首页 > 文章中心 > 化学成分论文

化学成分论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇化学成分论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

化学成分论文

化学成分论文范文第1篇

【关键词】菝葜化学成分

Abstract:ObjectiveTostudythechemicalcompositionofRhizomaSmilacisChina.MethodsThecompoundswereisolatedbychromatographyonsilicagelcolumnandtoyopearlgelcolumnandidentifiedonthebasisofphysicochemicalconstantsandspectralanalysis.ResultsFourcompoundswereisolatedas:3,5,4’trihydroxystibene(Ⅰ)、3,5,2’,4’tetrahydroxstilbene(Ⅱ),Querceetin4’OβDglucoside(Ⅲ),Protecatechuicacid(Ⅳ).ConclusionThecompoundⅣisobtainedfromthisplantforthefirsttime.

Keywords:RhizomaSmilacisChina;Chemicalconsitutents

菝葜为百合科植物菝葜SmilaxchinaL.的根茎,在我国主要分布于长江以南地区,资源丰富,《中国药典》2005年版Ⅰ部有收载,为较常用中药材,具有祛风利湿,解毒散瘀之功效,主要用于妇科多种炎症,疗效显著。作者对其化学成分进行了研究,从其根茎的乙醇提取物中分离得到了4个化合物,根据理化常数和光谱分析,分别鉴定为3,5,4’三羟基芪(3,5,4’trihydroxystibene,Ⅰ)、3,5,2’,4’四羟基芪(3,5,2’,4’tetrahydroxstilbene,Ⅱ)、槲皮素4’OβD葡萄糖苷(querceetin4’OβDglucoside,Ⅲ)、原儿茶酸(protecatechuicacid,Ⅳ)。化合物Ⅳ为首次从菝葜中分离得到。

1仪器与材料

1H-NMR:VarianMercuryVX-300/600型核磁共振仪,13C-NMR:VarianINOVA-150型核磁共振仪,EI-MS:VGZAB-3F型高分辨多级有机质谱仪,FT-IR:NICOLET670型红外光谱仪(NicoletIR-6.0数据处理系统),UV:UV-2401型可见-紫外分光分光光度仪,ToyopearlHW-40F为Toyosh公司生产,薄层层析硅胶及柱层析硅胶为青岛海洋化工厂生产,试剂均为分析纯,菝葜药材由湖北福人药业公司提供,经湖北中医学院鉴定教研室鉴定。

2提取分离

取菝葜药材饮片5kg,用70%乙醇加热回流提取3次,2h/次,减压回收溶剂,浓缩后的药液依次用醋酸乙酯,正丁醇萃取,醋酸乙酯提取物经反复硅胶柱色谱,分别用不同比例的氯仿-甲醇梯度洗脱,ToyopealHW-40柱色谱纯化,反复重结晶处理,得到化合物Ⅰ(30mg),Ⅱ(17mg),Ⅲ(45mg),Ⅳ(13mg)。

3结构鉴定

化合物Ⅰ:浅黄色针晶,mp247~249℃。EI-MS:227(M+H)。IR(KBr)cm-1:3292,1606,1587,1512,1450,1380,1330,1260,1160,965,830,810,662。1HNMR(CDCl3)δPPm:9.51(1H,s),9.16(2H,s),7.39(2H,d,H-2'''',6''''),6.94(1H,d,J=16.3HZ,H7''''),6.82(1H,d,J=16.3HZ,H8''''),6.75(2H,d,J=8.5HZ,H3'''',5''''),6.37(2H,d,J=2.0HZ,H2,6),6.11(1H,d,J=2.0HZ,H4)。13C-NMR(CDCl3)δPPm:158.4(C3,5),157.1(C4''''),139.2(C1),128.0(C2'''',6'''',8''''),127.8(C1''''),125.6(C7''''),115.5(C3'''',5''''),104.2(C2,6),101.9(C4)。波谱数据与文献[1]报道的3,5,4''''三羟基芪数据一致,故确定该化合物为3,5,4''''三羟基芪(3,5,4''''trihydroxystibene)。

化合物Ⅱ:淡黄色针晶,mp94~97℃。EI-MS:243(M+H);IR(KBr)cm-1:3229,1616,1593,1520。1HNMR(CDCl3)δPPm:9.57(1H,s),9.38(1H,s),9.14(2H,s),7.36(2H,d,J=8.5HZ,H-6''''),7.17(1H,d,J=16.5HZ,H7''''),6.78(1H,d,J=16.3HZ,H8''''),6.35(2H,d,J=2.0HZ,H2,6),6.32(2H,d,J=2.3HZ,H3''''),6.26(1H,dd,J=8.5HZ,2.3HZ,H5''''),6.08(1H,d,J=2.1HZ,H4)。13CNMR(CDCl3)δPPm:158.5(C3,5),158.1(C4''''),160.0(C2''''),140.0(C1),127.1(C6''''),124.6(C8''''),123.2(C7''''),115.2(C1''''),107.2(C5''''),104.0(C2,6),102.6(C3''''),101.3(C4)。波谱数据与文献报道[2]的3,5,2'''',4''''四羟基芪数据一致,故确定该化合物为3,5,2'''',4''''四羟基芪(3,5,2'''',4''''tetrahydroxstilbene)。

化合物Ⅲ:黄色针晶,盐酸-镁粉反应和Molish反应均呈阳性。EI-MS:302(M-glc)。酸水解产物用TLC法检识有槲皮素,用PC法检识有D葡萄糖。IR(KBr)cm-1:3302,1657,1628,1602,1502。1HNMR(CDCl3)δPPm:12.45,10.78,9.20,9.10(each1H,s,OH),9.97(1H,d,J=2.0HZ,H2''''),7.86(1H,dd,J=8.5HZ,2.0HZH-6''''),6.96(1H,d,J=8.5HZ,H5''''),6.48(1H,d,J=2.0HZ,H8),6.19(1H,d,J=2.0HZ,H6),4.78(1H,d,J=7.0HZ,H1''''''''),3.4~4.78(6H,m)。13CNMR(CDCl3)δPPm:175.9(C4),163.9(C7),160.6(C5),156.1(C9),148.8(C4''''),146.2(C2),145.2(C3''''),135.9(C3),123.5(C1''''),122.1(C6''''),115.9(C5''''),115.8(C2''''),102.9(C10),102.4(C1''''''''),98.2(C6),93.6(C8),77.2~60.6(3''''''''~6'''''''')。波谱数据与文献[3]报道的槲皮素4''''OβD葡萄糖苷一致,故鉴定该化合物为槲皮素4''''OβD葡萄糖苷(quercetin4''''OβDglucoside)。

