前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇集成测试范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
报告属性
【报告名称】中国集成电路测试产业投资咨询报告
【报告性质】专项调研:需方可根据需求对报告目录修改,经双方确认后签订正式协议。
【关键词】集成电路测试产业投资咨询
【制作机关】中国市场调查研究中心
【交付方式】电子邮件特快专递
【报告价格】协商定价(纸介版、电子版)
【定购电话】010-68452508010-88430838
报告目录
一、集成电路测试概述
(一)集成电路测试产业定义、基本概念
(二)集成电路测试基本特点
(三)集成电路测试产品分类
二、集成电路测试产业分析
(一)国际集成电路测试产业发展总体概况
1、本产业国际现状分析
2、本产业主要国家和地区情况
3、本产业国际发展趋势分析
4、2007国际集成电路测试发展概况
(二)我国集成电路测试产业的发展状况
1、我国集成电路测试产业发展基本情况
2、集成电路测试产业的总体现状
3、集成电路测试行业发展中存在的问题
4、2007我国集成电路测试行业发展回顾
三、2007年中国集成电路测试市场分析
(一)我国集成电路测试整体市场规模
1、总量规模
2、增长速度
3、各季度市场情况
(二)我国集成电路测试市场发展现状分析
(三)原材料市场分析
(四)集成电路测试区域市场分析
(五)集成电路测试市场结构分析
1、产品市场结构
2、品牌市场结构
3、区域市场结构
4、渠道市场结构
四、2007年中国集成电路测试市场供需监测分析
(一)需求分析
1、产品需求
2、价格需求
3、渠道需求
4、购买需求
(二)供给分析
1、产品供给
2、价格供给
3、渠道供给
4、促销供给
(三)市场特征分析
1、产品特征
2、价格特征
3、渠道特征
4、购买特征
五、2007年中国集成电路测试市场竞争格局与厂商市场竞争力评价
(一)竞争格局分析
(二)主力厂商市场竞争力评价
1、产品竞争力
2、价格竞争力
3、渠道竞争力
4、销售竞争力
5、服务竞争力
6、品牌竞争力
六、影响2007-2010年中国集成电路测试市场发展因素
(一)有利因素
(二)不利因素
(三)政策因素
七、2007-2010年中国集成电路测试市场趋势预测
(一)产品发展趋势
(二)价格变化趋势
(三)渠道发展趋势
(四)用户需求趋势
(五)服务发展趋势
八、2008年集成电路测试市场发展前景预测
(一)国际集成电路测试市场发展前景预测
1、国际集成电路测试产业发展前景
2、2010年国际集成电路测试市场的发展预测
3、世界范围集成电路测试市场的发展展望
(二)中国集成电路测试市场的发展前景
1、市场规模预测分析
2、市场结构预测分析
(三)我国集成电路测试资源配置的前景
(四)集成电路测试中长期预测
1、2007-2010年经济增长与集成电路测试需求预测
2、2007-2010年集成电路测试行业总产量预测
3、我国中长期集成电路测试市场发展策略预测
九、中国主要集成电路测试生产企业(列举)
十、国内集成电路测试主要生产企业盈利能力比较分析
(一)2003-2007年集成电路测试行业利润总额分析
1、2003-2007年行业利润总额分析
2、不同规模企业利润总额比较分析
3、不同所有制企业利润总额比较分析
(二)2003-2007年集成电路测试行业销售毛利率分析
(三)2003-2007年集成电路测试行业销售利润率分析
(四)2003-2007年集成电路测试行业总资产利润率分析
(五)2003-2007年集成电路测试行业净资产利润率分析
(六)2003-2007年集成电路测试行业产值利税率分析
十一.2008中国集成电路测试产业投资分析
(一)投资环境
1、资源环境分析
2、市场竞争分析
3、税收政策分析
(二)投资机会
(三)集成电路测试产业政策优势
