首页 > 文章中心 > 智能科学技术论文

智能科学技术论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇智能科学技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

智能科学技术论文

智能科学技术论文范文第1篇

关键词:智能科学基础;系列课程;国家级教学团队;改革;建设

在国家教育部质量工程的支持下,中南大学信息科学与工程学院对国家级精品课程人工智能[1-2]和智能控制[3]、全国双语教学示范课程人工智能和国家级智能科学基础系列课程教学团队[4]等进行持之以恒的改革与建设,取得一些成果。

“智能科学基础系列课程教学团队”的教学队伍是一支由国家级教学名师领衔[5],知识结构、梯队结构和年龄结构比较合理,具有明显的学科优势、课程优势、人才优势和教学科研优势的颇具特色与影响力的教学团队。该团队以中南大学智能科学研究中心为核心,主要承担人工智能基础、智能控制导论、机器人学、专家系统等本科基础和专业基础课程,硕士学位课程人工智能、智能控制和机器人控制技术以及留学生硕士学位课程Artificial Intelligence和博士生学位课程智能系统原理与应用的教学。

教学团队在建设过程中,注重教学改革,加大课程建设和教材建设力度,不断改进教学方法,在课程改革、教材建设、教学手段、队伍建设以及交流合作等方面取得一些进展。本文拟就教学团队的改革与建设的相关理念与实践问题加以总结,谈谈我们的见解。

1创新教学方法

教学是教师的本职和核心工作。本教学团队一直致力于教学方法与教学模式的改革与创新,虚心学习国内外先进教学经验和方法,积极探索教学新路,形成了“以趣导课、以疑启思、以法解惑、以律求知”的教学模式和教学方法[6-7]。充分激励学生的学习积极性和主动性,发挥独立思考和创新思维,多方位培养学生发现问题、分析问题和解决问题的能力。我们在教学过程中应用了课堂演示、课堂互动、课堂辩论、课后网络教学、网络实验等一系列现代化全方位的教学新模式。此外,为提高学生的动手能力和理论水平,让学生直接参与部分教师课题,理论联系实际,为毕业后的工作学习打下良好基础。具体措施如下:

1) 举行课堂讨论会,营造自由探索氛围。

为调动学生的积极性,我们在授课过程中多次开展课堂讨论会和辩论会等活动,让学生自己查阅资料,分析整理,提出自己的观点,使学生全方位地接触所学课程,培养学生的研究能力,真正实现师生互动,并鼓励学生用英语讨论。学生对有些问题展开了激烈的争论,激发了学习潜能,明确了学习目标。课程中还经常请来在科研工作中担任主要任务的教授和博士生来给学生介绍最前沿的科学动态,激发学生们对所学知识和科学研究的兴趣。在研究生教学方面,我们更进一步通过举办课程课堂学术研讨会,让学生在一年级就开始接触学科前沿,自己查阅资料和动手写科技论文,并在研讨会上宣读讨论,培养独立工作能力和从事学科前沿研究的能力,为将来的高层次研究打下基础。

2) 倡导启发式教学,培养学生学习能力。

注意采用面向问题的启发式方法进行教学,启发学生求解问题能力,强化学生的参与意识,提高他们的学习积极性。教学中还注意采用了多种交互式策略,如课堂教师提问、鼓励或指定学生用英语提问、学生就某个知识点进行主题发言后老师点评等。此外,师生通过互联网进行交互,方式包括Email、BBS和QQ谈和交换文件等。

根据学生的兴趣和创新潜力,对有专业特长的本科生,在自愿情况下,挑选2~3名参与国家级项目研究工作,进行中长期培养试点,实现本科培养过程与硕士、博士研究生培养过程的衔接。

3) 增强课程实验教学环节,筹建智能专业实验室。

智能科学基础课程的概念性较强,初学者感到比较抽象,而实验教学又是薄弱环节。因此,结合学生实际情况,我们对实践教学环节十分重视,设计了一些新的实验项目,探索新颖的实验方法。新开实验项目包括人工智能实验、智能控制实验、专家系统实验、机器人学实验、人工智能课程设计等。对相关课程的原有实验,我们也进行了一些改革,增设了个性化的实验,使得学生的实验数据和实验结果分析既有格式要求,又给学生报告自己研究的过程和结果留有空间。这些做法能够鼓励学生进行独立性研究,满足他们学习的需求。通过实验教学,学生能够理论联系实际,验证所学理论知识和概念,加深理解,充分调动了学生的学习积极性,培养了他们的创造能力。

