前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电力计量论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
(1)电力计量技术实现了安全与文明生产
随着新的电力计量技术在电力系统中的推广与使用,一体化的电力计量技术逐渐向应用化、网络化及智能化的方向发展,并深入到电力企业电力计量工作中,较大程度的减轻了电力计量管理人员的劳动任务与工作压力,有效避免了工作人员因操作失误而出现的安全问题,提高了电力系统的安全可靠性。
(2)电力计量技术实现了信息化、智能化及自动化在市场经济体制深化改革的背景下,我国电力企业为了提高电力计量的准确性与可靠性,积极利用集信息化、智能化及自动化的一体化电力计量技术。在电力网络技术迅速发展的形势下,数字化生产管理调度系统、数字信息化管理系统、供电系统自动控制系统及数字计算机监控系统等被积极的利用起来。通过这些系统设备的应用,在很大程度上提升了电力企业的办公子自动化、供电销售、设备安装、生产调度、电力监控及财务管理水平,使得电力企业的电力系统的运行与管理更加高效和安全,为电力企业经济效益的提升提供了保障。
2.电力计量技术管理中存在的问题
虽然当前我国电力企业的电力计量水平有了较大程度的提升,但电力计量技术管理工作中仍存在一些问题,不能适应电力行业的发展要求。其问题主要表现在:首先,在资源配置方面,有些电力计量设备不够完善,设备老化与损坏的现象严重;另外,有些电力计量工作人员对新技术、新设备的适应能力及专业技术有限,对电力计量设备装置的现场验收及检验管理工作不能落实。其次,在电力计量装置的基础性资料管理工作方面,部分电力企业还没有做到全面和准确的反映电力计量基础信息,并且在相关报表中数据失真现象较为严重;同时,部分电力计量工作人员在其工作中未充分发挥其职能,缺乏监督管理人员的监督与指导。最后,在电力企业电力计量装置的新工艺推广应用方面,大部分电力企业对于设备创新的力度不足,电力计量新工艺与新技术开发与应用不够。
二、提升电力计量技术应用水平的对策
1.建立健全的电力计量管理体系
一个健全的电力计量管理体系是电力企业电力计量技术管理的保障,也是其提高电力计量技术应用能力的重要措施。为此,电力企业应该建立健全的电力计量管理体系,重点要建立专门的电力计量管理机构,并明确求管理岗位的职责。另外要鼓励供电企业全员参与电力计量管理,强化全员责任意识相互监督与协调,以提高电力计量管理的效率。除此之外,电力企业还应该建立健全的电力计量管理规章制度,针对电力计量设备的管理与维修、供电系统运行以及电力计量质量标准化管理等工作而建立有针对性的管理制度。同时,还要重点加强对监督奖惩制度的建立与完善,通过严格的电力计量监督与积极的奖励制度,而调动电力计量管理工作人员的积极性,促进电力计量相关管理工作的制度化与规范化。
2.加强对电力计量设备的综合管理
电力计量设备管理作为电力计量管理中的重要工作,对于确保电力计量设备安全稳定运行具有关键性的作用。电力企业在日常电力计量管理工作中,要重视和加强对电力计量设备的综合管理。首先,需要在掌握电力计量设备技术及性能的基础上建立完善的设备档案,通过编制和审查电力计量设备的购置更新及修配改造而对电力设备进行全面的监督管理。在电力计量设备管理中,对于设备故障、设备传感器及部件故障都应该及时进行措施的改进,还要加强对设备状态识别、自诊断与自校正的功能研究,以促进设备及部件的综合性能的提升。除此之外,电力企业还应该构建完善的电力计量设备综合管理的体系,合理调配管理人员,加强电力计量设备的定期检查与监督,促进电力计量设备的安全运行。
3.加强自主创新,积极利用新技术
随着现代科学技术的更新换代,电力计量技术也需要与时俱进,加强创新。电力企业要深入研究国外电力网络新技术及设备性能,学习和引进国外的先进技术与设备。加大自我创新技术的研究,通过提高企业自身电力计量产品的功能与性能,而提升电力计量的智能化、自动化水平。另外,电力企业要加大对核心元件的研究力度,重点加强研发继电器等核心元件,加强电力计量设备的多功能研发,在保证设备精准性的同时提高设备的质量。另外,要采取可靠性和开放性较高的模块进行系统设计,强化现代通讯手段的应用,提高信息快速收集与整理的能力,促进电力计量设备自动化调整水平的提升。