化合物Ⅵ:白色针晶,mp195~197℃。FeCl3反应阳性。薄层检识与原儿茶酸一致。EI-MS(m/z):154(M+)。IR(KBr)cm-1:3274,1677,1604,1530,1437,1381。1HNMRδPPm:7.43(1H,d,J=2.0HZ,H2),7.42(1H,dd,J=2.0,8.5HZ,H6),6.78(1H,d,J=8.5HZ,H5)。波谱数据与文献[4]报道的原儿茶酸数据一致,因此可确定该化合物为原儿茶酸(protecatechuicacid)。

【参考文献】

[1]陈广耀,沈连生,江佩芬.土茯苓化学成分的研究[J].北京中医药大学学报,1996,19(1):44.

[2]ChristensenLP,JorgenL.Excelsaoctaphenol,astilbenedimmerfromChlorophoraexcelsa[J].Phytochemistry,1989,28(3):917.

化学成分论文范文第2篇

1脂类

1.1多烯炔类成分

Aratake等[2]从印度尼西亚海绵Haliclonasp.中分离得到一种多元不饱和溴代脂肪酸6-bromo-icosa-3Z,5E,8Z,13E,15E-pentaene-11,19-diynoicacid(1),并通过核磁数据确定了其结构。将分离得到的该化合物纯化后进行细胞实验,研究表明其对NBT-T2大鼠膀胱上皮细胞有细胞毒性,半数抑制浓度(IC50)值为36μg/mL。Watanabe等[3]从Strongylophora属海绵中分离得到3个多烯炔类成分strongylodiolA、B、C,它们对Molt-4肿瘤细胞有非常显著的细胞毒活性,IC50值分别为0.35、0.85、0.80μg/mL。

1.2过氧化物

Plakinidae类过氧化物在海绵中比较常见,该类成分在C-3、6位存在过氧桥,同时在C-3、4、6位有烷基链取代。Ernesto等[4]从中国南海简易扁板海绵Plakortissimplex中分离得到plakortideH(2)、I、J,运用波谱学和化学的方法解析了其平面结构,并利用改良的Mosher法确定C-3、4、6手性位点的绝对构型。plakortideH、I、J对鼠纤维肉瘤细胞WEHI164显示出较强的活性,其IC50值分别为7.1、9.5、8.2μg/mL。并阐述了该类化合物的构效关系,认为过氧环是其具有细胞毒活性的活性位点,若过氧环被破坏,其细胞毒活性则会消失。Dai等[5]通过活性筛选及分离手段从海绵Diacarnuslevii中分离得到4种结构新颖的norsesterterpene过氧化物diacarnoxidesA~D,其中diacarnoxideB(3)显示出显著的活性,可以抑制低氧状态下肿瘤细胞的生长。海绵中分离得到的脂类化合物的结构见图1。

2大环内酯类

来自海绵的大环内酯类化合物结构新颖、药理活性多样,其已经引起越来越多的海洋药物研究人员的关注。Johnson等[6]从海绵Cacospongiamycofijiensis中分离得到大环内酯类聚酮化合物fijianolidesA(4)、B(5),及6种新型的fijianolidesD~I。fijianolidesA、B具有类似于紫杉醇的微管稳定作用,其中fijianolidesB的作用强于fijianolidesA,且在严重联合免疫缺陷(SCID)小鼠肿瘤细胞体内评价中发现:fijianolidesB可持续阻断HCT-116肿瘤细胞的生长长达28d。fijianolidesD~I在体外实验中也显示了一定的抗HCT-116和MDA-MB-435细胞系活性,其中fijianolidesE、H可以阻断细胞的有丝分裂。Chevallier等[7]从巴布亚新及利亚海绵Irciniasp.中分离得到一种有强细胞毒性的大环内脂类化合物tedanolideC及其类似物。体外试验表明该化合物对HCT-116细胞有强的细胞毒性,从细胞周期分析中发现其可使细胞分裂停留在S期。Singh等[8]从新西兰海绵Mycalehentscheli中分离得到亚微克级的大环内酯类化合物pelorusideA、B。其中pelorusideB可以促进微管的聚合,同紫杉醇一样可以阻断细胞的有丝分裂在G2期。

3肽类

在近30年中,研究人员从海绵中发现了大量结构新颖且药理活性强的肽类成分,部分化合物结构见图3。海绵肽类化合物的研究能够取得如此大的进展,主要有以下几个原因:(1)制备型高效液相色谱等分离纯化技术的快速发展与应用;(2)结构54132鉴定方面,波谱解析技术的进展,特别是2D-NMR和质谱等技术在海洋肽类结构测定方面的巨大推动作用。很多海绵环肽类成分由于N-端的封闭、β-或γ-氨基酸残基以及D-型氨基酸等新氨基酸存在,已经不能通过Edman降解来获取氨基酸序列的分析结果;(3)手性分离技术的发展,使研究人员能够用极少量的样品就可以确定某一氨基酸的绝对构型。Ebada等[9]从印度尼西亚的加里曼丹岛海绵Jaspissplendens中分离得到化合物jaspamide(6)和其两个衍生物jaspamideQ、R。通过1D和2DNMR核磁数据、质谱分析比较得到了jaspamide的准确结构。jaspamideQ、R可以抑制小鼠淋巴瘤L5178Y细胞的增殖,IC50值<0.1μg/mL。Plaza等[10]从帕劳群岛深水水域海绵Theonellaswinhoei中分离得到3种新的类似于anabaenopeptin的多肽类化合物paltolidesA、B、C。paltolidesA、B、C在细胞实验中并没有显示出抗HIV-1活性或细胞毒性,但在亚微摩尔级显示出对羧肽酶的选择性抑制。Plaza等[11]从海绵Siliquariaspongiamirabilis中分离得到6种新的环肽化合物,它们分属于celebesidesA、B、C(7~9)和theopapuamidesB、C、D。celebesidesA在单轮传染性实验中抗HIV-1活性的IC50值为(1.9±0.4)μg/mL,而在非磷酸化的模拟实验中,celebesidesA即使在50μg/mL这样的高浓度下仍无活性。theopapuamidesA、B、C对人体结肠癌细胞HCT-116显示出细胞毒性,IC50值为2.1~4.0μg/mL,并且有强的抗真菌活性。Ratnayake等[12]从巴布亚新几内亚的海绵Theonellaswinhoei中分离得到一种结构新颖的环肽theopapuamide,该化合物对CEM-TART和HCT-116细胞系均具有强的细胞毒性,半最大效应浓度(EC50)值分别为0.5、0.9μmol/L。Robinson等[13]从两种海绵Aulettasp.和Jaspissplendens中分离得到jasplakinolide和11个jasplakinolide类似物,其中有7个化合物为新化合物。jasplakinolideB显示出非常强的细胞毒性,对人体直肠结肠恶性腺瘤细胞HCT-116的IC50值<1nmol/L,但是在细胞微丝试验中,即使IC50值为80nmol/L时也没有显示出微丝破坏活性。