除课堂实验外,我们还充分发挥虚拟实验的优点,设计了网络虚拟实验,让学生在课外上网练习。通过虚拟实验,学生可以了解算法的具体运行过程,调整参数和过程,并进行验证以加深对知识的理解,提高学习兴趣,从而达到教学目的。

结合科研,购进和自制部分新设备、新系统,计划建设智能专业实验室,为教学提供更多的优良实验设备。例如,已研制“中南移动一号”和“中南移动二号”自主移动机器人共7台,已购进RCB-1型教学机器人20套等。

教学团队教师还指导学生参加全国大学生“飞思卡尔”杯智能汽车竞赛活动、大学生创新性实验计划及创新教育计划项目等,取得优秀成果。

2推进课程改革

教学改革是课程建设和学科发展的生命线。我们把国家级精品课程和全国双语教学示范课程放在优先建设的位置,并以它们带动其他课程建设,完善系列课程建设,同时新办了智能科学与技术专业。

2.1搞好精品课程建设,改进双语示范课程教学,稳步推进系列课程建设

本团队着力搞好已有的2门国家级精品课程、1门全国双语教学示范课程,更新精品课程网站,丰富课程内容。为了及时反映上述课程中相关科学技术的最新进展,我们调整了教学体系和教学内容,修订了教学大纲,并对教学内容进一步优化和更新,极大充实了各课程教学内容。同时,通过校际教学活动和网上资源共享对精品课程、双语教学示范课程进行交流和推广,起到较好的辐射作用[8-9]。

为加强精品课程建设,完善和拓展课程体系,在总结现有精品课程的建设经验的基础上,又建成省级精品课程1门,校级精品课程1门。

为提高学生的专业英语水平和学习兴趣,使得学生能够开拓眼界,追踪国际前沿科学研究,本团队长期对双语教学进行研究和实践。除改进人工智能双语教学示范课程外,团队承担的其他课程,如智能控制、机器人学、专家系统、数据结构等也实行了双语教学,并为该课程引进英文辅助教材。例如,对人工智能课程,我们先后采用Nilsson和Russell等编著的国外影响较大的英文原版教材作为主要教学参考书[10-11],供学生学习参考。在双语教学中,一般以汉语讲授为主,英语为辅,并对一些关键词同时用汉语和英语表示。对部分章节或某个专题,采用纯英语教学或以英语为主汉语为辅的教学。对PPT课件的编写分为纯汉语、纯英语和英汉混合几种方式。英语教学比例要根据教学内容和学生英语水平而定,其检验标准是学生的接受程度与学习效果,根据这一点来适时调整双语教学中英语对汉语的比例。

通过教改实践,我们承担的智能科学基础课程逐步形成为具有明显特色的课程体系。我们讲授的课程从智能科学的基础课程到专业基础课程,再到专业实践课程,形成了配置合理、特色鲜明、循序渐进、优势互补、协调发展的智能科学与技术学科从基础到应用的系列课程体系。

2.2新办智能科学与技术专业

智能科学与技术是当代科技发展的前沿学科和重要组成部分,其人才需求日益增加,超出了目前高校的培养能力[12]。我校的智能科学与技术学科方向经过近20年的发展,已形成了具有自身优势和特点的学科,在国内具有一定的知名度和优势。为了促进智能科学与技术学科的发展,经过多年积极准备,我们于2009年申报了智能科学与技术专业并获得教育部批准。通过向兄弟学校学习调研,了解该专业人才需求、专业建设规划,设定适应培养目标的教学计划与课程设置方案。虽然我们开办“智能科学与技术”专业较晚,但我们从2002年开始,就一直关注和积极参与国内智能科学的学科的讨论与新专业筹备工作[13]。

我校于2009年申报获准,在自动化专业增设了智能科学与技术专业方向,目前已招收2届学生共84人。我们为选读智能科学与技术本科专业方向的每个学生选定指导老师。每个学生都可以参加指导老师的课题,指导老师也可以利用自己的学识、经验和责任心来更好地管理呵护学生。这一做法取得明显效果,不仅受到同学们的普遍欢迎,也得到了学校的肯定。我们还多次召开师生见面会并通过指导老师走访宿舍,了解每个人的情况。为了消除代沟,努力融入同学当中,学习熟悉他们的语境和思维想法。我们的目标就是不让一个学生掉队。