4.加强岗位培训,提升管理水平
电力计量技术的不断发展必然要求电力企业相关管理人员掌握新技术的应用,全面提高管理水平。因此,电力企业在电力计量技术的管理中,要加强对计量工作人员及研发人员的学习与岗位培训,使其不断学习新技术,对电力产品设备加深了解,提升自身对新技术的使用技能。同时,电力企业要鼓励定力计量技术研发人员加强对新技术与新产品的研发,促进电力产品设备的换代与升级,进而突破创新,提升电力企业的计量管理工作水平。
三、结语
1.1工程建设程序执行不严
现阶段我国水利水电工程部分为公益性项目,没有直接的经济回报,投资形式主要以国家投资为主。某些地方与建设单位为了获取建设资金,往往把大部分精力放在了争取国家投资上,对于前期的工作准备不充分,在实际的建设中未按照相关的程序操作。还有的工程开工建设过于匆忙,也未办理相关的审批手续,当工程完成之后无法达到验收要求。此外,某些项目法人并没有实质条件,因此其具体的权、责、利往往分开,一些必须的责任却没有承担。
1.2工程建设在管理关系上不顺
(1)在一些动态质量管理中,配置的人员资源及工作精力受到了限制,不能完全保障监督检查工作的到位,更无法确保其深度。
(2)工程的建设单位有时候与设计、施工及监理等单位属于同一个地方或者部门,这样极易造成地方保护,从而不利于质量管理工作的开展。
1.3人员队伍素质不高
不可否认的是近几年我国水利水电行业加强了队伍的建设力度,对工作人员进行了相关的培训,并且施工、监理等方面的队伍与机构建设也得到了一定的加强,总的来说,在质量管理方面的专职人员力量依然比较薄弱,大部分的相关工作人员都无法达到专业素质的要求。同时部分人员素质不高,在施工中就会存在偷工减料等现象,很容易造成安全隐患。
1.4施工过程控制力度不够
水利水电工程在我国的关注度并不是很高,因此在施工中一些精细化的操作往往缺乏必要的重视,加之施工工艺作风的粗糙,这就造成质量不断出现缺陷。一些详细制定的措施,在是施工过程中没有真的落实好,导致指定的措施没有发挥应有的效果。我国大部分的水利水电工程建设基础管理比较薄弱,在质量的记录方面,存在着准确性、及时性、闭合性与完整性等皆较差的一系列问题。
2加强水利水电工程质量控制与管理对策探讨
2.1施工前质量控制
水利水电工程施工前的质量控制主要包括认真的审核施工单位提交的技术方案、技术措施、质量保证体系以及管理制度是否具有一定的可行性,尽量的分解水利工程各阶段的质量目标。熟悉了解设计意图,明确施工质量要求,在施工前期一定要对每道工序班组进行技术、工艺和操作规程交底,对工程质量控制对象进行周密分析,提前找出薄弱环节,制定有效的控制措施和处理对策。对用于工程的原材料、半成品、成品、设备等应采取核准制度,没有经过监理工程师的同意,不得擅自进入施工现场。
2.2施工中质量控制
水利工程施工过程控制的重点是控制好每一个施工工序,要实行施工“二级报验制度”。第一级指的是已完成工序和一些单元工程,采取班组初检、施工队复检、施工单位质枪机构终检的质检制度。第二级指的是第一级质量检查合格的基础上,填报“报验申请单”,报给监理工程师进行检验,由监理工程师核签评定意见和评定等级,保证不合格的材料不会在下一道工序中使用,若在检查的过程中发现工程质量问题,运用因果分析图和排列图等质量统计的工具,进行定量和定性分析,找出发生质量问题的原因,及时提出有效的解决措施。
2.3施工后质量控制
施工后的质量控制指的是对已完成的单元工程、分部工程和单位工程按照有关规范的统一标准及时组织验收,对试运行的工程进行时时观测,收集运行中的基础数据,并对已完工程采取有效的保护措施。2.4施工质量检验施工质量检验数据不仅是水利工程质量进行评定验收的依据,同时也是工程质量计定结论客观、准确与否的关键,对检测数量、检测方法的选择和对检验不合格产品的处理原则,要作为施工人员质量控制的重点和关键内容。
3严格现场质量管理和控制