4生物碱类

生物碱类成分是海绵化学成分研究的一个非常重要的领域。该类成分结构独特,其中许多化合物具有抗肿瘤、降压、广谱抗菌、抗病毒等生物活性。因此药物开发人员对从中寻找治疗人类重大疾病的特效药物寄予了厚望。

4.1吲哚类生物碱Dai等[14]从海绵Smenospongiacerebriformis中分离得到2个新化合物dictazolineA(10)、B(11),以及2个已知化合物tubastrindoleA、B,活性筛选结果表明该类化合物既没有显示出明显的细胞毒性,也没有抗菌活性。

4.2β-咔啉类生物碱Inman等[15]从巴布亚新几内亚海绵Hyrtiosreticulates中分离得到1个β-咔啉生物碱hyrtiocarboline(12),该化合物可选择性抑制H522-T1肺非小细胞、MDA-MB-435黑素瘤细胞、U937淋巴癌细胞系的增殖。同时在该属海绵中还分离得到dragmacidonamineA(13)、B。

4.3异喹啉类生物碱异喹啉类生物碱具有很好的抗微生物、抗肿瘤等药理活性。ecteinascidin743(14)的开发成功使我们认识到了该类化合物具有广阔的新药开发前景[16]。Pettit等[17]从海绵Cribrochalinasp.中分离得到了3个异喹啉生物碱cribrostatin3(15)、4、5,并通过X单晶衍射确定了其立体构型。cribrostatin3、4、5显示出很强的抑制卵巢癌细胞Ovcar-3增殖的活性,其IC50值分别为0.77、2.20、0.18μmol/L,对鼠白血病细胞P388也有很好的抑制增殖的活性,IC50值为2.49、24.6、0.045μg/mL。另外,这3个化合物还具有一定的抗微生物活性。

4.4溴代酪氨酸类生物碱溴代酪氨酸类生物碱是一类生物活性广泛的成分。Carney等[18]从海绵Pasammaplysillapurpurea中分离得到bastadine(16),其对多种肿瘤细胞均表7R1=PO3H2R2=C2H58R1=PO3H2R2=C2H59R1=PO3H2R2=C2H56·1436·现出较弱的细胞毒性,在2μg/mL时,对结肠腺癌、人肺癌细胞A5499、鼠淋巴白血病细胞P388和人体肿瘤细胞HT-2有毒性;当浓度为2.5μg/mL时,其对无肿瘤CV-1猴肾细胞有一定的毒性。另外,bastadine对拓扑异构酶II(IC50值为2.0μg/mL)及脱氢叶酸盐还原酶(IC50值为2.5μg/mL)有抑制作用。Galeano等[19]从加勒比海绵Verongularigida分离得到9种bromotyrosine衍生的化合物,其中purealidinB(17)、11-hydroxyaerothionin(18)在10、5μmol/L时对利什曼原虫和疟原虫显示出选择性抗寄生虫活性。

4.5吡咯类生物碱Mao等[20]从海绵Mycalesp.中分离得到18个结构新颖的脂溶性的2,5-二取代吡咯类成分(19)。这些化合物具有一定的阻断缺氧诱导因子-1(HIF-1)活性的作用,IC50值<10μmol/L。作用机制研究表明,该类化合物在一定浓度下可通过阻断NADH-泛醌氧化还原酶(复合物I)来抑制线粒体的呼吸作用,以此来阻断HIF-1的活性。Liu等[21]通过活性追踪及色谱方法从海绵Dendrillanigra中分离得到4个结构新颖的具有分子靶向抗肿瘤活性的片罗素类成分neolamellarinA、neolamellarinB、5-hydroxyneolamellarinB和7-hydroxyneolamellarinA(20)。7-hydroxyneolamellarinA可以阻断低氧诱导下T47D细胞中的HIF-1活性,IC50值为1.9μmol/L,也可以抑制血管内皮生长因子(VEGF),使其停留在分泌蛋白水平。季红等[22]从中国南海海绵Iotrochotasp.中分离得到purpurone(21),它是该属海绵中的特征性成分和主要抗氧化活性成分,其清除DPPH自由基的IC50值为19μg/mL。