(四)投资风险及对策分析
(五)投资发展前景
1、集成电路测试市场供需发展趋势
2、集成电路测试未来发展展望
十二、集成电路测试产业投资策略
(一)产品定位策略
1、市场细分策略
2、目标市场的选择
(二)产品开发策略
1、追求产品质量
2、促进产品多元化发展
(三)渠道销售策略
1、销售模式分类
2、市场投资建议
(四)品牌经营策略
1、不同品牌经营模式
2、如何切入开拓品牌
(五)服务策略
十三、投资建议
(一)集成电路测试产业市场投资总体评价
(二)集成电路测试产业投资指导建议
十四、报告附件
(一)规模以上集成电路测试行业经营企业通讯信息库(excel格式)
主要内容为:法人单位代码、法人单位名称、法定代表人(负责人)、行政区划代码、通信地址、区号、电话号码、传真号码、邮政编码、电子邮箱、网址、工商登记注册号、编制登记注册号、登记注册类型、机构类型……
(二)规模以上集成电路测试经营数据库(excel格式)
主要内容为:主要业务活动(或主要产品)、行业代码、年末从业人员合计、全年营业收入合计、资产总计、工业总产值、工业销售产值、工业增加值、流动资产合计、固定资产合计、主营业务收入、主营业务成本、主营业务税金及附加、其他业务收入、其他业务利润、财务费用、营业利润、投资收益、营业外收入、利润总额、亏损总额、利税总额、应交所得税、广告费、研究开发费、经营活动产生的现金流入、经营活动产生的现金流出、投资活动产生的现金流入、投资活动产生的现金流出、筹资活动产生的现金流入、筹资活动产生的现金流出……
十五、报告说明
(一)报告目的
(二)研究范围
(三)研究区域
(四)数据来源
(五)研究方法
(六)一般定义
(七)市场定义
(八)市场竞争力指标体系
(九)市场预测模型
关键字:感烟探测器测试集成化
中图分类号:O348文献标识码: A
Abstract:Smoke detector is one of the most common fire detection device in building fire protection facilities. According to the fire protection regulations maintenance units must be detector function test every year, and the third party inspection, a lot of work consumed in the smoke detector test. The author puts forward the idea about the smoke fire detector test function integration, in order to solve the problem of high cost and the detector alarm performance can not be quantified.
Key Words:smoke detectortestintegration
一、前言
随着国民经济的不断发展,人民生活水平的提高,国家及民众对于消防安全日益重视,火灾自动报警系统作为最为常用的早期火灾预警装置日益普及,从最新实施的《火灾自动报警系统设计规范》GB50116-2013就可以看出,国家对住宅建筑火灾自动报警系统的设置提出了明确的要求。感烟火灾探测器作为火灾自动报警系统中最为常用的报警装置,其功能好坏直接关系到是否能够早报警早处置,正是基于此,《火灾自动报警系统施工及验收规范》GB50166-2007明确要求每年需对所有探测器进行功能测试,另外《消防法》规定需对建筑消防设施每年至少进行一次全面检测,即第三方消防检测机构年检。
二、传统测试方式的弊端
为了检验感烟探测器报警功能的好坏,主要的测试方法是使用感烟探测器测试工具(俗称烟枪)对其进行流动加烟试验。由于感烟探测器点多面散,操作人员需要扛枪流动作业,再加上点香及烟雾加注过多后的善后处理等,消耗了维保和检测单位的大量时间和人力、物力投入。