在对现场质量进行管理和控制时,要做好相应的现场跟踪检查工作。进行现场检查工作时,质量管理人员要勤于观察施工现场,勤记录,以便在施工现场及时的发现问题,减少一切的经济损失。采取一定的措施保护已经完成施工的项目,避免局部破坏进而影响到整个工程的施工质量及进度。施工单位要加强对成品的保护工作,投入必要的人力和物力。在多种施工同时进行时,要合理的安排好施工顺序。
4深层水泥搅拌桩加固在水利水电工程质量控制中的应用
本方法适用于软弱地层厚、工期紧的工程项目。深层搅拌桩现已大量应用沿海软土地基中。施工质量的控制重点包括以下4个方面:
(1)水利施工各部门施工人员之间要密切的加强配合。
比如前台的桩机操作者)要与与台的搅拌施工人员保持良好的沟通,确保搅拌机喷浆时是处于连续供浆的状态,供浆量应与该根桩的设计相符,可以在桩机上挂设小黑板,以便后台严格按规范供浆。
(2)严格控制水灰比。
笔者工作经验表明,水灰比提高则桩身强度下降,因此要严格控制水灰的比例,在实际的水利施工中,水灰比偏小很容易发生堵管的现象,所以当施工人员有加大水灰比倾向时,对此现象应严加控制。可采取在浆桶侧设置刻度或采取标尺加以控制,控制好水灰比对桩身强度大有保证。
(3)必须严格控制好搅拌时间及并提高速度。
用深层搅拌法施工时,当水泥掺量固定时,搅拌的次数越多,拌和就越均匀,水泥土的强度越高。
(4)要经常检查压力表的压力。
宜用流量泵控制输浆速度,使注浆泵出口压力保持在0.4~0.6Mpa,并应使搅拌提升速度与输浆速度同步。由于水泥浆容易凝固堵塞压力表,时有操作工人为方便而拆除压力表的现象发生。
5结语
1引言
在现代化生产过程控制中,执行机构起着十分重要的作用,它是自动控制系统中不可缺少的组成部分。现有的国产大流量电动执行机构存在着控制手段落后、机械传动机构多、结构复杂、定位精度低、可靠性差等问题。而且执行机构的全程运行速度取决于其电机的输出轴转速和其内部减速齿轮的减速比,一旦出厂,这一速度固定不可调整,其通用性较弱。整个机构缺乏完善的保护和故障诊断措施以及必要的通信手段,系统的安全性较差,不便与计算机联网。鉴于以上原因,采用传统的大流量电动执行机构的控制系统,可靠性和稳定性较差。随着计算机网络、现场总线等技术在工业过程中的应用,这种执行机构已远远不能满足工业生产的要求。笔者设计的大流量电动执行机构,采用机电一体化技术,将阀门、伺服电机、控制器合为一体,利用异步电动机直接驱动阀门的开与关。通过内置变频器,采用模糊神经网络,实现阀门的动作速度、精确定位、柔性开关以及电机转矩等控制。该电动执行机构省去了用于控制电机正、反转的接触器和可控硅换向开关模件、机械传动装置和复杂、昂贵的控制柜和配电柜,具有动作快、保护较完善、便于和计算机联网等优点。实际运行表明,该执行机构工作稳定,性能可靠。
2电动执行机构的硬件设计及工作原理
电动执行机构控制系统原理框图如图2-1所示。智能执行机构从结构上主要分为控制部分和执行驱动部分。
控制部分主要由单片机、PWM波发生器、IPM逆变器、A/D、D/A转换模块、整流模块、输入输出通道、故障检测和报警电路等组成。执行驱动部分主要包括三相伺报电机和位置传感器。
系统工作原理:
霍尔电流、电压传感器及位置传感器检测到的逆变模块三相输出电流、电压及阀门的位置信号,经A/D转换后送入单片机。单片机通过8255控制PWM波发生器,产生的PWM波经光电耦合作用于逆变模块IPM,实现电机的变频调速以及阀位控制。逆变模块工作时所需要的直流电压信号由整流电路对380V电源进行全桥整流得到。
控制系统各功能元件的选型与设计:
1)单片机选用INTEL公司生产的8031单片机,它主要通过并行8255口担负控制系统的信号处理:接收系统对转矩、阀门开启、关闭及阀门开度等设定信号,并提供三相PWM波发生器所需要的控制信号;处理IPM发出的故障信号和报警信号;处理通过模拟输入口接收的电流、电压、位置等检测信号;提供显示电动执行机构的工作状态信号;执行控制系统来的控制信号,向控制系统反馈信号;
2)三相PWM波发生器PWM波的产生通常有模拟和数字两种方法。模拟法电路复杂,有温漂现象,精度低,限制了系统的性能;数字法是按照不同的数字模型用计算机算出各切换点,并存入内存,然后通过查表及必要的计算产生PWM波,这种方法占用的内存较大,不能保证系统的精度。为了满足智能功率模块所需要的PWM波控制信号,保证微处理器有足够的时间进行整个系统的检测、保护、控制等功能,文中选用MITEL公司生产的SA8282作为三相PWM发生器。SA8282是专用大规模集成电路,具有独立的标准微处理器接口,芯片内部包含了波形、频率、幅值等控制信息。