4.6其他Morgana等[23]从海绵Petrosaspongiamycofijiensis中分离得到mycothiazole及类似物8-O-acetylmycothiazole、4,19-dihydroxy-4,19-dihydromycothiazole;mycothiazole可以抑制低氧诱导下肿瘤细胞中HIF-1的生成,IC50值为1nmol/L,抑制体外低氧刺激下肿瘤血管的生成,并在体外实验中还表现出一定的神经毒性。Coello等[24]从肯尼亚的拉姆岛海绵Mycalesp.中分离得到一种环状二胺1,5-diazacyclohenicosane(22),并运用HR-ESI-MS和1D、2D-NMR等波谱学方法确定了其结构。该化合物对A549、HT29和MDA-MB-231肿瘤细胞株显示出中等强度的抑制增殖活性,IC50值分别为5.41、5.07、5.74μmol/L。Hermawan等[25]从海绵Leucettasp.中分离得到一种新型聚炔类生物碱2-(hexadec-13-ene-9,11-diynyl-methyl-amino)-ethanol(23),并通过核磁数据确定其结构。该生物碱对NBT-T2细胞具有较强的细胞毒性,IC50值为2.5μg/mL。张浩等[26]从中国南海海绵Axinellasp.中分离得到hymenialdisine(24)和debromohymenialdisine(25)。这两种化合物为吡咯烷生物碱成分,都是MAPK途径抑制剂,其中hymenialdisine可以有效抑制影响丝裂原激活的蛋白激酶1的活性,其IC50值为6nmol/L,对GSK-3激酶以及CDK家族也显示出很强的抑制活性,其IC50值为10~700nmol/L。debromohymenialdisine能够具有抑制G2期DNA损伤检查点、检查点激酶1(Chk1)和2(Chk2)的活性,IC50值分别为8、3、315μmol/L。海绵中分离得到的生物碱类成分的结构见图4。

5甾醇

甾醇是一类分子中环戊烷骈多菲甾核的化学成分,是某些激素的前体,也是生物膜的重要组成部分。甾醇是存在于任何一种生物体内的化学成分。目前在海洋生物中发现了200多种单羟基甾醇,大部分在海绵中都可以找到。另外,从海绵中还分离得到了大量的多羟基甾醇类成分,这些成分大都具有显著的生理活性。Whitson等[27]从菲律宾海绵Spheciospongiasp.中分离得到3种新的甾醇硫酸盐spheciosterolsulfatesA(26)、B、C,通过1D、2D-NMR和HR-ESI-MS等波谱方法确定了它们的结构。这些化合物都可以阻断蛋白激酶Cζ(PKCζ)的活性,IC50值分别为1.59、0.53、0.11μmol/L;在细胞实验中显示其也可以阻断NF-κB的活性,EC50值为12~64μmol/L。黄孝春等[28]从我国南海的蓖麻海绵BiemnafortisTopsent中分离得到9个甾体。这些化合物均为首次从蓖麻海绵中分离得到,其中化合物cholest-4-ene-3,6-dione(27)在淋巴细胞转移实验中对T和B淋巴细胞的增殖显示出显著的抑制活性。另外,对蛋白质酪氨酸磷酸酯酶PTP1B也有显著的抑制活性,其IC50值为1.6μmol/L。Morinaka等[29]从海绵Phorbasamaranthus中分离得到5种新的甾体咪唑类化合物amaranzoleB(28)~F和已知结构的amaranzoleA(29)。amaranzoleB~F属于含有不同羟苯咪唑基侧链的类似物。amaranzoleA、C、D中C24位的C-N被C-O键取代分别得到化合物amaranzoleB、E和F。这两类咪唑类类似物很可能是因为烯丙基的重排,即C24-N和C24-O交换,同时伴随CO2的脱去而形成的。人结肠癌细胞HTC-116细胞毒活性测试结果表明,amaranzoleA无显著毒性(IC50>32μg/mL)。Whitson等[30]从菲律宾的科隆岛海绵Lissodendoryx(Acanthodoryx)fibrosa样品中分离得到3个新的硫酸取代的甾醇的二聚体化合物fibrosterolsulfatesA、B、C,其中化合物fibrosterolsulfatesA(30)、B(31)具有较强的蛋白激酶CPKCζ抑制活性,IC50值分别为16.4、5.6μmol/L。Fattorusso等[31]从Clionanigricans中分离得到两个结构骨架异常奇特的甾体clionastatinsA(32)、B(33)。clionastatinsA、B为首次发现在自然界中存在的多卤代androstane类甾体,它们对鼠纤维肉瘤细胞WEHI164、鼠巨噬细胞RAW264-7和人单核细胞THP-1显示出中等强度的细胞毒活性,其IC50值为0.8~2.0μg/mL。Lu等[32]从昆士兰北部海床收集得到的海绵Sollasellamoretonensis中分离得到两种A环为芳香环的胆汁酸3-hydroxy-19-nor-1,3,5(10),22-cholatetraen-24-oicacid和3-hydroxy-19-nor-1,3,5(10)-cholatrien-24-oicacid。从海绵中分离得到的部分甾醇类成分的结构见图5。

6萜类

萜类化合物是一类分子结构中具有(C5H8)n单元的不饱和烷烃及其衍生物。海绵中的萜类化合物结构类型多种多样,并且具有强烈生理活性。

6.1倍半萜Xu等[33]从海绵Hyrtiossp.中分离得到一种新的倍半萜–二氢醌puupehanol(35)及已知的化合物puupehenone和chloropuupehenone。puupehenone显示出强的抗新隐球菌和念珠菌活性,最低杀真菌浓度(MFC)值分别为1.25、2.50μg/mL。

6.2二倍半萜黄孝春等[34]从南海倔海绵属海绵Dysideavillosa中分离得到5种scalarane型二倍半萜化合物。抗肿瘤活性筛选结果表明,scalaradial对HL-60、BEL-7402、MDA-MB-435等肿瘤细胞株具有显著的抑制活性,IC50值分别为3.4、5.8、4.8μmol/L。邱彦等[35]从中国南海海绵Hyrtioserectus中分离得到8个二倍半萜类化学成分,通过采用多种色谱手段进行分离纯化,应用多种波谱分析技术,并结合文献对照,对所分离到的化合物进行了结构鉴定。其结构分别为furoscalarol、12-O-deacetyl-furoscalarol、16-deacetyl-12-epi-scalarafuranacetate、isoscalarafuran-A、scalarin(37)、12-O-deacetyl-19-deoxyscalarin、12-epi-deoxoscalarin、21-hydroxy-deoxoscalarin。印度尼西亚海绵Lendenfeldiasp.的脂类提取物可以抑制低氧诱导的T47D胸腺瘤细胞中hypoxiainduciblefactor-1的活性。Dai等[36]通过色谱分离技术分离得到结构已知的homoscalarane型二倍半萜16β,22-dihydroxy-24-methyl-24-oxoscalaran-25,12β-olactone(38)、24-methyl-12,24,25-trioxoscalar-16-en-22-oicacid、12,16-dihydroxy-24-methylscalaran-25,24-olide、PHC-4andscalarherbacinA。它们不仅能够抑制低氧诱导的HIF-1的活性(IC50值为0.64~6.9μmol/L),还有抑制T47D和MDA-MDA-MB-231胸腺肿瘤细胞的增殖活性。