在传统的加烟测试过程中,烟雾的浓度很难控制,烟雾进入探测器内部的数量更是不得而知,这就造成了有些灵敏度高的探测器几秒钟内就立刻报警,而有些灵敏度差的探测器就需要注烟几分钟后才报警,虽然都有报警功能但是显然两者都存在着一定的问题,前者容易受环境影响产生误报警,而后者又不能做到火灾的早期预警,关键因素是烟量无法准确控制,现场加烟与实验室的标准烟室存在着很大的差别,这也是感烟探测器的报警功能参数未纳入计量认证的原因之一。
另外在一些特殊场所,如中庭、高架仓库等,点型感烟探测器安装高度能够达到极限高度12米,线型光束感烟探测器安装高度可以达到20米,烟枪无法触及,需登高作业方可进行测试,十分不便;再如一些危险场所,如变压器室、高压开关室等,平时人员无法进入,只能在停机的情况下才能进行测试。还有一些禁烟场所,如煤气等易燃易爆区域、高档宾馆酒店等,传统的加烟测试方式局限性很大。
三、感烟探测器测试功能集成化
造成目前这种现状的主要原因是探测器生产厂家设计探测器的初衷只是为了探测火灾,而没有考虑到日后测试及维护的方便快捷。随着人们对消防安全的日益重视,以及劳动力成本的不断提升,亟需一种既能够准确判断感烟探测器报警性能又便于测试的手段。
点型感烟火灾探测器是消防火灾自动报警系统中使用最为广泛的探测装置,虽然历经几十年的发展,但其探测原理没有发生实质性的改变,它是通过探测区域烟雾浓度变化影响到光线的变化,当烟雾造成的光线减弱到一定的数值后,再转化为电信号实现报警目的的一种器件。光电探测器的响应阈值,即用减光系数m值(单位为dB/m)表示的探测器报警时刻的烟浓度,需采用实验室方法测量确定,即在光学密度计利用光束受烟粒子作用后,光辐射能按指数规律衰减的原理测量烟浓度。减光系数用下式表示:
m=(10/d)lg(P0/P),式中:
m―减光系数,dB/m;
d―试验烟的光学测量长度,m;
P0―无烟时接收的辐射功率,W;
P―有烟时接收的辐射功率,W。
如果在其内部集成物理减光测试装置和执行机构,在测试时使减光装置动作,遮挡光源,同样能够启到模拟烟雾的效果,达到测试报警功能的目的。在现场使用了一段时间后,如果在减光装置动作后不能及时报警即可以判定该探测器的报警阈值已经达不到出厂时的最低要求,可以通过厂家提升灵敏度,或者进行清洗或更换,彻底解决了传统的通过加烟进行探测器测试方法中的烟量无法准确控制,判断报警时间是否及时的关键问题。由于目前感烟探测器在生产过程中可以设定不同的灵敏度,所以在减光装置的选择上应该与探测器最低灵敏度时的响应阈值相匹配,以准确判断在最不利的情况下探测器报警功能的好坏。
对于线型光束感烟探测器以及管路采样式吸气感烟火灾探测器测试装置的集成同样可以采用以上思路。前者可根据《建筑消防设施检测技术规程》GA503-2004的测试方法,在发射器及接收器处的光路上分别安装减光值为1.0dB和10dB的减光装置,分别启到测试报警及报故障的功能。而后者如果安装高度较高不便测试的话,可以在最不利的采样孔处安装一根空心伴随管便于将测试烟雾送入采用孔中。
在如何控制减光装置执行及复位的问题上,笔者认为可以在探测器内部集成红外接收装置,测试现场可以采用红外线远程遥控控制的方式,大大减少走动测试的时间,同时在火灾报警控制器内部增加测试模式和接口,使其能够在消防控制室火灾报警控制器控制面板或图形显示装置上就能够控制每一个感烟探测器内部减光装置的执行,达到测试的目的。
集成运算放大器(以下简称集成运放)以小尺寸、轻重量、低功耗、高可靠性等优点广泛应用于众多军用和民用电子系统,是构成智能武器装备电子系统的关键器件之一。近年来,随着微电子技术的飞速发展,集成运放无论在技术性能上还是在可靠性上都日趋完善,并在我国军用系统中被大量使用,其质量的好坏,关系到具体工程乃至国家的安危。