3)智能逆变模块IPM为了满足执行机构体积小,可靠性高的要求,电机电源采用智能功率模块IPM。该执行机构主要适用功率小于5.5kW的三相异步电机,其额定电压为380V,功率因数为0.75。经计算可知,选用日本产的智能功率模块PM50RSA120可以满足系统要求。该功率模块集功率开关和驱动电路、制动电路于一体,并内置过电流、短路、欠电压和过热保护以及报警输出,是一种高性能的功率开关器件。
4)位置检测电路位置检测电路是执行机构的重要组成部分,它的功能是提供准确的位置信号。关键问题是位置传感器的选型。在传统的电动执行机构中多采用绕线电位器、差动变压器、导电塑料电位器等。绕线电位器寿命短被淘汰。差动变压器由于线性区太短和温度特性不理想而受到限制。导电塑料电位器目前较为流行,但它是有触点的,寿命也不可能很长,精度也不高。笔者采用的位置传感器为脉冲数字式传感器,这种传感器是无触点的,且具有精度高、无线性区限制、稳定性高、无温度限制等特点。
5)电压、电流及检测检测电压、电流主要是为了计算电机的力矩,以及变频器输出回路短路、断相保护和逆变模块故障诊断。由于变频器输出的电流和电压的频率范围为0~50Hz,采用常规的电流、电压互感器无法满足要求。为了快速反映出电流的大小,采用霍尔型电流互感器检测IPM输出的三相电流,对于IPM输出电压的检测采用分压电路。如图2-2所示。
6)通讯接口为了实现计算机联网和远程控制,选用MAX232作为系统的串行通讯接口,MAX232内部有两个完全相同的电平转换电路,可以把8031串行口输出的TTL电平转换为RS-232标准电平,把其它微机送来的RS-232标准电平转换成TTL电平给8031,实现单片机与其它微机间的通讯。
7)时钟电路时钟电路主要用来提供采样与控制周期、速度计算时所需要的时间以及日历。文中选用时钟电路DS12887。DS12887内部有114字节的用户非易失性RAM,可用来存入需长期保存的数据。
8)液晶显示单元为了实现人机对话功能,选用MGLS12832液晶显示模块组成显示电路。采用组态显示方式。通过菜单选择,可分别对阀门、力矩、限位、电机、通讯和参数等信号进行设置或调试。并采用文字和图形相结合的方式,显示直观、清晰。
9)程序出格自恢复电路为了保证在强干扰下程序出格时系统能够自动地恢复正常,选用MAX705组成程序出格自恢复电路,监视程序运行。如图2-3所示,该电路由MAX705、与非门及微分电路组成。
工作原理为:一旦程序出格,WDO由高变低,由于微分电路的作用,由“与非”门输入引脚2变为高电平,引脚2电平的这种变化使“与非”门输出一个正脉冲,使单片机产生一次复位,复位结束后,又由程序通过P1.0口向MAX705的WDI引脚发正脉冲,使WDO引脚回到高电平,程序出格自恢复电路继续监视程序运行。
3阀位及速度控制原理
阀位及速度控制原理框图如图3-1所示。
采用双环控制方案,其中内环为速度环,外环为位置环。速度环主要将当前速度与速度给定发生器送来的设定速度相比较,通过速度调节器改变PWM波发生器载波频率,实现电机的转速调节。速度调节器采用模糊神经网络控制算法(具体内容另文叙述)。
外环主要根据当前位置速度的设定,通过速度给定发生器向内环提供速度的设定值。由于大流量阀执行机构在运行过程中存在加速、匀速、减速等阶段。各阶段的时间长短、加速度的大小、在何位置开始匀速或减速均与给定位置、当前位置以及运行速度有关。速度给定发生器的工作原理为:通过比较实际阀位与给定阀位,当二者不相等时,以恒定加速度加速,减速点根据当前速度、阀位值、阀位给定值的大小计算得来。
执行机构各阶段运行速度的计算原理
图3-2为执行机构的典型运行速度图,它由若干段变化速率不同的折线组成。将曲线上速率开始发生改变的那一点称为起始段点,相应的时间称为段起始时间,如图3-2中的t(i)(i=0,1,2,……),相应的速度称为段起始速度,如图3-2所示v(i)(i=0,1,2,…)。
