首页 > 文章中心 > 钢结构设计规范

钢结构设计规范

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇钢结构设计规范范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

钢结构设计规范

钢结构设计规范范文第1篇

关键词:抗震 规范

1.R-μ-T关系及其应用

在二十世纪五十年代,当美国的权威人士G.W.Houser导出了第一条地震反应谱和对地震激励下的弹性反应规律的研究很快被学术界接受后,人们很快发现了一个与当时的抗震设计方法相矛盾的问题,那就是例如对一个第一振型周期为0.5s~1.5s,阻尼比为0.05的结构,结构地震反应加速度约为地面运动峰值加速度的1.5~2.5倍,比如赋予上述结构一个不大的地面运动加速度0.15g,则根据反应谱导出的结构反应加速度已达到0.23g~0.375g,而世界各国当时的设计规定中一般用来确定水平地震力大小的加速度只有0.04g~0.15g,但让人不解是,震害表明,虽然设计用的反应加速度很小,但结构在地震中的损伤却不太大。这么大的差距是不能用安全性或设计误差来解释的,于是,各国的学术界加紧了对这一问题的研究,大家通过对单自由度体系的屈服水准、自振周期(弹性)以及最大非弹性动力反应之间的关系;同时还研究了当地面运动特征(包含场地土特征)不同时,给这种关系带来的变化,我们把这方面的研究工作关系其中R是指在一个地面运动下最大弹性反应力与非弹性反应屈服力之间的比值,称为弹塑性反应地震力降低系数,简称地震力降低系数或者反应调节系数;µ为最大非弹性反应位移与屈服位移的比值,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。研究表明,对于长周期(指弹性周期且T>1.0s)的结构可以适用“等位移法则”,即弹性体系与弹塑性体系的最大位移反应总是基本相同的;而对于中周期(指弹性周期且0.12s

之所以存在上诉规律,我们应该注意到钢筋混凝土结构的一些相关特性。首先,通过人为措施可以使结构具有一定的延性,即结构在外部作用下,可以发生足够的非线性变形,而又维持承载力不会下降的属性。这样就可以保证结构在进入较大非线性变形时,不会出现因强度急剧下降而导致的严重破坏和倒塌,从而使结构在非线性变形状态下耗能成为可能。其次,作为非线弹性材料的钢筋混凝土结构,在一定的外力作用下,结构将从弹性进入非弹性状态。在非弹性变形过程中,外力做功全部变为热能,并传入空气中耗散掉。我们可以进一步以单质点体系的无阻尼振动来分析,在弹性范围振动时,惯性力与弹性恢复力总处于动态平衡状态,体系能量在动能、势能间不停转换,但总量保持不变。如果某次振动过大,体系进入屈服后状态,则体系在平衡位置的动能将在最大位移处转化为弹性势能和塑性变形能两部分,其中,塑性变性能将耗散掉,从而减小了体系总的能量。由此我们可以想到,在地震往复作用下,结构在振动过程中,如果进入屈服后状态,将通过塑性变性能耗散掉部分地震输给结构的累积能量,从而减小地震反应。同时,实际结构存在的阻尼也会进一步耗散能量,减小地震反应。此外,结构进入非弹性状态后,其侧向刚度将明显小于弹性刚度,这将导致结构瞬时刚度的下降,自振周期加长,从而减小地震作用。

2 我国现行抗震设计规范中的不足之处

抗震规范规定,我国的抗震设防目标必须坚持“小震不坏,中震可修,大震不倒”的原则,而建筑应根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。甲类建筑应属于重大建筑工程和地震时可能发生严重次生灾害的建筑,地震作用应高于本地区抗震设防烈度的要求,其值应按批准的地震安全性评价结果确定;抗震措施,当抗震设防烈度为6-8度时,应符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求。乙类建筑应属于地震时使用功能不能中断或需尽快恢复的建筑,抗震措施,一般情况下,当抗震设防烈度为6-8度时,应符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求。丙类建筑应属于甲、乙、丁类以外的一般建筑,地震作用和抗震措施应符合本地区抗震设防烈度的要求。我们知道,一栋建筑在大震下能否不倒,已经不是看其承载力的大了了,而是看它的延性是否能够到达设计要求。由上面的建筑物抗震类别划分可以看出,我们对甲、乙、丙、丁建筑物延性的要求是依次从高到低的,此时,结构的延性实际上是由其抗震措施来决定的,现以一栋乙类建筑和丙类建筑为例:

表 1

设防烈度

抗震措施烈度

实际延性

6

7(6)

7

8(7)

中等

8

9(8)

稍高

9

比9度高(9)

说明:在抗震措施烈度中,括号外为乙类建筑,括号内的为丙类建筑。

由表1可以看出,如果按规范设计,就可能会出现9度(设防烈度)下的丙类建筑的延性比7度(设防烈度)下的乙类建筑延性还要高的情况出现,而根据上面所述的R-μ-T理论关系的研究可以知道,当R取值不变时,对结构的延性要求也应该是不变的,与处在什么烈度区没有关系,如果R-μ-T理论关系的研究结果是正确的,那么我国规范对甲、乙、丙三类建筑的要求就存在概念性矛盾。

我国取R=3.33,与国外规范相比较,我们对乙类和丙类建筑的是比较合理,而对于甲类建筑则过于偏松,对丁类建筑过于严格了。

目前,国际上逐步形成了一套“多层次,多水准性态控制目标”的抗震理念。这一理念主要含义为:工程师应该选择合适的形态水准和地震荷载进行结构设计。建筑物的性态是由结构的性态,非结构构件和体系的性态以及建筑物内容物性态的组合。目前性态水准一般分为:损伤出现(damage onset)、正常运作(operational)、能继续居住(countinued occupancy)、可修复的(repairable)、生命安全(life safe)、倒塌(collapse)。性态目标指建筑物在一定程度的地震作用下对所期望的性态水准的表述。对建筑抗震设计应采用多重性态目标,比如美国的“面向2000基于性态工程的框架方案”曾对一般结构、必要结构、对安全起控制作用的结构分别建议了相应的性态目标―基本目标(常遇地震下完全正常运作,少遇地震下正常运作,罕遇地震下保证生命安全,极罕遇地震下接近倒塌,相当与中国的丙类建筑)、必要目标(少于地震下完全正常运作,罕遇地震下正常运作,极罕遇地震下保证生命安全,相当与中国的乙类建筑)、对安全其控制作用的目标(罕遇地震下完全正常运作,极罕遇地震下正常运作,相当与中国的甲类建筑),目前中国正在进行用地震动参数区划分图代替基本烈度区画图的工作。对重要性不同的建筑,如协助进行灾害恢复行动的医院等建筑,应该按较高的性态目标设计。此外,也可以针对业主对建筑提出的不同抗震要求

