
配电网运行过程中,线路检修十分必要。包括对施工线路的维护和保养,对线路规格的控制和选择等。企业应提高安装的先进水平,选择先进的设备和技术,以确保施工顺利。从而提高施工的质量和安全系数,能够确保对施工过程中的故障进行自动处理。
4)妥善处理施工环境
由于配电网施工要避开闹市区,因此其所处地域的环境通常较差。这对配电网施工具有极大的影响,因此妥善处理施工环境十分必要。其中包括以下几个方面:
①防备人为破坏:配电网的杆塔的位置应选择在远离主干道位置,并且在杆塔区域设置必要的防护措施,如安置警示牌或涂上反光漆等措施,防止机车等对杆塔造成伤害。
②防雷措施:10kV配电网络多数架设在较为空旷地带,因此雷击对线路的安全运行影响较大,因此要求电力企业做好配电网施工的防雷处理。如采用安装好避雷器或支柱式的绝缘子等,完成电网的地线铺设。总之,要做好电网的防雷工作,以免雷电天气造成线路短路,影响设备的正常运行,给客户带来不便。对于经过城区和经过树木茂密地带的线路,先进行适当的处理再进行线路架设,以免发生雷击事故,确保电网安全,毕竟电网安全问题是配电网技术的核心。
③维护和保养线路施工设备。对于电力施工来说,污染严重的工业区和农业区都会对其安全系数造成影响。因此,电力企业必须事先做好防腐措施,对线路经过的绝缘导线进行防腐处理、使用防污能力好的绝缘子。当然,还要对设备进行定期的日常维护和保养。
4总结
1.1电网通信系统的网络结构不合理,比较脆弱
国内电网的发展经历了数十年的建设,有了长远的发展,在自动化程度上有了飞速的建设,已经逐步的完善,但是由于技术发展的不平衡性,加上国内电网的复杂性,在客观上造成了电力通信难的问题,而目前国内用的较多的是星型结构和树形结构。这样的结构对电网的通信的可靠性都会造成不小的影响,一旦发生接地故障等,对供电抢修、运维人员的操作都会造成影响,也不利于资源的合理调配。许多通讯设备长期运行后,将进入设备护理期、修复期,甚至衰老期,所以需要照顾、修理或更换。此外,网络传输设备许多电力通信网中心站和可靠性的结构仍然存在着许多问题,需要在今后的技术改造中不断的完善,以达到电网通讯的通畅和快捷。
1.2电力通信网络的结构管理复杂
电力通信网运行管理一般分为一级通信网络,两个网络和三级通信网络,电源结构、规划线更复杂。随着变电站面积继续增加,在变电站新设备节点被串成的环形网络的拓扑结构,优化不足,越来越复杂。不少电力通信业务需要跨环甚至是跨多环进行传输,导致无法满足传输时的要求,当调度中心下达指令的时候,由于各个节点的增加,无法及时传达到每个节点,包括倒闸操作的时候,在控制室下达操作指令的时候无法及时地进行远程操作,造成延时等问题。
1.3电力通信网络的传输质量差
常见的电力通信网线屏蔽层质量很差,无法防止共模的干扰;单股铜线电缆的电力通信网络,比较容易产生干扰中断;电缆电线尺寸太小,减少网络传输的距离和减少悬挂装置;造成了距离长,传输质量很差。在大型变电站里,通常电缆沟有数百米的距离,从主控制出来的控制电缆控制着各个断路器和隔离开关的操作,一旦传输出现问题,就会对日常的操作造成影响。
1.4电力通信网网络管理不严谨、标准不一致
目前,对电力通信的用户界面输入的模拟信号接口的使用,不能传输信息的多样化和界面调整,也造成了很大困难。电力企业不断地进行技术革新,对变电站内部通信技术进行升级和改造,这些新技术的发展日新月异,企业如果不遵循相关技术措施,及时制定相应的规则和标准,规范用户的行为,可能出现鱼目混珠的现象,为网络监督埋下隐患。2.5地域发展不均衡由于各地区经济发展水平不一致,地域之间的差异和分化也越来越严重。在东部沿海等较发达的地方,数字化、光纤化的应用,为社会提供了有效的通信服务。但同时,在中部和西部地区的调度电话,许多地方连最基本的都没有完全解决。东西部之间或某些邻近地区之间的差距,造成电力通信网络不能使用接口设备一致,区划调整成本增加。