设第i段速度的变化速率为ki,则有:
式中:Δv为两段点之间的速度变化值,Δv=vi+1-vi;
Δt为两段之间的时间,Δt=ti+1-ti。
显然,当ki=0时为恒速段,ki>0时为升速段,ki<0时为减速段。任意时刻的速度给定值为:
Ts为采样周期。
变化速率ki的取值由给定位置、当前位置以及运行速度的大小确定。
4关键技术问题的解决
该电动执行机构采用了最新的变频调速技术,电机驱动功率小于5.5kW。用户可根据需要设定力矩特性,根据控制的阀设定速度,速度分多转式、直行程、角行程3种方式。控制系统由阀位给定和阀位反馈信号构成的闭环系统,控制特性视运行方式、速度而定,并具有自动过流保护、过载保护、超压、欠压、过热、缺相、堵转等保护功能。
该执行机构解决的关键性技术问题主要有:
1)阀门柔性开关柔性开关主要是为了当阀关闭或全开时,保证阀门不卡死与损伤。执行机构内部的微处理器根据测得的变频器输出电压和电流,通过精确计算,得出其输出力矩。一旦输出力矩达到或大于设定的力矩,自动降低速度,以避免阀门内部过度的撞击,从而达到最优关闭,实现过力矩保护。
2)阀位的极限位置判断阀位的极限位置是指全开和全关位置。在传统执行机构中,该位置的检测是通过机械式限位开关获得的。机械式限位开关精度低,在运行中易松动,可靠性差。在文中,电动执行机构极限位置通过检测位置信号的增量获得。其原理是,单片机将本次检测的位置信号与上次检测的信号相比较,如果未发生变化或变化较小,即认为己达到极限位置,立即切断异步电机的供电电源,保证阀门的安全关闭或全开。省去了机械式限位开关,无需在调试时对其进行复杂的调整。
3)电机保护的实现为了防止电机因过热而烧毁,单片机通过温度传感器连续检测电机的实际运行温度,如果温度传感器检测到电机温度过高,自动切断供电电源。温度传感器内置于电机内部。
4)准确定位传统的电动执行机构在异步电机通电后会很快达到其额定动作速度,当接近停止位置时,电机断电后,由于机械惯性,其阀门不可能立即停下来,会出现不同程度的超程,这一超程通常采用控制电机反向转动来校正。机电一体化的大流量电动执行机构根据当前位置与给定位置的差值以及运行速度的大小超前确定减速点的位置及减速段变化速率ki,使阀门在较低的速度下实现精确的微调和定位,从而将超程降到最低。
5)模拟信号的隔离。
对于变频器的直流电压以及输出的三相电压,它们之间的地址不一致,存在着较高的共模电压,为了保证系统的安全性,必须将它们彼此相互隔离。采用LM358和4N25组成了隔离线性放大电路。如图4-1所示,采用±15V和±12V两组独立的正负电源。若运放A的反相端电位由于扰动而正向偏离虚地,则运放A输出端的电位将降低,因而光电耦合器的发光强度将增强,则使其集射极电压减小,最后使运放A反相端的电位降低,回到正常状态。若A的反相端电位负向偏离虚地,也可以重回到正常状态。从而增强了系统的抗干扰性。
5结束语
该执行机构集微机技术和执行器技术于一体,是一种新型的终端控制单元,其电机是通过内部集成的一体化变频器来控制,因此,同一台智能执行机构可以在一定范围内具有不同的运行速度和关断力矩。该智能执行机构采用了液晶显示技术,它利用内置的液晶显示板,不仅可以显示阀门的开、关状态和正常运行时阀门的开度,还可以通过菜单选择运行参数设定,当系统出现故障时,能显示出故障信息。总之,该执行机构集测量、决断、执行3种功能于一体,顺应了电动执行机构的发展趋势,它的研制成功给电动执行机构的研究开发提供了新的思路。
参考文献
[1]邓兵,等.数字阀门电动执行机构[J].自动化仪表,2001(1).
[2]LiuJianhou.Theresearchonreliabilityandenvironmentadaptabilityofelectriccontrolvalveusedinunclearpowerstation[J].MaintainabilityandSafety,vol.2,Dalian,China,28-31August2001.
[3]AntsaklisPJ.Intelligenceandlearning[J].IEEEControlSystMag,1995(15).