随着集成运算放大器参数测试仪(以下简称运放测试仪)在国防军工和民用领域的广泛应用,其质量问题显得尤为重要。传统的运放测试仪校准方案已不能满足国防军工的要求,运放测试仪的校准问题面临严峻的挑战。因此,如何规范和提高运放测试仪的测试精度,保证军用运放器件的准确性是目前应该解决的关键问题。
目前,国内外运放测试仪(或者模拟器件测试系统)主要存在以下几种校准方案:校准板法、标准样片法和标准参数模拟法。各校准方案校准项目、优缺点和相关情况的比较如表1所示。
比较以上三种方案可知,前两种方法只是校准仪器内部使用的PMU单元、电流源、电压源等,并不涉及到仪器本身闭环测试电路部分,局限性很大,很难保证运放测试仪的集成运放器件参数测试精度。而标准参数模拟法直接面向测试夹具,其校准方法具有一定可行性,只是在校准精度、通用性、测试自动化程度等方面需要进一步的研究。因此,通过对标准参数模拟法加以改进,对运放测试仪进行校准,开发出集成运放参数测试仪校准装置,在参数精度和校准范围上,能满足国内大多数运放测试仪,在通用性上,能够校准使用“闭环测试原理”的仪器。
系统性能要求
本课题的主要任务是通过研究国内外运放测试仪的校准方法,改进实用性较强的标准参数模拟法,用指标更高的参数标准来校准运放测试仪,实现运放测试仪的自动化校准以及校准原始记录、校准证书的自动生成等。
表2为本课题中研制的集成运放参数测试仪校准装置与市场上典型运放测试仪的技术指标比较情况。从表2可以看出,校准装置技术指标可以校准市场上的典型运放测试仪。
校准装置的硬件设计方案
校准方案覆盖了市场上运放测试仪给出的大部分参数,其中包括输入失调电压、输入失调电流、输入偏置电流等10个参数。通过研究集成运放参数“闭环测试原理”可知:有的参数校准要用到“闭环测试回路”,有的直接接上相应的标准仪器进行测量即可实现对仪器的校准。对于用到“闭环测试回路”的几个参数而言,主要通过补偿电源装置和模拟电源装置来校准。运放测试仪总体校准方案如图1所示。
1 校准电路设计
输入失调电压V的定义为使输出电压为零(或者规定值)时,两输入端所加的直流补偿电压。集成运放可模拟等效为输入端有一电压存在的理想集成运算放大器,校准原理如图2所示。通过调节补偿电源装置给输入一个与V。电压等量相反的电压V输入就可等效为V=V1+V=0,则被测集成运放与接口电路等效为一输入失调电压为零的理想运算放大器。然后,调节模拟电源装置,给定模拟标准运放输入失调电压参数值。通过数字多用表读数与被校运放测试仪测试值比较,计算出误差值,完成V参数校准。
2 单片机控制电路设计
单片机采用AT89S51,这是一个低功耗、高性能CMOS 8位单片机,片内含可反复擦写1000次的4KB ISP(In-system programmable)Flash ROM。其采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-5 1指令系统及80C51引脚结构,集成了通用8位中央处理器和ISP Flash存储单元。
本设计中,采用单片机控制信号继电器来实现电路测试状态转换,信号继电器选用的是HKE公司的HRS2H-S-DC5V,能够快速完成测试状态的转换,只需单片机5V供电电源即可,便于完成参数的校准。此外,继电器跳变由PNP三极管$8550来驱动完成。
3 液晶显示电路设计
智能彩色液晶显示器VK56B是上海广电集团北京分公司的产品,具有体积小、功耗低、无辅射、寿命长、超薄、防振及防爆等特点。该LCD采用工业级的CPU,机内配置有二级字库,可通过串口或三态数据总线并口接收控制命令数据,并自行对接收的命令和数据进行处理,以实时显示用户所要显示的各种曲线、图形和中西文字体。AT89S5 1与智能化液晶VK56B的接口电路如图3所示。单片机与LED采用并行通信设计,LCD自身具有一个三态数据总线并口(并口为CMOS电平),可以同主机进行通信。它外部有12条线同单片机相连,即DO-D7、WRCS、BUSY、INT和GND。其中,WRCS为片选信号和写信号的逻辑或非,上升沿有效,BUSY信号为高(CMOS电平)表示忙,INT为中断申请信号,低电平有效。