2. 钢筋混凝土结构的核心抗震措施

我国抗震设计对钢筋混凝土结构提出的基本上是“高延性要求”,也就是要求结构在较大的屈服后塑性变形状态下仍保持其竖向荷载和抗水平力的能力,对于有较高延性要求的钢筋混凝土结构必须使用能力设计法进行有关设计。“能力设计法”的要求是在设计地震力取值偏低的情况下,结构具有足够的延性能力,具体做法是通过合理设计使柱端抗弯能力大于梁端从而使结构在地震作用下形成“梁铰机构”,即塑性变形或塑性铰出现在比较容易保证具有较大延性能力的梁端;通过相应提高构件端部和节点的抗剪能力以避免构件发生非延性的剪切破坏。其核心是:

(1)“强柱弱梁”措施:主要是通过人为增大相对于梁的抗弯能力,使塑性铰更多的出现在柱端而不是梁端,让结构在地震引起的动力反应中形成“梁铰机构”或“梁柱铰机构”,通过框架梁的塑性变形来耗散地震能量。

“强柱弱梁”措施是“能力设计法”的最主要的内容。

根据对构件在强震下非线线动力分析可知,强震下,由于构件产生塑性变形,因此可以耗散部分地震能量,同时根据杆系结构塑性力学的分析知道,在保证结构不形成机构的要求下,“梁铰机构”或“梁柱铰机构”相对与“柱铰机构”而言,能够形成更多的塑性铰,从而能耗散更多的地震能量,因此我们需要加强柱的抗弯能力,引导结构在强震下形成更优、更合理的“梁铰机构”或“梁柱铰机构”。

这一套抗震措施理念已被世界各国所接受,但是对于耗能机构却出现了以新西兰和美国为代表的两种不完全相同的思路。这两种思路都承认应该优先引导梁端出塑性铰,但是双方对柱端塑性铰出现的位置和数量有分歧。

新西兰追求理想的梁铰机构,规范中底层柱的弯距增大系数比其它柱的弯距增大系数要小一些,这么做的目的是希望在强震下,梁端塑性铰形成较为普遍,底层柱塑性铰的出现比梁端塑性铰迟,而其余所有的柱截面在大震下不出现塑性铰的“梁铰机构”。但是新西兰人也不认为他们的理想梁铰方案是唯一可用的方法,因此他们在规范中规定可以选用两种方法,一种是上述的理想梁铰机构法,另一种就是类似与美国的方法。

美国规范的做法则希望在强震下塑性铰出现较早,柱端塑性铰形成较迟,梁端塑性铰形成得较普遍,柱端塑性铰可能要形成得要少一些的“梁-柱塑性铰机构”(柱端塑性铰可以在任何位置形成,这一点是与新西兰规范的做法是不同的)。中国规范和欧洲EC8规范也是采用与美国类似的方法。

(2)“强剪弱弯”措施:用剪力增大系数增大梁端,柱端,剪力墙端,剪力墙洞口连梁端以及梁柱节点中的组合剪力值,并用增大后的剪力设计值进行受剪截面控制条件验算和受剪承载力设计,以避免在结构出现脆性的剪切破坏。

我们在上学期学过,钢筋混凝土的抗剪能力由混凝土自身的抗剪能力、裂缝界面的骨料咬合力、纵筋销栓力和箍筋的拉力4部分构成,而通过对框架梁在强震下的抗剪分析可知,混凝土的梁端抗剪能力在形成塑性铰后会比非抗震时有所下降,主要原因有几下几个:

1 由结构力学和材料力学的分析可知,梁端总是正剪力大于负剪力,如果发生剪切破坏时,剪压区一般都在梁的下部,而此时混凝土保护层已经剥落,且梁下端又没有现浇板,所以混凝土剪压区的抗剪能力会比非抗震时偏低

2 由于在强震下剪切破坏要发生在塑性铰充分转动的情况下,而非抗震时的剪切破坏往往发生在纵筋屈服之前,因此在抗震条件下混凝土的交叉裂缝宽度会比非抗震情况偏大,从而使斜裂缝界面中的骨料咬合效应慢慢退化,加之斜裂缝反复开闭,混凝土体破坏更严重,这使得混凝土的抗剪能力进一步被削弱。

3 混凝土保护层的剥落和裂缝的加宽又会使纵筋的抗剪销栓作用有所退化。

我们一般在计算钢筋混凝土的抗剪能力时,只计算了混凝土自身的抗剪能力和箍筋的抗剪能力(V=Vc+Vsv),而把斜裂缝界面中的骨料咬合能力及纵筋的销栓作用作为它多余的强度储备。在抗震下梁端的塑性铰的形成,使得骨料咬合力及纵筋的销栓作用有所下降,钢筋混凝土的抗剪强度储备也会下降,同时由于混凝土的抗剪能力(Vc)的下降,V也会比非抗震时小,如果咬使V不变,那么就只有使Vsv变大,即增加箍筋用量,所以我们可以得出这样的结论,在抗震情况下箍筋用量比非抗震时要大一些,这不是因为地震使梁的剪力变大了而增加箍筋用量,而是由于混凝土项的抗剪能力下降,相应的必须加大箍筋用量。其他构件的原理也相似。

(3)抗震构造措施:通过相应构造措施保证可能出现塑性铰的部位具有所需足够的延性,具体来说就是塑性转动能力和塑性耗能能力。

对于梁柱等构件,延性的影响因素最终可归纳为最根本的两点:混凝土极限压应变,破坏时的受压区高度。影响延性的其他因素实质都是这两个根本因素的延伸。

对于梁而言,无论是对不允许柱出现塑性铰(底层柱除外)的新西兰方案,还是允许柱出现塑性铰但控制其出现时间和程度的方案,梁端始终都是引导出现塑性铰的主要部位,所以都希望梁端的塑性变形有良好的延性(即不丧失基本抗弯能力前提下的塑性变形转动能力)和良好的塑性耗能能力。因此除计算上满足一定的要求外,还要通过的一系列严格的构造措施来满足梁的这种延性,如:

1 控制受拉钢筋的配筋率。配筋率包括最大配筋率和最小配筋率,前者是为了使受拉钢筋屈服时的混凝土受压区压应变与梁最终破坏时的极限压应变还有一定的差距(梁的最终破坏一般都以受压区混凝土达到极限压应变,混凝土被压碎为标志的);后者是保证梁不会在混凝土受拉区刚开裂时钢筋就屈服甚至被拉断。

2 保证梁有一定的受压钢筋。受压钢筋可以分担部分剪力,减小受压区高度,另外在大震下,梁端可能出现正弯距,下部钢筋有可能受拉,。

3 保证箍筋用量,用法。箍筋的作用有三个,一是抗剪,这在前文已经说过,这里不再充分;二是规定箍筋的最小直径,保证纵筋在受压下不会过早的局部失稳;三是通过箍筋约束受压混凝土,提高其极限压应变和抗压强度。