创建与建设智能科学与技术新专业,将为智能科学基础系列课程教学建设提供一个更加宽广的平台,并对计算机、自动化和电子信息等学科的专业建设和课程建设提供一个新的增长点。我们将以智能科学与技术专业建设为契机,虚心学习兄弟学校的专业建设的做法和经验,进一步规范智能科学与技术的基础课程教学,让智能科学基础课程教学建设登上一个新的台阶。

3加强教材建设

教材是教学的重要工具和资源,其水平直接影响教学效果和教学质量。在教学过程中,我们与时俱进,对教学内容不断优化与更新,精益求精地编写反映学科发展的教材[14]。

我们对原有编写出版的教材进行修订,反映新世纪学科发展水平和发展趋向,以适应教改需要。把这些最新内容用于教学,使学生了解到国际前沿动态和本学科的最新成果。

以相关系列课程为平台,注重教材配套,服务因材施教,着眼长远教材建设。仅2007年以来我们已出版的相关教材及专著如下:

《智能控制原理与应用》,国家级精品课程配套教材,2007;《智能控制导论》,国家级精品课程配套教材,2007;《未知环境中移动机器人导航控制理论与方法》,2008;《机器人学》,第二版,国家级教学团队配套教材,2009;《机器人学基础》,国家级教学团队配套教材,2009;《人工智能及其应用》,第四版,国家级“十一五”规划教材,国家精品课程配套教材,2010;《人工智能基础》,第二版,国家级“十一五”规划教材,国家精品课程配套教材,2010;《移动机器人协同理论与技术》,2010。

4优化队伍结构

师资队伍建设是团队建设的源头,没有一流的教师队伍就没有一流的教学团队。在师资队伍建设上,我们一直采取引进优秀人才和在职培养相结合的做法。对于人才的引进主要通过办专业和办学科点等方式吸引人才,还通过创造教学和科研条件,稳定教师队伍,解决个人的发展问题。

采取有效措施,提高主讲教师的学术积累和教学水平。一是教研组教师,特别是中青年教师积极参加重要科研项目,提高学术水平。二是派中青年教师赴国外研修访问,了解和学习发达国家同类课程的先进教学经验、相关课程设置情况与发展趋势,将国外教学思想引入课程教学。

教学始终是教师的第一要务,为了提高青年教师的教学素质,我们实施并完善了一系列管理措施和制度。

1) 设立名师工作室,实现名师资源共享形成多元化的带教制度,安排高年资的教师对年轻教师进行传、帮、带,可以有业务方面的指导,也可以有认识方面的交流。通过老教师对年轻教师全方位的指导,使老教师的教学理念和经验得以继承,加快了年轻教师的成长。

2) 有计划地安排年轻教师虚心旁听有经验教师的讲课。通过听课,不仅使年轻教师进一步掌握课程的内容,更重要的是使年轻教师学到了老教师的教学方法和经验,对其今后从事教学工作起到了积极的指导作用。

3) 对于第一次上课和第一次上某门新课程的年轻教师,团队都要在课前组织他们试讲。试讲前,安排老教师进行指导,传授教学经验。试讲时,由团队的教师参加听课并对其进行讲评,肯定其优点,指出其不足,帮助青年教师尽快掌握课程的重点,找到更合适的讲授方法。此外,我们还备课,统一基本教案,帮助年轻教师成长。

近两年来本教学团队获得的主要教学奖励就有徐特立教育奖、茅以升教学专项奖等。

5扩大交流合作

我们在做好自身团队建设的同时,增进与全国相关高校和教学团队的交流,学习兄弟团队的建设经验,在课程示范、教材推广、网络资源辐射等方面发挥积极作用。我们还开展校内合作,联合不同院系进行教学和精品课程的申报与建设,在校内推广改革成果;发表了一系列教改论文;发起筹备《全国智能科学技术课程教学研讨会》;邀请企业界科技精英做本科生就业指导相关报告。

1) 增进校际交流,发挥辐射作用。

我们经常以讲座报告形式在许多兄弟院校进行教学与教改交流。例如,最近一年来就应邀先后到上海交通大学、同济大学、东华大学、东南大学、国防科技大学、中国矿业大学、北京科技大学、清华大学等校就智能科学技术课程的教学、教改和建设问题作专题报告,在兄弟院校师生中引起热烈反响。已有数以百计的高等院校采用我们编著的教材和网络课程进行教学,国内已有众多的从事人工智能课程和智能控制课程教学的教师,来信来函索取我们开发的课程教案、课程演示和网络课程相关资料等,我们一直尽力地搞好推广和服务工作。