2电网通信自动化的发展
目前电网中通过利用现代电子技术、通信、计算机及网络技术与电力设备相结合、工作管理有机结合的网格监控、保护,在正常和事故条件下,供电部门一起测量和控制,改善和提高供电质量,为了与客户建立更密切的关系,电网自动化是一个综合性很高的系统性工程,其主要功能依靠通信技术得以实现,所以电网通信技术的发展显得尤为重要。
2.1电网通信关键技术
关键的通信网络建设的各种成熟的技术和电网公司的企业信息网络工程已经建立起来,特别充分利用网格运算,结合统一通信技术的优势,采用电力通信网络平台,将电网公司的数据网络的语音网络和视频网络,集成在一起,采用一个统一通信平台,该统一通信技术和实际需求紧密地联系在一起,在一个系统的基础上提出的子系统,即移动多媒体调度子系统应急指挥系统,就可以将日常的操作和电力的运行联系起来,采用移动操作系统和电力营销子系统及通信相结合的核心的网格通信组件,外层的通讯和电网系统的一部分。融合固定电话系统,语音信箱,传真系统,视频会议系统,信息系统,实现多业务系统的集成,通过对各业务单点登录系统的通信,应急统一、统一消息、语音、视频、统一的邮件列表。
2.2电网通信技术平台的应用及展望
目前,在电力系统通信,还有光纤通信的高带宽和高可靠性的特点,如高传输速率,但对灾害应急配电网络自动化办公智能化的需求,目前的电网,随着快速部署的特点的网络通信不受限制,在通信电源,因此在应用系统的地面,网络通信可以成为电力系统通信的重要辅助手段,为电力系统构建综合通信网提供非常重要的一个部分。
3结论
Wi-Fi最优热点组网通信技术是对传统组网存在的弊端和不足进行改善,从而促进Wi-Fi通信网络更好的应用。首先计算Wi-Fi网络中是热点之间的距离;实现Wi-Fi最优热点组网通信的首要步骤则是确定Wi-Fi网络中热点之间的距离,有利于开展后续工作。如果热点之间距离不准确,那么最优热点组网的获取便会受到直接影响。计算距离主要确定是热点跳变距离和热点跳变,因为计算Wi-Fi网络中热点之间距离的变量主要根据为热点跳变及热点跳变距离,热点之间的距离=热点跳变X热点跳变距离。在Wi-Fi中每个热点都有对应的空间位置,所以可任意的选取两个热点。若初始热点的跳变参数大于新热点的跳变参数,则更新跳变热点即可,并将不需要的热点信息删除。计算出热点跳变距离的均值可利用热点之间距离,即所有热点跳变距离的均值。具体如公式(4)所示:根据上面所叙述的方法能够获取Wi-Fi最优热点之间的距离,从而为Wi-Fi提供更准确的数据基础。
2仿真结果
本文通过运用VisualC+6.0编程验证本文算法是否有效。设指定区域面积为100m²,利用不同算法该区域网络覆盖率和Wi-Fi通信效果。并在实验区域选取20个热点,20个热点空间位置分布情况。通过实验能够得知,传统算法Wi-Fi通信的网络覆盖区域小于本文研究算法,进一步体现本文研究算法的优势。为再次验证其有效性,则通过传统和本文研究算法计算Wi-Fi覆盖率,具体结果如表1所示。由实验结果可得知,本文研究算法能有效避免传统算法时常造成的很难根据单一的距离信息选取最优节点参与网络组建的缺陷的,提高Wi-Fi的通信率。
3结语
关键词:电信级以太网;以太网技术要求;以太网技术;以太网技术应用
一、引言