4 对截面尺寸有一定的要求。规范规定框架梁截面尺寸宜符合下列要求:1>截面宽度不宜小于200mm;2>截面高度与宽度的比值不宜大于4;3>净跨与截面高度的比值不宜大于4。在施工中,如梁宽度太小,而梁上部钢筋一般都比较多,会使混凝土的浇注比较困难,容易造成混凝土缺陷;在震害和试验中多次发生过腹板较薄的梁侧向失稳的事例,因此提出要求了2;一般我们把跨高比小于5的梁称为深梁,深梁的抗弯和抗剪机理与一般的梁(跨高比大于5的梁)有所不同,所以我们在设计中最好能避免设计成深梁,如果实在不能避免,就要去看专门的设计方法和规造措施。

柱的构造措施也和梁差不多,但是柱除了受弯距和剪力以外,还要承受轴力(梁的轴力一般都很小,在设计中都不予以考虑),尤其是高层建筑,轴力就更大了,所以柱还有对轴压比的限制,其中对不同烈度下有着不同延性要求的结构有着不同的轴压比限值;另外,柱端箍筋用量的控制条件不是简单的用体积配箍率,而是用配箍特征值,它同时考虑了箍筋强度等级和混凝土强度等级对配箍量的影响。

高强度混凝土(C60以上)的极限压应变都比一般混凝土(C60及其以下)要小一些,而且强度越高,小的越多;另外,强度越高,混凝土破坏时脆性特征越明显,这些对于抗震来说是不利的。

3.常用的抗震分析方法

结构抗震设计的首要任务就是是对结构最大地震反应的分析,以下是一些常用的抗震分析方法:

1. 底部剪力法

底部剪力法实际上时振型分解反应谱法的一种简化方法。它适用于高度不超过40m,结构以剪切变形为主且质量和刚度沿高度分布比较均匀的框架结构,此时假设结构的地震反应将以第一振型为主且结构的第一振型为线性倒三角形,通 过这两个假设,我们可近似的算出每个平面框架各层的地震水平力之和,即“底部剪力”,此方法简单,可以采用手算的方式进行,但精确度不高。

2. 振型分解反应谱法

振型分解反应谱法的理论基础是地震反应分析的振型分解法及地震反应谱概念,它的思路是根据振型叠加原理,将多自由度体系化为一系列单自由度体系的叠加,将各种振型对应的地震作用、作用效应以一定方式叠加起来得到结构总的地震作用、作用效应。此法计算精度高,但计算量大,必须通过计算机来计算。

3. 弹性时程分析

弹性时程分析法,也称为弹性动力反应分析。所谓时程分析法就是将建筑物作为弹性或弹塑性振动系统,直接输入地面地震加速度记录,对运动方程直接积分,从而获得计算系统各质点的位移,速度,加速度和结构构件地震剪力的时程变化曲线。而弹性时程分析法就是把建筑物看成是弹性振动系统。

4. 非线(弹)性时程分析

非弹性时程分析法,也称为非线性动力反应分析。就是将建筑物作为弹塑性振动系统来输入地面地震加速度记录。上面所提到的基于地震反应谱进行设计的方法,可以求出多遇地震作用下结构的弹性内力和变形,同样可以求得罕遇地震作用下结构的弹塑性变形。但是它不能确切了解建筑物在地震过程中结构的内力与位移随时间的反应;同时也难以确定建筑结构在地震时可能存在的薄弱环节和可能发生的震害;由于计算简化,抗震承载力和变形的安全度也可能是有疑问的。而时程分析法就可以准确而完整的反映结构在强烈地震作用下反应的全过程状况。所以,它是改善结构抗震能力和提高抗震设计水平的一项重要措施。

5. 非线(弹)性静力分析:

钢结构设计规范范文第2篇

关键词 钢结构设计原理 桥梁与渡河工程 教学改革

中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdks.2016.02.048

随着钢桥和组合结构桥梁建设的不断增加,设计和施工单位急需大批熟练掌握桥梁钢结构设计和施工知识的专业人才。由于过去桥梁与渡河工程专业的本科阶段钢结构教学内容及教材侧重点与工业民用建筑专业无异,刚毕业的桥梁与渡河工程专业的大学生很难适应桥梁钢结构方面的工作,导致桥梁钢结构专业人才短缺、质量不高。一方面,钢桥和组合结构桥梁有着巨大的发展潜力和市场需求,另一方面,桥梁与渡河工程专业钢结构人才短缺,二者的矛盾造成了该领域就业空间广阔,并且在今后一个相当长的时期内该空间还将不断扩展。①为了满足社会对钢桥和组合结构桥梁人才的需求,我校桥梁与渡河工程专业“钢结构设计原理”课程在教学内容、教学方法及考核方式方面也在不断进行改革。

1 教学内容

1.1 教材

目前,国内已有的《钢结构设计原理》教材,大多基于《钢结构设计规范》(GB50017-2003)②编写,适合工业民用建筑专业的本科生进行学习。涉及公路桥涵、铁路桥梁的钢结构设计规范的《钢结构设计原理》教材极少,以至于桥梁与渡河工程专业的学生学习此类③④教材后,无法直接应用于钢桥和组合结构桥梁的钢结构构造与结构设计中。针对上述问题,我校桥梁与渡河工程专业“钢结构设计原理”课程,选用东南大学叶见曙教授编写的“结构设计原理”⑤第三版第四篇――钢结构。该书结合我国公路桥涵钢结构及木结构设计规范、钢-混凝土组合桥梁设计规范进行编写,较好地解决了教材脱离规范的问题。此外,结合钢桥、组合结构桥梁参考书籍,在授课过程中紧紧围绕桥梁专业用钢结构构件的设计原理进行讲解,使学生工作后,能够做到学以致用,更快适应工作。

1.2 侧重点

桥梁与渡河工程专业学生在进行“钢结构设计原理”课程的学习之前,材料力学、结构力学、建筑材料等专业基础课都已经进行了系统的学习。在“钢结构设计原理”课程的教学过程中,涉及到这部分的内容适当从简讲授,而增加更多针对桥梁钢结构的内容。例如在材料性能方面,将讲解的重点放在桥梁钢结构用钢材、高强钢绞线、桥梁钢结构用新材料如耐候钢、耐高温钢材等材料的性能方面,让学生了解现有桥梁用钢的现状及未来的发展趋势;结合这些材料在实际工程中的应用图片,提高学生的学习兴趣;在桥梁钢结构应用中,适当介绍索设计的内容,例如钢梁桥中的体外预应力索、斜拉桥中的拉索、悬索桥中的缆索等,以有助于学生学习后续的钢桥和组合结构桥梁课程,列出主要的参考文献,供学生在课余时间有选择地学习;桥梁钢结构尤其是铁路桥,由于受到动荷载的影响,钢结构焊接的疲劳问题不容忽视,在桥梁与渡河工程专业的钢结构设计原理课程中必须补充疲劳设计的相应内容。为拓展学生的就业面,在课程讲授过程中适当增加工业民用建筑用钢结构设计原理的知识,对其所用规范进行介绍,拓宽学生的知识面。