集成运放参数测试仪校准装置软件设计
软件部分包括上位机软件和下位机软件设计。上位机软件完成PC与单片机的通信以及校准数据处理等工作;下位机软件即单片机源程序。本设计使用Keil C完成测试状态的转换、与上位机串行通信以及测试参数的实时显示等。
1 上位机软件设计
上位机软件主要分为三部分:参数设置部分主要完成被校运放测试仪信息录入,校准部分完成各参数的校准,数据处理部分完成校准证书及原始记录的自动化报表。上位机软件主对话框如图4所示。“参数设置”部分主要完成被校运放测试仪的资料录入;“校准”部分主要通过下位机配合完成输入失调电压、输入失调电流等10个参数的校准过程;“生成校准证书”、“生成原始记录”、“预览校准证书”、“预览原始记录”主要实现校准数据的自动化处理。
2 下位机软件设计
下位机软件主要通过Keil C进行编写,通过下位机软件完成校准参数的动态显示以及测试状态的转换等。其包括两个部分,一部分是ST7920液晶驱动程序,另外一部分是单片机串口通信程序。这里简要介绍一下VK56B液晶驱动程序的编写。图5是LCD的时序图。其中,TW为WRCS信号的脉冲宽度,TSU为数据建立时间,TH为数据保持时间。这些参数的具体要求为:TW不小于16ns,TSU不小于12ns,T大于0ns,TH不小于5ns,TI不小于2us。
校准装开发过程中需要注意的一些问题
接口电路的器件由高分辨率、高稳定、低纹波系数电源供电,接口电路的器件偏置电源采用电池供电。
校准接口电路单元中的标准电阻采用温度系数小且准确度优于0.02%的标准电阻,然后再经加电老化进行筛选。
校准接口电路单元的辅助电路和补偿网络的制作关键是不能引入会对被校仪器产生噪声,自激振荡等的影响量。在电路板制作中,注意布线、元件排序、良好接地以及箱体的电磁屏蔽。
为保证标准参数标准不确定度,将购置国外不同型号符合要求的器件进行严格筛选作为验证用标准样片,并利用标准样片与国内性能和稳定性好的进口、国产测量(器具)系统进行比对验证。
测试用辅助样管,一定要满足表的指标规定(选用表3中输入失调电压、输入失调电流、输入偏置电流等参数允许值的辅助样片校准被检运放测试仪),否则将造成测量结果的不准确。
主要技术要求如表3所示。
关键词: 集成电路测试; 自动测试设备; 测试向量; 向量生成
中图分类号: TN964?34 文献标识码: A 文章编号: 1004?373X(2014)06?0122?03
Analysis of IC test principle and vector generation method
集成电路测试(IC测试)主要的目的是将合格的芯片与不合格的芯片区分开,保证产品的质量与可靠性。随着集成电路的飞速发展,其规模越来越大,对电路的质量与可靠性要求进一步提高,集成电路的测试方法也变得越来越困难。因此,研究和发展IC测试,有着重要的意义。而测试向量作为IC测试中的重要部分,研究其生成方法也日渐重要。
1 IC测试
1.1 IC测试原理
IC测试是指依据被测器件(DUT)特点和功能,给DUT提供测试激励(X),通过测量DUT输出响应(Y)与期望输出做比较,从而判断DUT是否符合格。图1所示为IC测试的基本原理模型。
根据器件类型,IC测试可以分为数字电路测试、模拟电路测试和混合电路测试。数字电路测试是IC测试的基础,除少数纯模拟IC如运算放大器、电压比较器、模拟开关等之外,现代电子系统中使用的大部分IC都包含有数字信号。
数字IC测试一般有直流测试、交流测试和功能测试。
1.2 功能测试
功能测试用于验证IC是否能完成设计所预期的工作或功能。功能测试是数字电路测试的根本,它模拟IC的实际工作状态,输入一系列有序或随机组合的测试图形,以电路规定的速率作用于被测器件,再在电路输出端检测输出信号是否与预期图形数据相符,以此判别电路功能是否正常。其关注的重点是图形产生的速率、边沿定时控制、输入/输出控制及屏蔽选择等[1]。