近年来,随着城域数据业务的快速增长,城域以太网传送技术得到了迅速发展和应用,特别是电信级数据业务成为需求热点,受到了运营商和设备开发商的广泛关注。为了实现多种电信级数据业务的有效支撑,城域以太网传送技术正朝着支持电信级以太网业务的方向演进。
二、电信级以太网的基本技术要求
2.1业务标准划分
EPL(以太网专线):具有两个UNI接口,每个UNI仅接入一个客户的业务,实现点到点的以太网透明传送,基本特征是传送带宽为专用,在不同用户之间不共享。
EVPL(以太网虚拟专线):具有两个或多个UNI接口,每个UNI接口接入一个或多个客户的业务,实现点到点的连接,基本特征是UNI-N接口或传送带宽在不同用户之间共享。
EPLAN(以太网专用局域网):具有多个UNI接口,每个UNI仅接入一个客户的业务,实现多个客户之间的多点到多点的以太网连接,基本特征是传送带宽为专用,在不同用户之间不共享。
EVPLAN(以太网虚拟专用局域网):具有多个UNI接口,每个UNI可以接入多个客户的业务,实现多个客户之间的多点到多点的以太网连接,基本特征是在EPLAN基础上增加了不同用户共享传送带宽的功能。
2.2服务质量(QoS)
服务质量(QoS)的量化指标主要有两个方面:一方面是由呼叫与连接建立的速度,包括端到端延迟(End-to-endDelay)和延迟变化(Jitter);另一方面是网络数据的吞吐量,吞吐量的主要指标可以表明可用的带宽大小,吞吐量决定着网络传输的流量,与带宽、出错率、缓冲区容量和处理机的能力等因素有关。
早期的以太网在局域网内主要承载数据业务,数据业务的特点是对时延不敏感,TCP的重传机制又可以容忍以太网上少量数据包的丢失,因此不需要差异化的服务质量保证。但对于电信级以太网技术,由于其需要承载综合业务,这种不区分流量类型的Besteffort服务难以保证业务的质量。电信级以太网实现QoS有IntServ(集成业务体系结构)和Diff-Serv(区分业务体系结构)两种方法,通常使用后者,其具体实现过程包括流分类、映射、拥塞控制和队列调度。
2.3电信级可靠性
传统的以太网使用链路聚合和生成树协议进行保护,链路聚合耗费大量的线路和端口资源,不适合城域网,生成树协议/快速生成树协议在链路出现故障时的恢复时间都在秒级,远远大于电信级要求的50ms。电信级以太网技术可以采取一定的手段保证业务倒换时间小于50ms,如采用MPLS或弹性分组环(RPR)等技术。
除了网络级保护,节点设备也采用了冗余技术,如双处理器架构的高端交换设备,提供主备倒换功能,当出现故障时可以很快倒换,倒换时间一般在毫秒级,不影响用户业务。
2.4网络安全
对于电信级以太网来说,保证设备和网络的安全性是一项十分重要的工作,需要采取一定的措施防止非法进入其系统造成设备和网络无法正常工作,以及某些恶意的消息影响业务的正常提供。
传统以太网的安全问题已经通过VLAN技术划分虚拟网段得到解决。但随着互联网的发展,近年来网络经常遭受蠕虫等网络病毒以及黑客的攻击,全网瘫痪的案例时有发生,合法用户的有效带宽、用户的信息安全难以得到保证。因此在建设电信级以太网时,必须考虑如何保证网络的安全性。比较常见的以太网安全解决方案是通过ACL(访问控制列表)或者过滤数据库来过滤非法数据;端口镜像技术可以将任一端口的输入输出流量复制到指定端口输出,帮助网络管理者监控网络的数据内容;一些高端的网络设备具有强大的应用感知和网络级自动免疫能力,能够一定程度地自动感知并过滤不安全的数据流。
2.5以太网的管理