2 教学方法

桥梁与渡河工程专业的钢结构设计原理课程教学,应该既注重基本知识的传授,同时不断启发学生,调动他们学习的积极性和主观能动性,逐步培养出发现问题、思考问题、分析问题、最终解决问题的能力。通过对这种学习方法的传授,使学生既能掌握书本知识,又能不断创新进取,极大提高学生的学习积极性。

2.1 理论教学

针对学生对图片或视频信息的兴趣浓厚,对单纯的数字或者文字兴味索然的现实情况,对抽象的理论问题,用动画或搜集实际工程中的图片,以幻灯片或视频形式播放给学生,让学生以娱乐的方式掌握知识。例如,钢结构的连接和破坏问题,每一项钢结构的破坏或失稳现象都通过图片展现,引导学生思考这些现象背后的机理问题,诱发学生的兴趣,从而引出该节课程教授的重点,改善课堂教学的效果;同时,图片或视频的应用,还能加深学生对基本知识与基本原理的感性认识。

但对于计算原理和公式,一定要用板书演示其推导过程,让学生的思路紧随教师的演示,充分利用课堂时间,消化计算原理,提高教学效率。在计算理论讲解完成后,结合工程应用,介绍实际桥梁钢结构的细部处理及节点构造措施,让学生做到理论与实际相结合,掌握工程中处理具体问题的方法。

采用习题课、讨论课的方式,对学生作业过程中存在的问题进行深入剖析,点评解题过程中的易错点和答题错误的原因。在讲解和讨论的过程中,帮助学生理清解题思路,规范解题步骤,总结解题技巧,提高答题的正确率,同时培养学生严谨、认真、细致的工作作风。

2.2 现场教学

在桥梁与渡河工程专业的钢结构设计原理课程讲授过程中,多媒体、板书等多种手段是课堂教学的主要方法,但对于钢结构设计原理课程来说,仅有课堂教学是远远不够的。因为尽管有多媒体作为教学工具,但毕竟还是图片或短暂影片,学生难以形成一个完整的钢结构的概念,对钢结构的感性认识依旧不够具体深刻。在钢结构设计原理课程的理论教学学习期间或结束后,充分利用学校周围已建或在建钢桥与组合结构桥梁,进行现场参观、学习,便于理论知识与实际应用“接轨”,有选择性地带学生深入施工现场,进行教学实践很有必要。在进入现场之前,负责钢结构设计原理课程的教师,需要事先向学生讲解工地现场实践中所涉及的系统知识。安排好班级分组与带队教师,特别强调实习过程中的安全问题与组织纪律问题。在施工现场,让学生进一步认识真实的螺栓、焊缝、纵向和横向的加劲肋,辨别现实构件中的受拉构件、受压构件、受弯构件或压弯构件、拉弯构件,观察构件的现场连接拼装。请施工单位负责人讲解施工现场钢结构的基本概况,采用的施工方法,施工组织设计,施工质量控制要点,安全保障措施,施工过程中遇到的各种困难,出现的问题及解决的方案等。现场教学过程中,提醒学生注意观察,认真聆听讲解,将书本上的图纸和现场的实体结构充分比对,加深对书本知识的理解。同时,结合工程技术人员的讲解,学习工程中处理具体问题的方法,真正达到现场教学的目的。

2.3 实践教学

实践教学分为实验教学和课程设计两部分。学生在钢结构设计原理课程学习过程中,如果对某个问题有进一步研究的兴趣,可以通过参与大学生创新实验项目,提出自己的研究课题。设计实验方案,动手制作钢结构实验模型,通过实验结果验证自己的想法或发现自己提出的方案的不足,激发学生的创新热情,培养学生的动手能力,同时也可为今后的学习和工作提供宝贵的经验。课程设计,有助于帮助学生系统地应用理论课程学习到的知识,做到学以致用。但以往的课程设计都是在理论课讲授完毕后进行,设计效果不佳。为了改善课程设计效果,打破理论教学与课程设计的严格界限,将理论教学与课程设计同步进行。⑥在钢结构设计原理课程开始上课之时,就给定课程设计题目,随着授课进度的深入,让学生以长期大作业的方式分步骤完成。这样,在理论授课过程中,学生随时可以针对课程设计的内容进行提问,并能得到及时解答,课程设计周学生只需整理计算书、绘制图纸。这样,学生有充足的时间掌握钢结构设计原理的各项设计环节内容,遇到问题能够及时得到解决。

3 考核方式

在对钢结构设计原理课程的教学成果进行考核时,如果仅仅通过期中、期末的考试结果来评价学生的学习情况,显然将会是不全面的,也是不准确的。在钢结构设计原理的教学过程中,采用多种考核形式,例如随堂测验,课堂提问,组织学生进行小组讨论或者针对钢结构设计中存在的某一问题,让学生提交研究报告等方式进行考核。对学生的日常测验,也可以采用口试和笔试相结合的形式,或者把一次测验拆分为多次小的测验,这将有助于更加全面地评价学生的学习情况,降低一次考试所带来的偶然性。传统的考试方法大多偏重对知识的记忆,形式单一,难以客观、全面地评价教学效果,也难以调动学生自主学习的积极性。桥梁与渡河工程的钢结构设计原理课程考试,借鉴国家一级注册结构工程师的考试模式,在考卷中,可能涉及到的全部公式均给出,避免学生死记硬背。此外,可考虑“半开卷”考试,允许学生将自己认为重要的内容事先书写在一张A4纸上,考试时允许查看,考后随试卷上交。这样,学生对自己认为的重点进行总结,通过总结内容的实用性,可反映学生对课程重点的把控。

4 结语

针对桥梁与渡河工程专业学生钢结构设计原理课程学习中存在的问题,从教学内容、教学方法和考核方式三个方面,提出了一系列的改革措施。

(1)选用《结构设计原理》教材,并结合钢桥和组合结构桥梁相关参考书籍,已学过的内容适当从简讲授,紧紧围绕桥梁专业用钢结构构件的设计原理进行讲解。(2)对抽象的理论问题,用动画或搜集实际工程中的图片,以幻灯片或视频形式进行播放;但对于计算原理和公式,一定用板书演示推导过程;采用习题课、讨论课的方式,点评解题过程中的易错点,总结解题技巧。(3)在理论课学习期间,充分利用学校周围已建或在建钢与组合结构桥梁,进行现场参观、学习。(4)理论教学与课程设计同步进行,进行大学生创新实验。(5)考核中,借鉴国家一级注册结构工程师的考试模式,给出考卷中可能涉及到的全部公式;也可考虑“半开卷”考试。

注释

① 苏庆田,吴冲.钢与组合结构桥梁课程教学改革探讨[J].高等建筑教育,2013.22(4):37-40.