功能测试分静态功能测试和动态功能测试。静态功能测试一般是按真值表的方法,发现固定型(Stuck?at)故障[2]。动态功能测试则以接近电路工作频率的速度进行测试,其目的是在接近或高于器件实际工作频率的情况下,验证器件的功能和性能。
功能测试一般在ATE(Automatic Test Equipment)上进行,ATE测试可以根据器件在设计阶段的模拟仿真波形,提供具有复杂时序的测试激励,并对器件的输出进行实时的采样、比较和判断。
1.3 交流参数测试
交流(AC)参数测试是以时间为单位验证与时间相关的参数,实际上是对电路工作时的时间关系进行测量,测量诸如工作频率、输入信号输出信号随时间的变化关系等。常见的测量参数有上升和下降时间、传输延迟、建立和保持时间以及存储时间等。交流参数最关注的是最大测试速率和重复性能,然后为准确度。
1.4 直流参数测试
直流测试是基于欧姆定律的,用来确定器件参数的稳态测试方法。它是以电压或电流的形式验证电气参数。直流参数测试包括:接触测试、漏电流测试、转换电平测试、输出电平测试、电源消耗测试等。
直流测试常用的测试方法有加压测流(FVMI)和加流测压(FIMV)[3],测试时主要考虑测试准确度和测试效率。通过直流测试可以判明电路的质量。如通过接触测试判别IC引脚的开路/短路情况、通过漏电测试可以从某方面反映电路的工艺质量、通过转换电平测试验证电路的驱动能力和抗噪声能力。
直流测试是IC测试的基础,是检测电路性能和可靠性的基本判别手段。
1.5 ATE测试平台
ATE(Automatic Test Equipment)是自动测试设备,它是一个集成电路测试系统,用来进行IC测试。一般包括计算机和软件系统、系统总线控制系统、图形存储器、图形控制器、定时发生器、精密测量单元(PMU)、可编程电源和测试台等。
系统控制总线提供测试系统与计算机接口卡的连接。图形控制器用来控制测试图形的顺序流向,是数字测试系统的CPU。它可以提供DUT所需电源、图形、周期和时序、驱动电平等信息。
2 测试向量及其生成
测试向量(Test Vector)的一个基本定义是:测试向量是每个时钟周期应用于器件管脚的用于测试或者操作的逻辑1和逻辑0数据。这一定义听起来似乎很简单,但在真实应用中则复杂得多。因为逻辑1和逻辑0是由带定时特性和电平特性的波形代表的,与波形形状、脉冲宽度、脉冲边缘或斜率以及上升沿和下降沿的位置都有关系。
2.1 ATE测试向量
在ATE语言中,其测试向量包含了输入激励和预期存储响应,通过把两者结合形成ATE的测试图形。这些图形在ATE中是通过系统时钟上升和下降沿、器件管脚对建立时间和保持时间的要求和一定的格式化方式来表示的。格式化方式一般有RZ(归零)、RO(归1)、NRZ(非归零)和NRZI(非归零反)等[4]。
图2为RZ和R1格式化波形,图3为NRZ和NRZI格式化波形。
RZ数据格式,在系统时钟的起始时间T0,RZ测试波形保持为“0”,如果在该时钟周期图形存储器输出图形数据为“1”,则在该周期的时钟周期期间,RZ测试波形由“0”变换到“1”,时钟结束时,RZ测试波形回到“0”。若该时钟周期图形存储器输出图形数据为“0”,则RZ测试波形一直保持为“0”,在时钟信号周期内不再发生变化。归“1”格式(R1)与RZ相反。
非归“0”(NRZ)数据格式,在系统时钟起始时间T0,NRZ测试波形保持T0前的波形,根据本时钟周期图形文件存储的图形数据在时钟的信号沿变化。即若图形文件存储数据为“1”,那么在相应时钟边沿,波形则变化为“1”。NRZI波形是NRZ波形的反相。
在ATE中,通过测试程序对时钟周期、时钟前沿、时钟后沿和采样时间的定义,结合图形文件中存储的数据,形成实际测试时所需的测试向量。
ATE测试向量与EDA设计仿真向量不同,而且不同的ATE,其向量格式也不尽相同。以JC?3165型ATE为例,其向量格式如图4所示。