2) 撰写课程改革论文,进行国内外交流。

本团队成员仅近一年多来,就在中国教育开放资源网、中国人工智能学会13届年会、计算机教育、高等理科教育、计算机与现代化等会议及刊物上发表10篇教改论文,在国内外进行交流,起到介绍情况,交流信息和经验的积极作用。

3) 筹备全国相关课程教学研讨会。

为了更好地交流经验,扩大影响和辐射作用,我们发起并联合中国人工智能学会教育工作委员会、中国计算机学会人工智能与模式识别专业委员会、中国人工智能学会智能机器人专业委员会、中国自动化学会智能自动化专业委员会、中国人工智能学会人工智能基础专业委员会,筹备召开了首届《全国智能科学技术课程教学研讨会》[15]。围绕各个学校在智能科学与技术本科专业的课程改革与建设、课程和专业教学计划制定和未来发展设想等方面进行交流研讨。通过交流研讨,认真学习兄弟学校的经验,并尽可能汇报我们的经验。我们相信,在与会全体代表的共同努力下,本次课程教学研讨会一定能够取得积极的成果。

注:本研究获得教育部国家级精品课程人工智能(2003年)和智能控制(2006年)、全国双语教学示范课程人工智能(2007年)、国家级智能科学基础系列课程教学团队(2008年)等项目支持。

参考文献:

[1] 中国高等教育学会. 中国高校国家精品课程,工学类,(上册),2003-2007[M]. 北京:北京大学出版社,2008:433-436.

[2] CAI Zixing,LIU Xingbao,LU Weiwei,et al. Comparative Study on Artificial Intelligence Courses Between CSU and MIT[EB/OL]. [2010-5-1]. CORE (China Open Resources for Education),.cn/.

[3] 中国高等教育学会. 中国高校国家精品课程,工学类,(上册),2003-2007[M]. 北京:北京大学出版社,2008:426-429.

[4] 国家教育部和财政部关于立项建设国家级教学团队、国家级精品课程、全国双语教学示范课程的通知[EB/OL]. [2010-5-1]. http///转高等教育司.

[5] 中华人民共和国教育部高等教育司. 名师风采,第一届高等学校教学名师奖获奖教师集锦[M]. 北京:地质出版社,2006: 152-153.

[6] 李广川. 丹心育桃李,妙手谱春秋[M]//名师颂.北京:教育科学出版社,2007:397-401.

[7] 及立平. 笃定平和:访国家级教学名师蔡自兴[M]//春风化雨:中南大学教师风采. 长沙:中南大学出版社,2006:119.

[8] 蔡自兴,肖晓明,蒙祖强,等. 树立精品意识,搞好人工智能课程建设[J]. 中国大学教学,2004(1):28-29.

[9] 陈爱斌,肖晓明,魏世勇,等. 智能控制的学科发展与学科教育[J]. 现代大学教育,2006(3):102-105.

[10] Nilsson N J. Artificial Intelligence:A New Synthesis[M]. New York:Morgan Kaufmann Publishers,1998.

[11] Russell S, Norvig P. Artificial Intelligence:A Modern Approach[M]. London:Prentice Hall Publishers,2005.

[12] 王万森,钟义信,韩力群,等. 我国智能科学技术教育的现状与思考[J]. 计算机教育,2009(11):10-14.

[13] 蔡自兴,贺汉根. 智能科学发展的若干问题[C]//中国自动化领域发展战略高层学术研讨会论文集. 自动化学报,2002, 28(增刊1):142-150.

[14] 蔡自兴,谢斌,魏世勇,等.《机器人学》教材建设的体会[C]//2009年全国人工智能大会(CAAI-13). 北京:北京邮电大学出版社,2009:252-255.

[15] 2010年全国智能科学技术课程教学研讨会征文通知[J]. 计算机科学,2010,37(6):封3.

Construction of State Teaching Group of Series Course for Intelligence Science Basis in CSU

CAI Zi-xing, CHEN Bai-fan, LIU Li-jue

(Institute of Information Science and Engineering, Central South University, Changsha 410083, China)

智能科学技术论文范文第2篇

关键词:本科生导师制;智能科学与技术;复合型人才;角色定位;质量监控

文章编号:1672-5913(2013)07-0038-04

中图分类号:G642

本科生导师制为本科生配备学业导师,从而进行因人施教、教与育结合的人才培养,是一项创新型的本科生培养模式。作为一种高效的、个性化的人才培养制度,其执行效果不如想象中的那么好,特别是在我国实现高等教育大众化的进程中,大学生在校人数逐年增多,而大学教师相对较少,使得众多的本科生得不到教师的直接指导和帮助,从而使本科生导师制的积极意义不能被完全发挥。因此,我们有必要研究一种切实可行的本科生导师制模式,以适应新形势下高等教育对培养优秀人才的需要。