② 钢结构设计规范[S].GB50017-2003.

③ 陈绍蕃.钢结构[M].北京:中国建筑出版社,2003.

④ 彭伟.钢结构设计原理[M].成都:西南交通大学出版社,2004.

钢结构设计规范范文第3篇

关键词:钢结构;厂房设计;注意问题

Abstract: combining with engineering practice for ordinary steel structure workshop several problems in the design were analyzed and discussed, including the steel thermal insulating and fire prevention, the structural calculation, etc, so as to provide a reference for the similar projects design.

Keywords: steel structure; Plant design; Pay attention to problems

中图分类号: TU391 文献标识码:A 文章编号:

引言

随着国家经济的快速发展,钢结构在建筑领域起到了举足轻重的作用,扮演着越来越重要的角色,无论在工业还是民用建筑中,钢结构以其突出的特点迅速地占领着越来越广的市场。其特点有:其整体刚度和抗震性能好、施工速度快、自重轻、承载力高,在大跨度及超高层建筑中代替了钢筋混凝土结构,但也存在着防火性能差、易腐蚀等缺点,在设计中根据其特点扬长避短才能更好地发挥钢结构的作用,现在就钢结构工业厂房在设计中的几个问题作简单阐述。

1钢材的保温隔热与防火

钢材具有很高的导热性能,其导热系数为50w(m.℃),当受热达到100℃以上时,其抗拉强度就会降低,塑性增大;温度达到250℃时,钢材抗拉强度会稍提高,但塑性却降低,出现蓝脆现象;温度达到500℃时,钢材强度降至很低,会致使钢结构塌落。所以当钢结构所处环境温度达到150℃以上时,就必须做隔热防火设计。其做法一般为:钢结构外侧包耐火砖、混凝土或硬质防火板材。或者钢结构刷厚涂型防火涂料,厚度按《钢结构防火涂料技术规程》计算。

2结构整体计算

目前的结构计算基本上都采用计算软件来进行,对软件的不理解和不熟悉都会造成设计上的不合理,甚至不安全。这里针对以下几个容易出错的问题进行探讨。

2.1荷载问题

荷载的取值对结构计算影响较大,取小了不安全,取大了不经济,尤其对于大跨度轻型屋面结构。荷载取值应按照《建筑结构荷载规范》进行。一般情况下屋面恒载应按照实际情况计算取值,屋面活荷载可取O.5kN/m:,风荷载、雪荷载和积灰荷载等按规范,其他附加荷载应按实际情况输入。需要说明的是,屋面活荷载和雪荷载在计算时应取二者的大值作为活荷载输入,有积灰的还应考虑积灰荷载。厂房屋面的通风器由于其高度和宽度都较大,计算时应按照实际情况转化为集中载荷输入。在厂房的高低屋面处,还应考虑积雪的堆积影响,防止由此产生的屋面结构的破坏。同样局部风荷载的增大也会使屋面板和檩条的连接被撕坏,从而将屋面板掀起来。

2.2结构计算

目前的钢结构厂房的计算多采用二维软件对其中的―榀钢架进行计算,整体三维分析仍然不够成熟方便。此处对结构计算时的几个问题进行简单分析。

1)屋面梁的平面外计算长度可取隅撑的间距,一般对有托梁体系的小檩距屋面可取两个檩条的间距(约3m),对无托梁的大檩距屋面可取檩条间距(约4m)。对重型钢结构厂房,柱子的平面外计算长度不应考虑隅撑的作用,尤其是格构式下柱,否则是不安全的。

2)阶形柱的平面内计算长度应该按照《钢结构设计规范》[21确定,按线刚度比来确定会导致部分中柱确定的计算长度系数异常。用PKPM系列软件STS(05版)对某工程进行计算时发现,当柱段中间出现刚接梁(如高低跨情况),程序就按线刚度比确定柱的计算长度系数,导致该柱的计算长度系数特别异常。新版的PKPM(08版)已改为按照阶形柱的方式来确定柱计算长度系数,但仍可以人工按照线刚度比的结果进行修改。笔者认为,对于阶形柱,按《钢结构设计规范》阶形柱来确定柱平面内计算长度系数更合理一些。

3)用STS软件计算厂房柱,荷载组合中没有单独的恒+活+吊车的组合,有吊车的组合都有风,有时风作用是有利的,因此在吊车荷载与风荷载同时组合时,对于吊车为主的组合,判断了一下风载是有利还是不利的,不利时,考虑与吊车进行组合,有利时可以不考虑风荷载。STS(05版)对是否有利是按M、Ⅳ、y各自分别判断的,因此可能会出现M含有风的组合,Ⅳ则没有风的组合的不合理情况,导致计算结果偏大;STS(08版)改进为:根据组合的吊车主控制项:如吊1的组合为M。主导作用的组合,则判断风载是否不利只根据M项来判断,当为不利时,则同时都把风载肘、Ⅳ、y组合进来,保证是同时发生的,STS(08版)这样组合更合理。

2.3构件的局部稳定

根据《钢结构设计规范》,处理板件局部稳定有两种方式,其一是以屈曲为承载能力的极限状态,并通过对板件宽厚比的限制,使之不在构件整体失效之前屈曲;其二是允许板件在构件整体失效之前屈曲,并利用其屈曲后强度,构件的承载能力由局部屈曲后的有效截面确定。《建筑抗震设计规范》对单层厂房柱、梁的板件宽厚比,较《钢结构设计规范》中的静力弹性设计要求严。对按宽厚比限值设计的梁进行的粗略统计表明,腹板的用钢量占梁整体用钢量的50%―70%。因此有必要采取措施来减少腹板的用钢量。

降低腹板的厚度―般有两种方法。―种是设置合适的加劲肋,加劲肋作为腹板的支承,将腹板分段,以提高临界应力。横向加劲肋能提高腹板的临界应力并作为纵向加劲肋的支承,纵向加劲肋对提高弯曲临界应力特别有效。短加劲肋常用于局部压应力较大的情况。《建筑抗震设计规范》中也提出构件的腹板宽厚比可通过设置纵向加劲肋来减小。