ATE向量信息以一定格式的文件保存,JC?3165向量文件为 *.MDC文件。在ATE测试中,需将*.MDC文件通过图形文件编译器,编译成测试程序可识别的*.MPD文件。在测试程序中,通过装载图形命令装载到程序中。
图4 ATE测试向量格式
2.2 ATE测试向量的生成
对简单的集成电路,如门电路,其ATE测试向量一般可以按照ATE向量格式手工完成。而对于一些集成度高,功能复杂的IC,其向量数据庞大,一般不可能依据其逻辑关系直接写出所需测试向量,因此,有必要探寻一种方便可行的方法,完成ATE向量的生成。
在IC设计制造产业中,设计、验证和仿真是不可分离的。其ATE测试向量生成的一种方法是,从基于EDA工具的仿真向量(包含输入信号和期望的输出),经过优化和转换,形成ATE格式的测试向量。
依此,可以建立一种向量生成方法。利用EDA工具建立器件模型,通过建立一个Test bench仿真验证平台,对其提供测试激励,进行仿真,验证仿真结果,将输入激励和输出响应存储,按照ATE向量格式,生成ATE向量文件。其原理如图5所示。
2.3 测试平台的建立
(1) DUT模型的建立
① 164245模型:在Modelsim工具下用Verilog HDL语言[5],建立164245模型。164245是一个双8位双向电平转换器,有4个输入控制端:1DIR,1OE,2DIR,2OE;4组8位双向端口:② 缓冲器模型:建立一个8位缓冲器模型,用来做Test bench与164245之间的数据缓冲,通过在Test bench总调用缓冲器模块,解决Test bench与164245模型之间的数据输入问题。
(2) Test bench的建立
依据器件功能,建立Test bench平台,用来输入仿真向量。
通过Test bench 提供测试激励,经过缓冲区接口送入DUT,观察DUT输出响应,如果满足器件功能要求,则存储数据,经过处理按照ATE图形文件格式产生*.MDC文件;若输出响应有误,则返回Test bench 和DUT模型进行修正。其原理框图可表示如图6所示。
(3) 仿真和验证
通过Test bench 给予相应的测试激励进行仿真,得到预期的结果,实现了器件功能仿真,并获得了测试图形。图7和图8为部分仿真结果。
在JC?3165的*.MDC图形文件中,对输入引脚,用“1”和“0”表示高低电平;对输出引脚,用“H”和“L”表示高低电平;“X”则表示不关心状态。由于在仿真时,输出也是“0”和“1”,因此在验证结果正确后,对输出结果进行了处理,分别将“0”和“1”转换为“L”和“H”,然后放到存储其中,最后生成*.MDC图形文件。
3 结 论
本文在Modelsim环境下,通过Verilog HDL语言建立一个器件模型,搭建一个验证仿真平台,对164245进行了仿真,验证了164245的功能,同时得到了ATE所需的图形文件,实现了预期所要完成的任务。
随着集成电路的发展,芯片设计水平的不断提高,功能越来越复杂,测试图形文件也将相当复杂且巨大,编写出全面、有效,且基本覆盖芯片大多数功能的测试图形文件逐渐成为一种挑战,在ATE上实现测试图形自动生成已不可能。因此,有必要寻找一种能在EDA工具和ATE测试平台之间的一种灵活通讯的方法。
目前常用的一种方法是,通过提取EDA工具产生的VCD仿真文件中的信息,转换为ATE测试平台所需的测试图形文件[6],这需要对VCD文件有一定的了解,也是进一步的工作。
参考文献
[1] 陈明亮.数字集成电路自动测试硬件技术研究[D].成都:电子科技大学,2010.
[2] 时万春.现代集成电路测试技术[M].北京:化学工业出版社,2006.
[3] 谭永良,伍广钟,崔华醒,等.自动测试设备加流测压及加压测流的设计[J]电子技术,2011(1):68?69.
[4] 北京集成泰思特测试技术有限公司.JC?3165测试系统使用手册[M].北京:北京集成泰思特测试技术有限公司,2009.