电信级以太网能够提供完善强大的网管,并能提供端到端的统一网管能力、集群管理能力、堆叠管理以及可视化图形管理。除了常规的配置、监控、用户数据采样分析等,完善的网络管理还能自动发现网络故障,并能及时恢复,能够自动发现新加入的业务节点,能够配置端到端的业务;网管还能够测量端到端的性能,实时掌控网络的运行情况。
三、电信级以太网技术应用
3.1宽带流量汇聚
低成本、高可靠的二层的以太网汇聚;汇聚DSLAM、FTTH和LAN等宽带接入流量,以及软交换中AG和3G等接入层流量;统一的以太汇聚网络,减少运营商投资成本。
在宽带接入网汇聚层,可以采用电信级以太网设备直接提供以太网接口作为网络边缘的融合节点,优化数据业务传送,提高带宽利用率,增强组网灵活性,提供对业务的保护;同时利用增强型以太网的二层交换/汇聚功能,可以节省汇聚节点的业务端口,有利于降低网络成本。
在宽带接入网接入层,可以采用增强型以太网设备完成对大客户以及软交换中AG和3G等流量的可靠接入。利用增强型以太网设备,配置灵活,业务接口丰富,低成本,并具有完善的L2交换和汇聚功能的特点,可以考虑替代部分传送网络设备,降低总体网络成本。
3.2大客户专网或接入应用
商业用户或专网用户ARPU值较高,是运营商重点开发的对象。基于电信级以太网设备可以开展视频、数据、语音等综合业务,并可采用电路仿真方式提供TDM业务的接入。
在解决大客户专线业务的初期,汇聚层可利用电信级以太网设备组成GE环网,从而完成大客户的TDM、以太网专线业务的接入、承载和调度,使网络支持的业务从2M电路到以太网专线可以平滑过渡,保证用户网络和业务的发展。如图中所标示的,在用户业务量不大时,可通过N×E1、155M、FE/GE等接口将业务直接上联到城域网中已有的MSTP传输网上,或通过FE/GE等接口直接上联到城域网的汇聚层交换机或多业务路由器。
随着业务的不断增长,后期还可通过下放千兆环网、上拉万兆环网等方式将多业务分组承载网络进一步向地市、县和城域延伸,最终形成提供覆盖完善的多业务分组化大客户承载网。
用户末端覆盖和业务接入方面的实现方式多种多样:既可在业务种类单一时采用光纤连接方案,也可像图中所示的在业务。种类复杂时采用N×E1、以太网交换机、路由器、EPON等技术作为末端接入。大客户接入点的不确定性,决定多种网络拓扑形式并存的现状。
采用电信级以太网设备组建的网络在结构、容量、管理和发展上均以满足大客户业务的开展为基准,提供丰富的业务种类和可定制服务,并构成"业务发展-网络完善-业务发展"的良性循环。
在大客户业务管理方面:可通过基于SNMP的网络级管理系统,负责专线的业务配置、管理以及内部专线业务的监控。
在业务营销上也是非常有利的武器,由于其能提供以太网透传、以太网VLAN、TDM仿真等业务,而且建网成本较低、用户侧设备非常节省,因此对运营商和客户都具有非常大的吸引力。
3.3中小城市的基础数据承载网
随着网络的不断融合和新业务(如Triple-play等)的涌现,现有城域网逐渐向层次化和分组化的方向进行演进。因此,未来的城域网是业务驱动的网络:业务与控制分离,控制与承载分离,目标是使业务真正独立于网络,灵活有效地实现业务提供。其中,城域承载网作为运营商提供业务的基础平台,需要具备新的特性和功能,不断提高用户的体验质量,才能满足日益增加的业务需求,降低用户离网率,提高ARPU值等增值收益。
在逐步演进的过程中,在中小城市可以考虑将原有的SDH接入层仍然保留,作为A平面,另外新建电信级以太网网络作为B平面。新建网络主要完成对原有网络业务分流和新业务承载。具备灵活的拓朴提供和业务保护及控制能力,可采用FE、GE、N×GE、10G和N×10G方式平滑升级。