变电所的基建工程是电网建设的重要基础,包括土建工程和高压电气工程。土建工程包括变压器基础、构支架、电缆沟、控制室、开关室等,变压器基础、构支架都为砼构筑物,控制室开关室为钢筋砼全框架结构建筑物。高压电气工程包括一次、二次电气工程。随着电网覆盖面积的不断增加,变电所的建设就显得更加重要。通过变电所的建设可以扩展电网的供电能力,提高供电可靠率,为国民经济的发展保架护航。
2变电所工程质量管理的重要意义
变电所在电网中是一个承上启下的节点,是负责电力中转和电压调整的重要场所,其通过变压调节实现电网对用户的服务,满足用户供电电压,变电所在电网中重要作用不容忽视。变电所因为要进行电压调整和分配的工作,所以其需要的应用的设备较多,对运行的要求也很高。目前电网的控制技术逐步进入智能化和自动化,因此多数变电所已经进入到无人值守的运行模式中,虽然这样运行模式节约了人员和成本,也提高了管理的质量。这样的运行模式也给变电所的基建提出了更高的要求。经济发展与电力网络的发展,使得变电所的核心基础地位更加提高,电力系统中变电所成为输电和配电的节点,因此在建设中必须强化质量控制使任何设备和系统的良好运营都应用在高质量的基建基础上。
3变电所基建工程施工质量管理对策
3.1强化进度控制
(1)在施工中首先不能造成盲目赶工期的局面,应重视对工期进度的全面控制,以此提高工程质量管理的实际效果。施工阶段应工作应进行细致规划,控制措施,保证综合进度计划,绘制相关的分解图,把握进度执行情况,协调成本与质量关系,风险分析等等。在施工中应按照不同的阶段进行控制,如利用甘特图、行政干预、网络计划等,以此达到良好的工期控制效果。如:甘特图法,在项目计划中应按照进度进行合理安排和分析,利用线条标注作业的程序,起始时间和延续时间机械能规范,普通使用与工程规模相对较小的且工期对较短的电力基建工程项目。(2)网络计划管理。在变电所基建中,施工中应对项目施工进行有效的组织和管理,主要是重视对施工组织的管理与分配。通过项目网络图的制定,减小项目执行的难度,通过对施工路径的开展和结束进行细致规划,让负责项目的施工人员可以更好的进度工作状态,并且对施工作业的内容进行全面了解,借助网络规划的技术,可以更快的计算出各种工序的时间参数,使得各种工程项目的开展可以有次序的开展,从而提高控制效果。
3.2强化质量管理
在管理中,应完善质量管理的体系,将质量管理体系的构建作为质量管理的基础,利用管理机制将施工中的管理责任进行有效的分工,对可能存在质量问题的节点进行有效控制,并利用管理反馈对质量问题诱因进行控制,帮助解决并建立有效的解决方案。同时在施工中应落实现场的管理,提高管理者自身的业务知识尤其是相关电力系统和自控设备的技术常识,配合质量管理机制按照责任制度进行工作,及时发现和解决工程中容易出现的纰漏和质量隐患等。还应对现场的施工顺序进行重监督,按照施工图以及作业方案等对各种施工工序之间的次序进行合理规划,编制可靠的作业计划。最后,应强化合同管理,基建设计阶段是决定施工质量的关键环节,对合同的内容进行细致研究,从而保证设计的合理。在质量管理中也应突出合同的作用,在法律法规指导下完成对合同枪钉,并在后期的施工中按照合同做好履约工作。全面了解履约的基本情况对实际工程监督工作进行落实,针对与合同相悖的问题进行发现和解决。
4变电所基建中质量控制的细节要点
4.1地基质量控制
在选址和规划上应对变电所的位置进行综合性考虑,影响其选址的因素较多应避开不良地质的影响,也要保持交通和网络布置的优化,这样才能保证变电所的施工和维护方便。如果地基出现不良地质结构,应进行实际勘察并提出针对性的解决措施,如采用桩基工程,人工地基等,严格按规范控制原材料的质量及施工过程,做基坑验槽及桩基检测工作,保证桩基的承载力和桩基的应变符合设计要求,做好人工地基的密实度环刀检测,保证变电所的地基稳定。
4.2定位测量放线
施工中还应对前期准备进行细化管理,如定位测量放线,首先应对基建工程的图纸进行熟悉,并制定相关测量和放线的方案,按照计划进行实施。在测量和放线前还应保证场地的质量,满足施工要求,并对测量和放线的成果加以保护。实施中先校验设备保障测量设备测量的精确度,然后定位对基建平面图提供的关键点进行定位,然后放线,利用各种标记方式对工程的基本标尺进行定位,并保证施工的余量,最后对放线进行审核保证准确。
4.3砌体施工质量控制