关键词:UML类图,测试序列,面向对象软件测试
中图分类号:TP311 文献标识码:A DoI: 10.3969/j.issn.1003-6970.2012.03.023
A New Method to Generating OO Integration Testing Scenarios
SU Hui
(School of Information, Xi’an University of Finance and Economics, Xi’an 710100)
【Abstract】Integrated testing is an important part of OO software testing. UML is useful not only in software design but also in software testing. In this paper, an testing scenarios approach based on UML class diagram is presented, which is in terms of OO software’s integrated testing features. Firstly, class’s massages are taken out from UML class diagram. Secondly, the class cohesion and degree of coupling between classes are computed according to definitions in paper and saved in database. Thirdly, select the class info from database standing on the degree of coupling between classes from big to small. Finally, the OO integrate testing scenarios are created and put out .The experiments show that the method is effective.
【Key words】UML class diagram; testing scenarios; OO integrate testing
0 引 言
面向对象软件的封装性、继承性、多态性和动态绑定等特性提高了软件的可重用性,使软件开发质量更高,而且软件易于维护,通过组装可复用子系统而产生更大的系统。但是面向对象软件的这些特性对软件测试产生了深刻的影响。集成测试的一个主要目标是确保某个类或组件对象的消息以正确的顺序发送和接收并确保接收消息的外部对象的状态获得预期影响。即便单独测试通过的类,其对象在参与协作时依然可能产生若干错误,如接口错误、功能冲突、功能遗漏等。只有对协作类的直接与间接交互进行测试才能尽可能地避免类集成给软件带来的错误[1-2]。
基于UML开发的模型图包含大量的软件分析设计信息,这些信息不仅是软件实现的依据,也是软件测试的重要依据。本文在UML类图信息的基础上,添加新的有助于测试的重要信息,然后将类图信息和添加信息存储到数据库中,最后对类的关键信息进行遍历,生成集成测试的测试序列。
UML的可视模型总共有九种图。例如,用例图从用户角度描述系统功能并指出各功能的操作者,包括活动者、用例和关系,类图属于静态视图部分,包括了类、接口及其之间的联系和关系[3-4]。其余的图有对象图,协作图,顺序图,状态图等。类图是面向对象设计中最重要的描述,其中包含的丰富的信息,为软件集成级测试提供了强有力的依据。为了解决测试场景中的问题,提出如下假定:
(1)类图描述的信息与UML中其余几种图中的相关信息描述的规约是一致的。
(2)系统中的所有模型中的信息内容均可以从UML文件中利用其接口获取。
(3)假定UML类图已经通过了一致性检查并且关于类图的一切均是正确的。
1 UML类图度量
一个好的类结构应该符合软件工程的定义,也就是要求类间的耦合度尽量小,类的内聚度尽可能大。这样才有助于系统的开发、测试、维护工作。
1.1 类内聚度计算
类的内聚度反映了一个类的内部各成分联系的紧密程度[5]。在UML类图中,类由类名、属性和方法三部分组成。属性又可以分为公有属性、私有属性和受保护属性。同样的,方法也可以分为公有方法、私有方法和受保护方法。
定义1:UML 中的一个类可以用一个三元组表示,类=,其中:C_ID表示类的编号,C_NA
3 结论和展望
本文根据面向对象软件分析中的UML模型图,充分利用了UML的类图信息,提出的测试序列的生成算法简单有效,不仅为集成测试的渐增集成次序提供依据,而且类的内聚度也是类级测试中定义优先级的一个重要指标。为更进一步完善文中提出的方法,下一步的工作的重点是对类内聚度和类间耦合度的计算更为科学化,测试序列的生成算法的进一步优化。
参考文献
[1] Perry,D and Kaiser.Adequate testing and objectoriented programming journal of Object-Oriented Programming,1990,2[5],13-19
[2] 李强,曾一.一种基于UML的集成测试线索的生成方法[J].计算机工程与科学,2009,03
[3] 李自强.基于ARM的移动图书导航系统[J].软件,2011,33(9):26-30.