6.3三萜海绵中三萜的种类和数量都相对较少,主要可以分为异臭椿型、siphonella型和羊毛甾烷型3大类。Dai等[37]通过活性筛选及多种分离手段从南非海绵Axinellasp.中分离得到7个结构新颖的sodwanone三萜类化合物3-epi-sodwanoneK(39)、3-epi-sodwanoneK-3-acetate、10,11-dihydrosodwanoneB、sodwanonesT~W和结构新颖的yardenone三萜类化合物12R-hydroxyyardenone,以及结构已知的化合物sodwanoneA、sodwanoneB、yardenone。sodwanoneV可同时阻断低氧诱导和铁离子螯合剂(1,10-邻二氮杂菲)诱导下T47D胸腺肿瘤细胞中HIF-1的活性(IC50值为15μmol/L)。化合物3-epi-sodwanoneK、sodwanonesT、10,11-dihydro-sodwanoneB和sodwanoneA可以抑制T47D细胞中HIF-1的活性。化合物3-epi-sodwanoneK-3-acetate对T47D细胞有一定的细胞毒性(IC50值为22μmol/L),化合物sodwanonesV对MDA-MB-231胸腺肿瘤细胞有一定的细胞毒性(IC50值为23μmol/L)。唐生安等[38]采用多种色谱手段对中国南海海绵Jaspissp.的化学成分进行了分离纯化,应用波谱分析技术(包括IR、MS、2D-NMR等),并结合文献对照,对所分离到的化合物进行了结构鉴定,分别为异臭椿类三萜化合物stellettinA(40)~D、H、I、rhabdastrellicacidA和geoditinB。该类化合物具有很强的抗肿瘤、抗病毒等生理活性,所以极具研究开发和应用价值。

7展望

化学成分论文范文第3篇

1.1仪器岛津GCMS-QP-5000型气质联用仪。

1.2试剂乙醚、无水Na2SO4(均为AR)。

1.3药材金针菇样品由广东省蚕桑研究所提供,经该所所员刘学铭研究鉴定,为白蘑科菌类植物金针菇Flammulinavelutipes。

2方法

2.1供试品溶液的制备药材切成约1.5~2cm的段,取约80g,按照《中国药典》附录XD挥发油测定法——甲法[4]操作,加蒸馏水800ml,加热4h,收取挥发油提取器中油层和部分芳香水层,乙醚萃取,萃取液用无水Na2SO4脱水后备用。

2.2GC-MS分析

2.2.1色谱条件GC:DB-1石英毛细管色谱柱(30m×0.25mm),样口温度250℃;接口温度230℃;载气为氦气;流速1.3ml·min-1;柱压80kPa;分流比10∶1;进样量为1.0μl。升温程序:初始柱温60℃,保持1min,以10℃·min-1的速率升到280℃,保持5min。

2.2.2质谱条件EI源(70ev),350V,双灯丝;质量范围m/z40~450全程扫描,扫描间歇1.0s。检测电子倍增器电压1.4kV。检索谱库名称NIST。

3结果

依法操作,得到挥发性成分的总离子流图。扣除乙醚溶剂本底后分离得到30个组分,对相对含量较高的组分进行质谱分析,通过计算机检索并与标准谱图对照,鉴定出其中的6个组分。以扣除溶剂峰的色谱图的全部峰面积作为100%,用归一化法确定了各组分在挥发油中的相对含量。分析结果见表1,总离子流图见图1。表1金针菇挥发性成分中的化学成分及相对百分含量(略)

4讨论

从GC-MS总离子流图及GC-MS检测结果可以看出,金针菇挥发性成分以亚麻酸为主,其相对含量达到32.74%。亚麻酸具有增长智力、延缓衰老、降低血压和胆固醇、抗菌、抗炎、抗肿瘤等活性[5~7],是降血压、降血脂药物和保健品的重要原料之一,应进一步研究,加以利用。

本研究首次从金针菇挥发性成分中鉴定出亚麻酸(32.74%)、软脂酸(6.41%)、邻苯二甲酸异丁酯(5.23%)、软脂酸乙酯(4.96%)、邻苯二甲酸丁酯(3.07%)、苯乙醛(1.95%)等成分,占其挥发性成分相对含量的54.36%,但还有24个组分尚未能鉴定出其结构,可能是由于金针菇挥发性成分属首次研究,其中一些成分尚未收入NIST检索谱库,有待于今后深入研究。

【参考文献】

[1]国家中医药管理局《中华本草》编委会.中华本草,第1册[M].上海:上海科学技术出版社,1999:570.

[2]魏华,谢俊杰,吴凌伟,等.金针菇营养保健作用[J].天然产物研究与开发,1997,9(2):92.

[3]黄毅.食用菌栽培[M].北京:高等教育出版社,1993:132,258.

[4]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:57.

[5]王威,闰嘉英,王永奇.紫苏油药理活性研究进展[J].时珍国医国药,2000,11(3):283.

[6]董杰明,吴瑞华,袁昌鲁,等.γ-亚麻酸的保健作用[J].卫生研究,2003,32(3):299.

[7]Fukushima,OhhashiM,OhnoT,etc.Effectsofdietsenrichedinn-6orn-3fattyacidsoncholesterolmetabolismolderratschronicallyfedacholesterol-enricheddiet[J].Lipids,2001,36(3):261.

化学成分论文范文第4篇

【关键词】三台红花化学成分

Abstract:ObjectiveTostudythechemicalconstituentsofClerodendrumserratum(L.)Moon.MethodsThecompoundswereisolatedbychromatographyonsilicagel.TheirstructureswereelucidatedbychemicalmethodsandIR,NMR,MSspectralanalysis.ResultsSixcompoundswereidentifiedasstigmasterol(Ⅰ),Bis(2-ethylhexyl)phthalate(Ⅱ),oleanolicacid(Ⅲ),5,7,4′-trihydroxy-flavone(Ⅳ),serratuminA(Ⅴ)andacteoside(Ⅵ).ConclusionAmongtheseisolatedcompounds,compoundⅠ~ⅣandⅥareisolatedfromthisplantforthefirsttime.