砌体中所涉及的材料主要有砖,水泥,黄砂,石灰等原材料,首先应对这些材料质量进行控制,保证材料采购过程中的资质合格,且按规范要求现场见证取样后进场检测,保证批次合格。在施工中应按照相关规范对这些原材料更进一步等进行质量控制,包括砂浆标号的试配,根据试配结果控制水泥、黄砂、石灰、水、外加剂的用量.严格控制水灰比,保证砂浆的均匀性。在施工过程中应对施工工艺进行控制,包括砌体的砌筑方式,丁砖、顺砖的组合;宜采用“三一”砌砖法(一灰铲、一块砖、一挤揉);砂浆厚度的控制,灰缝控制在8-12mm;控制灰缝的平整度和饱满度,灰缝必须错开;构造柱与墙的连结采用马枒差每300先退后进,砼柱与墙的连结采用预埋钢筋或采用植筋按规范控制构造钢筋在砌体中的长度每500留置;填充墙与梁交接处控制砖的砌筑角度和砂浆的密实性,保证砼柱梁与墙的整体性;砌筑过程中应按规范要求做好沉降缝、伸缩缝的处理的处理,保证砌体的稳定性;按规范要求留置砂浆试块。
4.4混凝土模板质量控制
现浇砼结构应注意控制模板的质量,因为模板是砼结构成型基础,直接影响砼的观感。因此应按照施工设计图进行模板制作安装,保证接头紧密。接口平整,不能出现缝隙。前后错接与高低不平的情况应尽量避免。在施工中提前对模板进行封闭处理,浇筑前模板内应涂刷隔离剂方便拆模。模板安装完成后,应检测各个位置的轴线距离和高程等,保证模板安装负荷结构件的外观要求。跨度超过4米的梁按规范要求1/1000-3/1000起拱,其次保证模板支撑部份的刚度和稳定性,保证其满足浇筑要求。按规范要求控制拆模时间,对悬挑结构必须等砼强度达到设计强度的100%才能拆模,其次模板的支撑的刚度、稳定性直接影响模板的质量,应根据施工图要求规范要求对支撑系统的承载力刚度稳定性进行验算,控制钢管扣件的质量。
4.5钢筋绑扎质量控制
钢筋工程是一项隐蔽工程,直接影响主体桔构的质量。首先应对钢筋的采购进行控制,保证采购过程中的资质合格性,钢筋进场后对各个品种规格的钢筋现场见证取样检测,不合格的坚决退场;在施工中应按照施工图纸进行钢筋的制作,完成后应进行检查然后才能进入焊接和安装等作业,对于采用焊接或套筒连结的接头必须按规范要求现场取样后做相关的检测;按装时检查钢筋构造长度数量、钢筋间的间距、钢筋的搭接及接头位置是否符合设计规范要求;检查砼保护层厚度是否符合设计规范要求,确保钢筋不受环境的侵蚀,保证钢筋砼结构的耐久性。
4.6砼的现场浇筑质量控制
砼浇筑施工也是影响主体桔构承载力致关重要的一步,同时砼原材料的质量控制、浇筑的过程控制也是混凝土质量控制的关键点。所以在施工中应对其质量管理进行强化,目前砼都为商品砼,首先应选择有质量保证信誉好的供应商,实地抽检供应商的水泥、黄砂、石子、外加剂的质量按规范要求送检,要求供应商根据原材料的实际质量、砼设计标号进行试配,以确定砼的材料级配,保证砼标号满足设计要求。施工现场按规定做好塔落度的测试,严格控制水灰比,浇筑中还应采取合理措施控制离析、泌水等情况。振捣过程中应注意对钢筋密集的位置进行控制,按规范要求有顺序浇筑、同时观察模板、支架、钢筋、预埋件、和预留孔位置,保证其砼的密实性。按规范要求做好砼试块的留置,并做好试块的现场养护、送检、评定。
4.7砼的养护的质量控制
为了保证现浇砼在规定的龄期内达到设计要求的强度,防止产生收缩裂缝,必须做好砼养护工作。根据不同部位构件、不同季节、不同温度、水泥品种的不同确定砼养护方法和时间。一般在砼浇筑后12小时内开始保养,,浇水次数以保持砼处湿润状态为宜,采用硅酸盐、普通硅酸盐水泥的砼保养天数不得少于7天,采用其它品种水泥的砼保养天数不得少于天,可采用薄膜等材料覆盖。如温度低于5度时不得浇水。
4.8屋面工程防水质量控制
变电所建筑物有控制室、开关室等,屋面工程的防水施工质量漏与不漏影响电气设备能否正常正常运行,应根据设计要求对不同防水等级的原材料进行控制,确保材料采购的质量保证,现场见证取样进行检测。施工过程中严格按规范要求控制各道工序,特别对檐口、天沟、水落口的细部严格按施工图及施工规范进行质量控制。
4.9电气一、二安装
变电所电气工程施工前必须与土建工程进行交接验收,其目的是满足电气设备安装的要求,主要有构支架轴线、标高验收。电气设备分为一次设备和二次设备,一次设备的安装应当重视母线的安装、线缆的安装、变压器和隔离开关的安装质量,在控制中应按照相关规程进行,并对安装中可能存在的问题进行预判和解决,安装中应做好交底和分类对母线、线缆、变压器、隔离开关等进行分项目管理,以此保证安装质量。另外,对二次设备而言,应确保其安装的程序,尤其是对控制和信号装置的安装更应做好事前的准备与事后的测试,以此提高二次设备的可靠性。
5结语
[关键词]电量法;低压理论线损系统;设计;开发