另一种降低构件腹板厚度的方法是适当放松宽厚比限值,并利用腹板屈曲后强度。对多数轻型维护结构的单层钢结构厂房进行设计计算表明,地震组合多数情况下对梁柱受力都不起控制作用,尤其是在地震烈度较低的地区。有文献提出即,可偏于安全地根据偶遇地震组合是否控制刚架构件受力作为选择构件截面板件宽厚比限值的判断准则。实际上根据大多数厂房的设计计算得出,重型钢结构厂房的屋面梁多由挠度控制,厂房柱多由刚度和长细比控制,尤其屋面梁一般应力都比较小。因此对于地震组合不起控制作用时,采用《钢结构设计规范》中弹性阶段设计的板件宽厚比限值也是可行的。

实际工程设计时,当地震组合不起控制作用时,建议按钢结构规范进行设计,并考虑屈曲后强度的利用,可不遵守《建筑抗震设计规范》中单层钢结构厂房板件宽厚比限值的要求。当地震组合起控制作用时,可根据设置合适的加劲肋来减小腹板厚度,有时也能起到很好的经济效益。

3温度伸缩缝的设置

温度变化将引起钢结构厂房的变形,使结构产生温度应力,当厂房平面尺度较大时,为避免产生较大的温度应力,应在厂房纵横两个方向设置温度伸缩缝,区段的长度可以根据钢结构规范来执行。温度伸缩缝一般采用设置双柱的方法来处理,对纵向温度伸缩缝可在屋架支座处设置滚动支座。

4屋面支撑系统及屋面设计

屋盖支撑系统的布置应根据厂房跨度、高度、柱网布置、屋盖结构形式、吊车吨位和所在地区的抗震设防烈度等条件来决定。一般情况下无论有檩或无檩体系的屋盖结构均应设置垂直支撑;在无檩体系中,大型屋面板有三点和屋架焊接,可起到上弦支撑作用,但考虑到施工条件的限制和安装需要。无论有檩或无檩体系屋盖均应在屋架上弦和天窗架上弦设置上弦横向支撑。对于屋架间距不小于12m的厂房或厂房内设有特重级桥式吊车或厂房内有较大振动设备的均应设置纵向水平支撑。

屋面的排水及防水设计在屋面设计中需重点考虑,根据《屋面工程技术规范》的规定,屋面坡度最小为5%,在积雪较大的地区,坡度应适当加大。单坡屋面的长度主要取决于所在地区的温差以及降雨所形成的最大水头高度。根据工程设计经验,单坡屋面长度宜控制在70m以内。

目前,市场上钢结构屋面的做法常用的有两种:①刚性屋面:双层彩色压型钢板内夹保温棉;②复合柔性屋面:由屋面彩钢板内板、隔气层、保温层、卷材防水层组成。

5立面设计

轻钢结构的建筑主要有把握以下4个方面的特征:规模、线条、色彩、变化。

钢结构厂房的立面主要由工艺布置来决定,在满足工艺的要求下力求立面简洁恢宏同时使节点尽量简单统一。彩色压型钢板使得轻钢厂房的建筑表现得体形轻盈色彩丰富,明显优于传统钢筋混凝土结构的沉重单一。在轻钢厂房的设计中常采用跳跃性色彩和冷色调,重点突出主要出入口、外天沟、收边泛水等地方,既体现了现代化厂房的恢宏气势,又丰富了立面效果。

传统的钢筋混凝土结构厂房,外墙维护为砖砌体,外装修为涂料或面砖,辅以色带,由于混凝土屋面设置采光窗效果不理想,设计时通常在墙面设置大量的采光窗。但对于维护墙为彩色压型钢板的钢结构厂房来说则不然。线条是表现轻钢结构建筑风格最独特的特征,均匀的线条或横或竖,使得轻钢结构建筑富有流畅的金属质感,体现了强烈的现代工业气息。若在墙面设置大量采光窗,则破坏了墙面的线条造型,同时,轻钢结构屋面可以大量使用屋面采光板,采光均匀,同时兼可解决厂房通风问题。

6防锈处理

钢结构表面直接暴露在大气中就会锈蚀,当钢结构厂房空气中有侵蚀性介质或钢结构处在潮湿环境中时,钢结构厂房锈蚀就会更加明显和严重。钢结构的锈蚀不仅会使构件截面减小,还会使钢构件表层局部产生锈坑,当构件受力时将引起应力集中现象,使结构过早破坏。因此,对钢结构厂房构件的防锈蚀问题应予以足够的重视,并应根据厂房侵蚀介质情况和环境条件在总图布置、工艺布置、材料选择等方面采取相应对策和措施,以确保厂房结构的安全。一般钢结构的防腐常采用防锈底漆和面漆,涂装层数及厚度常根据其使用环境和涂层性质来决定。一般室内钢结构在自然大气介质作用下,要求涂层厚度100μm,即底漆两道,面漆两道。露天钢结构或在工业大气介质作用下的钢结构,要求漆膜总厚度为150μm~200μm。且在酸环境中的钢结构要求使用氯磺化防酸漆。钢柱柱脚在地面以下部分要用不低于C20的混凝土包裹,其保护层厚度不小于50mm。

结束语

总之,钢结构厂房在满足工艺布置的前提下,选择合适的结构体系能使结构受力合理、安全可靠,且能有效降低结构造价。

参考文献:

【1】GB50009-2001建筑结构荷载规范(2006年版)【S】.

【2】GB50017―2003钢结构设计规范【S】.

【3】GB50011.2001建筑抗震设计规范(2008年版)【S】.

钢结构设计规范范文第4篇

【关键词】稳定性;应力;结构

中图分类号:TU37文献标识码: A 文章编号:

引言

钢结构建筑有着施工周期短、结构荷载较小、抗震性强等优点在厂房建设中被广泛应用,文中根据现行《钢结构设计规范》GB50017-2003的规定,对钢结构设计常见问题进行分析。

一、钢结构的稳定设计的重要性

钢结构的稳定性是钢结构设计中常见的问题,在各种类型建筑的钢结构设计中稳定性都摆在首位,钢结构的稳定问题是钢结构设计中主要的问题之一。如果一旦出现钢结构稳定性问题,就会造成严重的经济损失,甚至会造成人员伤亡。所以我们必须把握好钢结构设计的质量,目前钢结构失稳事故频发,主要原因来源于设计问题,所对钢结构各部位构件的问题性必须清晰,尤其对钢结构中需要进行稳定加固的部位进行针对性设计,所以在设计中必须明确钢结构稳定性的定义,只有这样才能更好保证钢结构的稳定性。

二、钢结构设计中的常见问题及解决方式

稳定问题和强度问题都和建筑的变形有着实质的关系。当柱在荷载过大情况下,容易产生失稳状况,这时侧向挠度会加大柱的弯矩,在柱受到破坏荷载的情况下,柱的强度就会低于轴压强度。钢结构在设计中要保证稳定性就要遵守如下的原则;