Keywords:Clerodendrumserratum(L.)Moon;Chemicalconstituents

三台红花为马鞭草科大青属植物三对节Clerodendrumserratum(L.)Moon的全株,分布于贵州、广西、云南、等地。其性味苦,微辛,凉,民间用于治疗跌打损伤、骨折、风湿疼痛、肾虚腰痛等疾病[1,2]。该属植物的化学成分已报道有黄酮和三萜成分[3],近年来有报道该植物有抗菌活性[4]。贵州有丰富的三台红花资源,有必要对其化学成分及药理作用进行深入研究,充分开发和利用该资源,作者从三台红花中分离得到6个化合物,通过理化性质及波谱分析,分别鉴定为豆甾醇(Ⅰ),邻苯二甲酸二(2-乙基)己酯(Ⅱ),齐墩果酸(Ⅲ),5,7,4′-三羟基黄酮(Ⅳ),serratuminA(Ⅴ),Acteoside(Ⅵ)。其中除Ⅴ以外余下化合物为首次从该植物分离得到(化合物Ⅱ、Ⅵ结构式见图1)。

1器材

X-4型数字显微熔点测定仪(温度未校正);日本岛津红外光谱仪(SHIMADZU-IRPrestige-21);Inova-400MHz核磁共振仪(TMS为内标);HPMS5973质谱仪(美国惠普公司)。薄层用硅胶及柱层用硅胶为青岛海洋化工厂产品,凝胶柱色谱sephadexLH-20(Amershan公司产品);所用试剂均为分析纯。

三台红花药材采自贵州省凯里市郊,经贵阳医学院生药教研室龙庆德副主任鉴定,原植物为三对节Clerodendrumserratum(L.)Moon。

2方法与结果

2.1提取与分离

三台红花干燥全株(4.3kg)粉碎后,用95%乙醇提取,2h/次,共3次,适当浓缩,加水调至醇浓度70%,沉降叶绿素,滤除沉淀,回收乙醇得到浸膏452.4g。将浸膏水溶悬浮,依次用石油醚,醋酸乙酯,正丁醇进行萃取。弃去石油醚层,得到醋酸乙酯层(40.5g)和正丁醇层(180.5g)。醋酸乙酯萃取层(40.5g)进行硅胶柱色谱,用氯仿-丙酮(1∶0-0∶1)和甲醇冲洗分为6组分,其中组分2,3,4再次经过硅胶柱色谱,用石油醚-氯仿(10∶1),石油醚-丙酮(4∶1)和石油醚-醋酸乙酯(2:9),反复洗脱得到化合物Ⅰ(24mg),Ⅱ(257mg),Ⅲ(39mg)。组分5,6经过硅胶柱色谱,用石油醚-醋酸乙酯(4∶6),氯仿-甲醇(10:1)洗脱和薄层层析制备纯化,得到化合物Ⅳ(18mg),Ⅴ(56mg)。将正丁醇部分180.5g经过反复硅胶柱层析及SephadexLH-20,氯仿-甲醇(30∶1-0∶1)梯度洗脱,得到化合物Ⅵ(1.067g)。

2.2鉴定

2.2.1化合物Ⅰ

无色针晶,mp.168~170℃,1H-NMR(400MHz,CDCl3)δppm:3.50(1H,m,3-H),5.43(br.s,6-H),5.12(1H,dd,J=15.0,8.0Hz,22-H),5.00(1H,dd,J=15.0,8.0Hz,23-H),0.75-0.90(m);13C-NMR(100MHz,CDCl3)δppm:37.2(C-1),33.7(C-2),71.8(C-3),34.9(C-4),140.1(C-5),117.9(C-6),30.9(C-7),30.8(C-8),49.5(C-9),37.2(C-10),21.5(C-11),39.6(C-12),43.3(C-13),56.0(C-14),28.4(C-15),29.2(C-16),55.1(C-17),12.0(C-18),19.1(C-19),40.8(C-20),13.0(C-21),138.1(C-22),129.6(C-23),51.3(C-24),32.5(C-25),21.4(C-26),19.8(C-27),25.3(C-28),12.3(C-29).EI-MS(m/z):412[M]+,369,351,300,271,255,133,109,95,81,69。以上数据与文献[5]报道的豆甾醇一致,且TLC对照与豆甾醇标准品Rf值完全一致,因此确定该化合物为豆甾醇。

2.2.2化合物Ⅱ

无色油状物,IR(KBr)cm-1:2961,2932,2863,1730,1600,1581,1465,1382,1275,1124,1074,1040,959.1H-NMR(400MHz,CDCl3)δppm:7.55(each1H,dd,J=5.6,2.2Hz,3and6-H),7.35(each1H,m,4and5-H),4.12(each2H,dd,J=11.1,5.2Hz,1′and1′′-H),1.61(each1H,m,2′and2′′-H),1.39(each2H,m,3′and3′′-H),1.27-1.46(each2H,m,4′,4′′,5′,5′′,7′and7′′-H),0.88-0.93(each3H,m,6′,6′′,8′and8′′-H);13C-NMR(100MHz,CDCl3)δppm:134.2(C-1and2),131.0(C-3and6),127.8(C-4and5),166.7(C-a′anda′′),68.9(C-1′and1′′),38.6(C-2′and2′′),24.7(C-3′and3′′),23.1(C-4′and4′′),27.8(C-5′and5′′),14.8(C-6′and6′′),30.2(C-7′and7′′),10.6(C-8′and8′′).ESI-MS(m/z):391[M+1]+.以上数据与文献[6]报道一致,故鉴定该化合物为邻苯二甲酸二(2-乙基)己酯