1 本科生导师制与复合型人才培养的内涵

1.1本科生导师制及其发展现状

本科生导师制(Tutorial System)是在师生双向选择的前提下,由爱岗敬业、品德高尚、知识渊博的教师担任本科生的指导教师,对学生的学习、生活、心理等方面进行个别指导的教学制度。

本科生导师制最早在15世纪由牛津大学发明并实行。美国的普林斯顿大学于1902年引进了导师制。1998年,美国研究型大学本科教育委员会在“重建本科生教育:美国研究型大学发展蓝图”报告中建议每个本科学生都要有一名导师,这种形式应该在所有研究型大学中推广开来。

就我国目前的大学教学现状来看,导师制在传统上只用于硕士和博士研究生层次。而在本科生层次上,只有少数院校的培优班采用了导师制。例如,北京大学的元培计划实验班、北京邮电大学的叶培大学院等,在低年级实行基础课程教育,构建合理的学科知识结构;在高年级由学业导师因人施教,进行个性化的专业教育及素质教育。由于传统教学管理方式及师生资源分配模式的影响,导师制未能充分发挥其积极意义,实施效果不是十分理想。

事实上,从中学进入大学是一个跨越。在这个跨越中,中学的学习方法、生活环境等都与大学中的不同。同时,4年的大学正是大学生思维方法、学习能力、身心素质等方面趋于成熟及稳定的阶段。由此可见,在大学生本科层次施行导师制,对于丰富学生的素质教育、促使教书与育人有机结合、做到因材施教,显得十分重要。

1.2智能科学与技术专业特色及复合型人才培养

智能科学与技术是一门涉及数学、生命科学、认知科学、信息科学、控制科学、计算机科学、哲学等学科的交叉和边缘学科,是信息科学技术的核心、前沿和制高点。我国新型经济的发展需要大量的高层次智能科技人才,而智能科学与技术学科为复合型人才的培养提供了天然的良好环境。具体说来,智能科学与技术专业复合型人才的内涵包含以下几点。

1)基础扎实,知识运用能力强。学生能通过深入学习,掌握智能科学与技术专业的基础理论与技术,同时具备领域相关的多学科知识,包括计算机、自动化、信息、通信等,学会交叉融合,贯通多学科综合知识,从而使本专业的毕业生有能力在未来知识激增的信息社会中适应知识更新和淘汰的多种挑战。

2)学习能力及创新能力强。学生通过参与专题讨论、课程或学术报告、参加学科竞赛等活动来调整、优化知识结构,提高采用智能科学技术与理论解决问题的能力,增强自我学习的意识和创新能力,能够面对新的快速发展的智能科学与技术领域,能够适应层出不穷的新环境、新问题,不断更新知识体系。

3)综合素质高。学生应当具备很强的社会及集体责任感,崇尚“真、善、美”,敢于坚持真理,具有理想与抱负,具备自信、乐观、积极向上的心理状态以及良好的面对困难与挫折的心理素质。

基于此,我们将智能科学与技术专业复合型人才的培养目标设定为:培养具有科学创新精神和实践能力、通晓世界知识、具有踏实的工作作风和良好的语言文化交流能力的高质量人才。学生仅掌握简单的课本知识,远远无法达到智能科学与技术人才的要求,因此亟需探索一种能够增强师生在培养过程中的深度互动与沟通的模式。本科生导师制为学生提供包括学业、思想、生活等在内的全面指导,顺应了这种变化和要求。

北京邮电大学智能科学与技术专业于2006年开始正式招生,至今已完成了近6年的教学实践,积累了很多宝贵的经验和教训。如何将自身经验与学科发展的趋势和方向相结合,深入地研究复合型人才培养模式,有助于高层次人才的建设,对人才培养活动具有调控、规范和导向作用。

2 智能科学与技术专业本科生导师制模式探索

我们以北京邮电大学智能科学与技术专业为试点,探索一种高效、可行的本科生导师制实施方案,为培养高素质、复合型人才提供真实可信的参考依据,从而有助于在未来形成适用范围更广、更具指导意义的本科生导师制可操作规范和导向。