1.结构的整体布置要保证整体和各部分都达到稳定性。结构大多数设计要按照平面体系进行设计。例如框架、横梁,这样可以保证平面结构不出现失稳状况,所以在结构的布置上考虑。要在关键节点设置支撑构件,保证结构的平面体系的两侧都必须与结构布置相同。

2.结构的受力计算要和实际计算方法相同,在单层和多层框架结构设计时,会忽略框架稳定性分析,而直接对框架、柱使用稳定计算来代替。在这种情况下计算框架稳定时的柱计算长度系数要通过框架的稳定分析得出,这样才能使柱稳定计算和框架计算相同。但是在实际框架中结构样式繁多,在设计中就会对结构计算进行简算。所以需要设定特殊条件,根据这些假定,框架各柱的稳定参数和杆件稳定计算常用的方法就会根据简化的假定情况得出,在设计过程中必须明确设计的结构符合设定条件时才能应用。

3.结构在稳定计算中必须加强对细部构件的计算。保证细部构件和构件之间的稳定计算一致,结构和设计相互符合。结构设计中对结构结算和构造设计必须提高关注。

4.在进行弯矩传递和非弯矩传递的节点连接中,必须包含足够的刚度和柔度,并对桁架节点减少杆件的偏心设计,这些都是在细部设计中最需要考虑的。但是涉及到稳定性时,建筑在构造要求中必须保证不同的强度要求,还要对特殊情况进行考虑。在对整体梁的处理要严格要求,并且支座还必须有一定的阻扭性,同时要保证梁在平面转动和梁端截面自由移动,以满足边界稳定的条件。GB50017-2003《钢结构设计规范》第4.2.5条已经在对梁的支座采取相应的措施,以保证梁截面稳定。

5.在围护结构中要加强对檀条的设计系数。并按GB50017-2003《钢结构设计规范》和CECS102-2002《门式刚架轻型房屋钢结构技术规程》(简称“轻钢结构规程”)相关条文的要求进行平面内及平面外强度、稳定、变形等计算,但对檩条平面外计算长度起决定作用的拉条、斜拉条、撑杆的布置概念较为模糊,特别是斜拉条如何设置、在何处设置撑杆等不十分明确。如《轻钢结构规程》第6.3.5条已明确规定当檩条跨度大于6m时,应在檩条跨度三分点各设一道拉条(或撑杆),斜拉条应与刚性檩条连接。对于前者一般能做到,而对于斜拉条的连接及撑杆的设置往往被设计者所忽视。曾经有设计者将斜拉条上端固定在柔性檩条上,且最上端两根檩条间的拉条仍设置为柔性拉条。对于对称屋面的檩条布置是有条件的,就是屋脊处两边的两根檩条必须连在一起,考虑两侧檩条的拉力平衡;但对于不对称的屋面来说,由于两侧拉力不可能平衡,无论从受力还是传力角度来说这样的布置显然是错误的。所以决定檩条侧向计算长度的拉条、斜拉条、撑杆的布置必须具体分析,并于计算假定相一致。《轻钢结构规程》第6.4.3条非常明确地规定在最上层墙架处宜设斜拉条,将拉力传至承重柱或墙架柱上。

6.在实际工程设计中有些设计者对屋面或墙架最上端檩条的侧向支撑,如拉条、斜拉条、撑杆能正确设置,但对中间墙面或屋面,如门窗洞口、屋面风机开孔处、屋面天窗(采光窗)等处,经常只设拉条,而漏设斜拉条和撑杆等,根本无法将拉条上的拉力传至承重结构上。

最根本的原因是对拉条和撑杆等构件作用不清晰,造成误解。设计者对条文规范不清晰就会为围护结构在设计上带来钢结构的安全隐患,因为这时钢构件的抗扭力对钢结构的受力很大,同时由于其抗扭力脆弱,造成截面面中工字钢和箱形的截面扭转常数为1:500,最大的扭转剪力会高达30:1,同时受扭构件的受力状态十分复杂,除了因弯矩所产生的扭曲正应力和剪应力还要承受因扭转所产生的正应力和剪力,这时就造成了处理复杂受力状况下的构件处理困难的情况。所以在实际的建筑结构设计中,会在结构布置的问题上最大限度的避免构件受到不规律扭力,并制定有效的防止措施对其保护,如果无法对扭力进行抵抗就需要放弃工字钢梁,而采取闭合箱式梁。

7.在XX电厂的厂房楼结构设计中采用了大量的工字钢梁和宽翼梁。但是由于室内设备工艺和装饰要求,都要在钢梁下悬挂设备,这就造成了吊重荷载力的产生,所以在设计中我们必须考虑到采用有效措施对水平力和结构构件的扭矩影响。我们在一般情况下会采用密铺楼盖或现浇楼板将上翼缘的水平力传导至框架主体上,来达到消除结构梁所产生的扭矩影响。但是当有其他水平力作用在钢梁下部时,梁的实际受力就会受多方面的影响,其中钢梁上翼缘无密铺楼盖或现浇楼板,梁将受到双向弯曲且受扭曲状态;另一种为钢梁上翼缘有密铺楼盖或现浇楼板,可以阻止梁上翼缘的受扭,钢梁仅局部受扭。

三、结束语

钢结构在设计中必须保证结构的稳定性,这是钢结构质量保证根本条件,另外进行结构的受力计算要和实际计算方法相同,以保证设计的合理性。我们在设计中要注意对构造件尺寸的设计,必须符合实际施工要求,对大型结构件的设计必须控制,以提高施工中的效率,保证设计的最优化。

参考文献:

[1]唐群;高层钢结构框架整体稳定性分析[D];辽宁工程技术大学;2009年.

[2]李众;工业厂房钢结构构件的防腐保护[J];中国新技术新产品;2009年17期.

钢结构设计规范范文第5篇

【关键词】现阶段;钢结构建筑;优化设计;策略

钢结构设计中应该选择最佳的设计方案,才能确保设计的合理性。对于钢结构节点的设计决定了工业建筑的安全性,所以节点设计的合理性需要充分考虑。此外,在建筑设计中,设计人员还需要不断学习专业知识,提高自身的专业技能,为钢结构设计质量的提高奠定坚实的技术基础。