2.2.3化合物Ⅲ

白色粉末,mp.280~282℃,Liebermann-Burchard反应呈阳性,IR(KBr)cm-1:3448,2924,1691,1458,1360,1029.EI-MS(m/z):456[M]+,438[M-H2O]+,410,395,248,207,189,147,133,119,105,69.1H-NMR(400MHz,CDCl3)δppm:3.20(1H,dd,J=10.0,6.0Hz,3a-H),5.25(1H,t,J=3.6Hz,12-H),2.87(1H,dd,J=14.0,4.6Hz,18-H),0.72,0.85,0.87(s,CH3),0.93(s,CH3),1.08(s,CH3)以上数据与文献[7]报道基本一致,通过TLC对照与齐墩果酸标准品Rf值完全一致,故确定该化合物为齐墩果酸。

2.2.4化合物Ⅳ

黄色粉末,mp.>300℃,盐酸-镁粉反应阳性示为黄酮类化合物。IR(KBr)cm-1:3340,2928,2610,1720,1658,1610,1515,1445,1359,1268,1244,1178,1029,829.1H-NMR(400MHz,C5D5N)δppm:6.80(1H,s,3-H),6.63(1H,d,J=2.0Hz,6-H),6.74(1H,d,J=2.0Hz,8-H),7.91(2H,d,J=8.7Hz,2′-Hand6′-H),7.25(2H,d,J=8.7Hz,3′-Hand5′-H);13C-NMR(100MHz,C5D5N)δppm:168.5(C-2),107.8(C-3),182.9(C-4),158.6(C-5),94.9(C-6),164.6(C-7),102.4(C-8),163.2(C-9),109.5(C-10),123.3(C-1′),129.2(C-2′and6′),110.9(C-3′and5′),162.5(C-4′).EI-MS(m/z):270[M]+,242,153,124,118,96,89,79,69,55.以上数据与文献[8]报道的5,7,4′-三羟基黄酮基本一致,确定该化合物为5,7,4′-三羟基黄酮。

2.2.5化合物Ⅴ

黑棕色树胶状物,[a]D20+12.41(C0.010,C5H5N).IR(KBr)cm-1:3470,3020,2946,1714,1657,1450,1425,1385,1245,1070,755.1H-NMR(400MHz,C5D5N)δppm:6.87(1H,d,J=6.1Hz,3-H),2.17(2H,m),2.15(2H,m),3.72(1H,t,J=9.2Hz,7-H),4.50(2H,m),5.02(1H,s,9a-H),5.14(1H,s,9b-H),1.82(3H,s),5.44(1H,s),5.23(1H,d,J=10.2,4′-H),3.92(1H,t,J=10.2,2.0,5′-H),4.38(2H,br,s);13C-NMR(100MHz,C5D5N)δppm:169.4(C-1),127.9(C-2),138.0(C-3),27.4(C-4),36.5(C-5),142.5(C-6),50.4(C-7),72.1(C-8),114.5(C-9),13.2(C-10),110.4(C-1′),85.7(C-2′),208.6(C-3′),73.4(C-4′),77.2(C-5′),61.3(C-6′).以上数据与文献[9]报道相关数据一致,故确定该化合物为serratuminA。

2.2.6化合物Ⅵ

白色粉末,[a]D20-76.5°(C0.45,MeOH).IR(KBr)cm-1:3400(br.),2925,1690,1590,1512,1470,1360,1250,1040,810.1H-NMR(400MHz,CD3OD)δppm:aglycone,6.75(1H,d,J=2.0Hz,2-H),6.70(1H,d,J=8.0Hz,5-H),6.44(1H,dd,J=8.0,2.0Hz,6-H),3.71(1H,m,αa-H),4.04(1H,dd,αb-H),2.72(2H,β-H);caffeoylmoiety,7.02(1H,d,J=2.0Hz,2-H),6.64(1H,d,J=8.2Hz,5-H),6.85(1H,dd,J=8.2,2.0Hz,6-H),6.28(1H,d,J=15.8Hz,a-H),7.61(1H,J=15.8Hz,β-H);glucosylgroup,4.36(1H,d,J=7.6Hz,1-H),3.26-3.96(m);rhamnosylgroup,5.14(1H,d,J=1.8Hz,1-H),1.08(3H,d,J=6.0Hz,CH3),3.26-3.94(m);13C-NMR(100MHz,CD3OD)δppm:aglycone,131.5(C-1),116.7(C-2),145.3(C-3),143.2(C-4),117.4(C-5),121.3(C-6),72.1(C-a),36.6(C-β);caffeoylmoiety,127.6(C-1),114.8(C-2),146.8(C-3),149.6(C-4),116.5(C-5),123.2(C-6),114.7(C-a),148.2(C-β),168.5(C=O);glucosylgroup,104.0(C-1),75.6(C-2),82.1(C-3),71.6(C-4),76.0(C-5),61.4(C-6);rhamnosylgroup,103.0(C-1),70.3(C-2),72.3(C-3),73.8(C-4),72.0(C-5),18.4(C-6).13C-NMR谱及DEPT谱给出29个碳信号,其中1个甲基,3个亚甲基,18个次甲基和7个季碳,根据以上数据,可知化合物分子式为C29H36O15,不饱和度为12。以上数据与文献[10]报道的苯丙素苷acteoside一致。

3讨论

目前,国内外对三台红花化学成分的研究报道较少。从本次实验以及查阅的文献来看,该植物含有黄酮、三萜和苯丙素苷类化合物,对于该实验苯丙素苷类化合物(如acteoside),因其苷元为取代苯乙基,亦称为苯乙醇苷。由于糖的种类的变化,支链糖的连接位置、顺序的不同,以及肉桂酰基和苯乙基上取代基团的变化,从而导致了该类化合物结构类型的多样性。近年研究表明,该类化合物具有很强的生物活性如抗肿瘤等,我们将进一步研究该类化合物的药理活性。

【参考文献】

[1]张小娴.中药辞海,第1卷[M].北京:中国医药科技出版社,1999:177.

[2]谭远忠,姜锦林,荣绪宝.三百棒酒剂治疗腰痛120例临床观察[J].中国民族民间医药杂志,2001,48:11.

[3]姚振生,谭绍凡,姚煜.江西大青属药用植物资源及开发利用[J].江西科学,1998,16(3):188.