就我国当前大部分电力企业针对低压线路所制定的电力线路线损指标多是以历史运行参数为依据,这种考核指标最大的特点在于其测定值基本为衡定状态,并且指标的确定发生在供电企业营销管理工作之前。然而大量的实践研究结构向我们证实了一点:电力线路线损值的高低与整个电力系统电量、电压负荷以及电压负荷曲线形状等指标参数是密切相关的。而这些指标参数又会在电力系统实际环境(包括自然环境以及经济环境)差异性的发展背景下有所改变。这也就是说,将历史指标参数作为现实线损值考核指标是基本合理的,在何种运算方式支持之下设计并开发出一种能够精确、有效计算低压理论线损参数的综合性系统,已成为当前相关工作人员最亟待解决的问题之一。笔者现结合实践工作经验,就这一问题谈谈自己的看法与体会。
一、“竹节法”低压理论线损计算系统概述
在我公司使用“竹节法”进行低压理论线损计算的过程中,相关工作人员发现这种理论线损计算方式在模型构建上所作出的诸多限制性假设条件都比较理想,在低压系统实际运作过程中的指导意义并不是特别大。具体而言,这种低压理论线损计算方式的实施有着如下四各方面的基本假设条件:其一,整个低压电力电网系统当中各个电气节点的电压是恒定的;其二,低压电力系统主干线路之上的全体支线均为有效分布;其三,各个型号的支线长度是完全一致的(也就是说,整个低压电网电力系统当中各个支线线路之上的电力线路负荷参数是抑制的、电力及其功率因素也是一致的、电力线路负荷形状系数同样是一致的);其四,低压电力系统各个型号的下户线不仅线路长度相同、个数相同、电力线路负荷相同,其分布状态也与支线在主干线上的分布状态一致,趋向于均衡性分布。
从“竹节法”低压理论线损计算系统的应用角度来说,在该系统实际运行过程中相关工作人员发现:要想在该系统当中计算理论线损参数,就必须要在该系统所提供的图形输入平台当中对整个电力电网系统当中的各个配变电台区进行低压线路图的绘制工作。这一繁琐的绘图工作不仅极大的增加了理论线损参数的测定值误差,同时系统图形输入平台中所反映的电网结构与实际电网结构之间的差异性也比较明显,整个低压理论线损系统所得出的线损数据既不精确也不可靠,这一问题需要我们及时改进。
二、电量法概述
就我公司低压电网系统中的理论线损构成情况来说,整个电力系统线损的最主要来源为线路损耗、二级漏电保护器损耗以及电度表损耗这三大方面(就我公司现有低压电网系统来说,二级漏电保护器损耗在整个电网系统理论总损耗中所占比例非常小,并非我们的重点关注对象,在此不做过多阐述)。
相关工作人员需要对整个低压电网系统线路进行分段,并按分支线路与表箱为依据依次编号,绘制相应的低压电网分段图。在此基础之上读取整个低压电网系统当中的台区运行参数以及无功电量(无功电量的参数可以根据电压系统月末抄表数值进行推算,或是以整个电网系统的用电性质为依据进行估算)。根据以上计算与分析,我们可以得到包括有功功率、无功功率、视在功率以及功率因素在内的四大指标,进而确定整个低压线路在单位时间内的输电量指标参数,最终获取整个低压线路中的理论线损参数值。
三、基于电量法计算低压理论线损的系统分析
笔者认真分析了电量法计算低压理论线损参数所需要的各种指标,结合我公司现有的电网地理信息系统与低压电网配电自动化系统应用现状,并在用电MIS系统以及低压电网调度自动化系统的辅助之下,提出了一种关于构建基于电量法计算低压理论线损的应用系统,其基本结构示意图如下图所示(见图1)。笔者现结合该结构示意图对整个低压理论线损计算系统当中的各个关键功能进行详细分析与说明,希望能够有助于相关研究与实践工作的开展。
首先,相关工作人员可以在配电网网络拓扑结构中选取需要计算台区的所在线路,双击线路名即可提取到存在与该条线路当中的所有台区系统,进而确定计算台区。其次,电压法计算低压理论线损的各个关键参数均能够在系统支持下及时获取(MIS接口能够为电量法计算低压理论线损提供无功电量与有功电量参数;配网自动化系统能够为电量法计算低压理论线损提供变配电二次侧相电压参与电力线路负荷形状系数)。系统操作人员在人工输入电量参数之后系统即开始运算:现以图表的方式对整个低压电网系统的线路损耗进行分析,并自动生产相应的降损意见),最终完成整个低压理论线损的计算工作。
参考文献
[1]陈亚宁.基于MapX的配电网低压设备管理系统的开发[D].华北电力大学(保定).2004.
[2]张斌.电力地理信息系统平台研究――低压配电网管理系统[D].西安工业学院.2004.
[3]韩晓鹏.基于MIS的电网理论线损计算与线损诊断系统的研究[D].西安工业学院.2005.