一、建筑结构设计中钢结构设计的重要性分析

在实际的建筑结构设计过程中,钢结构设计是至关重要的组成部分,其主要是指将钢结构设计蓝图到钢结构产品的演变过程,对于现代钢结构制造业的可持续发展有着关键性的影响。从建筑结构设计的性质来看,其中存在的钢结构设计不仅具有几何成分,更具体表现了技术性的相关因素。因此,这就对设计人员的专业知识能力提出了较高的要求,设计者在对建筑结构设计中钢结构进行设计时,必须严格遵守相应的设计蓝图要求,其实结合建筑工程项目的施工性质,充分掌握工程图纸中的设计要点,并将蓝图中的平面线条联想出一个完整清晰的立体结构,以此来保障钢结构设计的高质量。但是,在这一设计工程中,设计人员应该清楚的认知到,如果其中任何一个设计环节出现错误,都将会严重影响构件的安装质量,极有可能危及到建筑结构整体的安全稳定性,这就很容易引发重大的安全事故,造成人员的伤亡。除此之外,设计师还要切实遵守建筑建筑结构设计中钢结构的设计规范,真正了解到构造要求、结构受力特点等方面的要求。只有这样,才能设计出合理的连接接地玩形式,使其能够满足于国家规定的标准要求。

二、优化现阶段钢结构建筑设计的策略

1、 提高建筑结构基础设计的质量

在建筑结构设计中, 地基与基础的设计的主要原则是科学安全合理。因此设计人员必须要从多个方面进行考虑,在进行结构设计前,必须要对现场地质进行认真。详细的勘察, 以根据全面的地质勘察资料为的基础及上部结构方案进行设计。在进行荷载计算过程中,除了套用基础设计公式与地基所容许的承载力值进行设计之外, 还要严格根据规范修正地基容许承载力值。由于不同的土, 其承载力是不同的,因此设计人员必须要根据土层的类型,合理计算地基的承载力。在进行基础设计计算时,必须要严格按照设计规范,采用分析法进行计算,尽可能减少计算的误差,以提高建筑结构基础设计的质量。

2、 注重上部结构设计

在钢结构建筑中,一般结构为框架剪力墙结构,因而在布置剪力墙或者单肢刚度的控制上可能会存在着某些问题,这样就会对梁板等构件的设计造成一定程度的影响。集中应力加果有应力破坏问题的出现将会导致严重问题的发生。那么就需要对这些问题的原因充分考虑, 避免此类问题的出现。加果采用的剪力墙刚度是第一级别,那么就需要保证其墙肢数不小于4,以此来分散应力。要将框架结构多层设防的原则严格遵守下去层层设防促使剪力墙的防御能力得到强化,对外来的破坏力进行有效抵抗。同时还需要将做大放小的原则来应用过来。用强柱弱梁以及强剪弱弯的形式来设计剪力墙的梁和柱。

3、 强柱弱梁和强剪弱弯的结构设计

因为这方面的设计有一定的难度, 虽然这种设计方法有一定的优势,但在实践过程中,很难发挥其功效。特别是我国在相关的抗震设计规范中, 通常将轻度震级的地震作为主要防范内容。如果出现了较大震级的地震,就会影响到钢筋混凝土结构中梁柱的稳定性并且也无法保证可以先倒塌梁后倒塌柱。因此就需要结合我国具体情况,来对相关的抗震设计规范进行修改和完善对建筑抗震设计要求进行完善促使强柱弱梁以及强剪弱弯的设计原则得以有效实现。

4、注重钢结构的防护性

在钢材料的防护过程中, 防腐蚀和隔热是其中非常重要的两个方面。但是建筑工程师在应用钢结构的过程中只注重对钢材硬度和抗压力度的强化, 忽略了防腐蚀和隔热的重要性。在相关的文件和制度中对钢结构的抗腐蚀和隔热并没有明确的标准, 这些情况就导致建设完成后由于外部环境的侵蚀和影响,在一定程度上减少的使用寿命。因而面对这样的情况, 相关部门需要制定和出台相关的文件明确钢材的抗腐蚀度, 同时钢结构中埋入地下的部分需要进行一定的包装,提高钢材的抗腐蚀性。除此之外,钢材料在生产的时候要进行相应的耐火测试,以此有效防护措施的重要依据。

5、 注重钢结构的抗震性设计

对于不同的地区来说,其地壳的活跃程度也存在着很大的区别,有些地区的地壳波动程度非常的剧烈,而有的地区其波动程度是比较小的,因而发生地震的时候其地震强度也有着一定的差异。在传统的建设过程中,混凝土结构的为了尽可能的降低地震所带来的破坏,对于地震较为活跃的地区和较为稳定的地区的结构设置了非常明确的抗震等级。但是对于钢结构来说,由于其硬度高的特点,自身就具备一定的抗震能力,因而运用钢结构的并没有明显的等级区别。钢结构在结构设计的应用过程中,需要全面考虑钢结构材料自身的结构形式、能够承受的地震强度以及的特点等重要影响因素。同时将这些因素之间的区别作为设计的重要依据,通过设计不同的钢结构类型来达到不同程度的抗震效果。

6、 承重墙结构的设计

钢结构的平面结构为矩形, 因而在设计时的纵向刚度要大于横向的,这就要求必须要有足够的横墙,才能有效保证建筑结构的抗震性能。从地震灾害可知,墙体一般都是剪切破坏。因此,在进行建筑设计时,必须要提高建筑的抗剪强度,以提升横墙的抗震能力,以提高建筑的抗剪强度,就要求提高材料的强度等级,并增加横墙的轴压力,因此需要将横墙尽量成为承重与隔断相结合的墙体。当建设中的房间比较大时, 设有沿进深方向的梁应支撑在纵墙上,以使纵墙承重。同时,建筑楼板应沿纵向搁置,因此形成横墙承重,再加上纵墙因存在轴压力而增加其抗剪能力。此外还应注意挑梁变形问题, 因为钢筋混凝土结构有着较大的局部受力那么就会有挑梁变形问题的出现; 针对这种情况就可以将构造柱设置于悬挑的挑梁端头构造柱就可以有效连接每层的挑梁通过这样的结构设计方式就可以将挑梁变形问题给有效消除掉, 因为即使有过大的受力集中于局部位置在挑梁的作用下也可以向其他各层结构中传递这样就可以对压力进行有效的分散。

总而言之,目前,由于我国建筑行业及其技术的不断进步,为建筑钢结构及其设计带来了良好的发展契机,但在具体实践中,其仍存在许多方面的问题和不足,针对此情况,相关设计单位和设计人员必须加强理论知识学习,增进工程实践经验,将二者紧密结合的同时,不断提升我国建筑钢结构设计的能力与水平。

参考文献:

[1] 关广军,汝明. 钢结构设计简单步骤和设计思路[J]. 今日科苑. 2009(08)

[2] 刘静叶,王祖军,胡远军.钢结构设计中的细节处理[J]. 科技资讯. 2009(30)

[3] 魏震南,宝金良.浅谈钢结构设计的步骤[J]. 民营科技. 2010(02)

相关期刊更多

特殊钢

省级期刊 审核时间1个月内

大冶特殊钢股份有限公司

梅山科技

省级期刊 审核时间1个月内

上海梅山钢铁股份有限公司

新疆钢铁

省级期刊 审核时间1个月内

新疆维吾尔自治区科学技术协会