[4]NarayananN,ThirugnanasambanthamP,ViswanathanS,parativeantibacterialactivitiesofclerodendrumserratumandpremnaherbacea[J].IndianJ.Pharm.Sci.,2004,66(4):453.

[5]冯长根,李琼.香青兰化学成分研究[J].中成药,2006,28(11):94.

[6]LuXH,ZhangJJ,LiangH,etal.ChemicalconstituentsofAngelicasinensis[J].J.Chin.Pharm.Sci.,2004,13(1):1.

[7]袁久荣,李全文,李智立.夏至草化学成分的研究[J].中国中药杂志,2000,25(7):421.

[8]肖海涛,李铣.半枝莲的化学成分[J].沈阳药科大学学报,2006,23(10):637.

化学成分论文范文第5篇

城市规模问题是一个长期争论的命题。我国历来强调控制大城市规模的政策(简称规模政策),但是实施的过程却往往与之背道而驰,大上海已经够大了,偏偏又划出了浦东开发区。进入90年代以来,各大城市无不进行城市规划的大调整,而其总用地规模、大体上与经济规模一样的翻一番。一些大城市的规划目标要进入特大城市行列,据说有20多个城市的规划目标是国际化大都会”。还有为数不少的中等城市规划目标要进入大城市行列。因此,规模政策”变成了一句空话。其实,推动城市规模发展的动力是当地经济发展的活力、区位优势的显现和投资环境改善的一种合力,是难以阻挡的客观现象,对于即将迈步进入小康社会的、有12亿人口的大国,尽管城市化的主渠道是走发展小城镇的道路,但在一个省区范围内有一、二个特大城市,有一批大城市和中等城市作为经济支撑点是十分必要的。当然也不能不顾客观条件,以不切实际的空想去代替科学的预测,更不能以大规划之名而行大肆炒卖土地之实,或叫做吃祖宗老本,花子孙的钱”。科学的做法应该是弹性规划,留足余地,阶段明确,分期实施,集中建设,紧凑发展。

城市化过程有起点也就有终点,不可能无限止的发展。从总体而言,当一个地区的城市化水平达到70%左右,总的城市(城镇)用地规模也就变化不大了。因此,城市规划必须从区域着眼,分析各种规模级城镇吸纳人口的可能性,同时科学预测其相应实现的阶段性。这种规划还应该与基本农田保护规划相互匹配,而不是二张皮。所以,若讲控制规模实质必须付以明确的时空观念。时间应界定在我国城镇水平接近或达到70%左右,即将进入变化曲线的第二个拐点的时间,空间则应根据可持续发展的原则,既保证我国粮食的基本自给,又使城市可以弹性发展,进行平衡和布局,寻求可以拓展的备用空间范围。最近江苏省率先在全省范围内开展了把村镇建设规划区与基本农田保护区结合起来加以划定的工作,亦称二区”划定工作,很值得各地借鉴。

布局问题。城市的布局应该有二层内涵。一是指大的地域空间内的城镇分布均衡性问题。随着地区经济发展条件优劣的变化,在全国范围内必然出现城市分布疏密差异的不均匀性。我国东部沿海省区工农业经济基础条件较好,加之较早获得改革开放的优惠政策,因此近年来城市化速度也较快,同时这些地区人口密度相对较高,因此城市分布密度和规模趋向高密也是必然的。现在在长江三角洲、珠江三角洲出现所谓都市绵延带的新课题也是必然的。而大西北地区由于地广人稀,经济发展也受一定条件制约,即使今后城市化水平较高时,城市的分布密度也还会是偏低的。因此并不存在必须在全国范围同步解决城市布局平衡的问题。如果实行大规模的移民政策和企业搬迁政策,强制调整人口分布密度,实践证明收效甚微,甚至是得不偿失的。随着发达地区本身产业层次的升级,低层次产业必然发生梯度转移,与这种转移相伴随的结果,或者可能在一定程度上缓解这种不均匀性。

就某一特定地区而言,确实存在一个城镇体系的合理布局问题。因为不同规模级的城镇发挥的能级作用是各不相同的。我们希望的是最大限度地综合发挥各级城镇的效益,因此,要寻求合理的分工,尽可能避免重复建设和效益的抵消。每个城市发展的规模,还受自然条件的制约,如水资源、土地资源——特别是基本农田保护政策的制约,环境容量的制约等。城镇与区域内可能形成的基础设施网络关系密切。如陆路、水路、航路等交通条件,通讯条件、电力供应条件等。还有城镇本身的特色产业、旅游资源、历史文化等等是否有优势条件等。所以,城镇处于特定的空间,赋予特定的发展目标,造就一个有机的、高效的、可持续发展的城镇体系,这就是加快城镇体系规划的意义所在。

城市的结构形态问题。如果讲实行城市“规模政策”难度较大,是由于很大程度上取决于客观经济推动力的作用,那么,城市的空间结构形态却是可以通过人的主观能动来加以引导的。我国很多大城市实际是在中等城市的基础上发展起来的,传统的扩展模式是以原有城市核心区为中心向周边不断辐射扩散,每隔若干年调整一次城市规划,不断的吃掉周边的郊区和农田,就像摊大饼一样,愈摊愈大。这种模式造成的后果是,

一原有城市内部的基础设施每隔若干年就要扩建或更新,马路一扩再扩,房屋拆了建、建了拆,人行道挖挖填填、填填挖挖”,旧的管线拆不了,新的管线不断挤进有限的地下空间,陷入一种低水平重复建设的循环之中。

二,由于是一张大饼,周围开发度较高、效益较好的农田菜地必然不断被蚕食,即使到远郊去复垦地也难以收到原有的效益。

三,人们成天穿梭忙禄在混凝土森林之中,与大自然愈来愈疏远。

四,城市的历史文化在不断的拆拆建建之中逐渐泯灭,依稀可辨的也只能是在重重高楼包围之中茕茕孓立的个别古建筑或宅院,既不协调也毫无情趣可言了。

五,不间断的旧城改造,容积率和密度不断地提高,致使城市不堪重负。特别是作为城市市区中心的黄金地段,被折腾的强度往往也是最高的,环境污染,交通阻塞,使人有窒息之感。