2.1实施对象

该模式实施对象为智能科学与技术专业2年级到4年级的全部学生,共约90人。这与此前国内高校注重本科学生精英的选择与培养模式不同,而是全面覆盖所有学生,挖掘所有学生可能的兴趣和潜力,其培养过程更加大众化、更具有公平性。本科生导师目前限定为负责本专业教学的智能科学与技术中心(以下简称中心)的教师,包括在职13人(其中教授2人、副教授6人、讲师5人)及兼职教授6人。除专业导师外,为便于观察和搜集导师制实施过程中的问题,还应配备1名观察员,随时了解观察实施情况并给予建议。

2.2实施办法

本模式采用学生和教师双向选择的原则,结合成导师与学生组合。导师每人每年级指导2~4名学生。根据教师的具体情况,也可以实行以一位教师为主、多位教师为辅的指导模式。学生可以随时根据自己的情况,在不影响初始组合的情况下,自愿申请得到多位教师的指导。导师组定期通过讲座、专题报告、谈心交流等形式与学生交流,丰富学生的第二课堂。考虑到本科生相对于研究生知识视野和思维模式尚不是十分成熟,还不能一次性成功选择到自己最满意的导师或方向,本次试点研究首次提出导师轮换机制以及多教师辅助的模式,充分利用了各位导师的多样性,采取每年轮换的方法,让每位本科学生在校期间至少可以得到3位不同导师的指导,从而能够帮助学生拓宽视野,更好地找到自己的兴趣和创新意愿。

2.3本科导师角色定位

本科导师的角色应该与学院和班级辅导员相辅相成,完全可以涵盖某些专业课教师对部分学生所起到的课程和学业引导作用,而且较之更加全面和完善。导师不仅是学生学习上的导师,还是学生的伙伴和引路人。导师通过观察、交流,了解学生在学习及生活中的表现,主要在以下方面发挥积极的帮助与激励作用。

1)课程教育:重点指导学生的课程学习,在低年级侧重实行通识教育和大学基础教育,帮助学生制订学习计划,了解专业方向及其应用领域;在高年级针对个体在兴趣、特长等方面的不同,实施个性化的专业素质教育,帮助学生构建合理的知识结构。

2)学术能力培养:重点在于激发学生兴趣,帮助学生挖掘他们的学术潜力和独立从事研究工作的能力;指导学生参加学科竞赛、从事合适的科研活动、撰写学术论文和毕业论文等;注重学生的个性发展,增强创新意识、提高创新能力和创新素质。

3)发展规划指导:针对学生个体给予具体指导,帮助学生认清自我、完善自我,协助学生初步制订个人中长期发展规划并督促落实,尽可能为学生提供就业及考研信息。

同时,还要通过导师的言传身教,帮助学生树立崇高的人生理想,提升学生正确处理社会关系的能力,使其在学业和为人方面变得更加成熟。

上述内容充分体现了本次导师制试点研究工作与实施过程的精细与全面,进一步发展了已有的类似培养计划的主要特点,同时将各方面的工作重点刻画得更加清晰,对本科生导师的工作具有更具体的指导作用。

2.4学生与导师的沟通机制

本科生导师制的实施范围包括课程学习和学术指导,以及将学生的思想、素质与知识整合,帮助学生全面健康发展,使之更好地适应社会工作和生活的需要。实施方式包括导师和学生个别沟通,以及电话、电子邮件、走访等多种形式。

导师必须了解学生的学业进程、心理动态,并对每位学生至少每学期做一次书面评价。根据课程性质、不同学习阶段、学生的独立性等情况,决定见面讨论的频率,但不少于每月一次。

导师以严谨认真的方式对待学生呈交的研究成果,并为其进步与继续发展给予建议与帮助,提供富有启发性的反馈意见,使学生知道他们在做什么。更为重要的是可以使学生根据其理想与现状,明确需要在哪些方面加以改进。

此外,本次试点研究工作首次引入了“主题班会”形式的学生与导师集体沟通的机制,这也是本文工作的创新点之一。针对学生共同关心的一些主题,导师与学生一起展开广泛的讨论,听取各种不同的观点和声音,有效地激发学生学习、创新、生活等多方面的热情,这从会后学生的反馈意见中得到充分的印证。同时,导师们也很认同这样的形式,普遍认为有助于解决个人指导学生过程中所遇到的一些难题。

2.5导师制的监督和评估机制

在人才培养过程中,智能科学与技术中心定期通过教师例会和观察员对本科导师的工作情况进行经常性的检查,特别是关于培养计划的落实情况、教师日常的指导情况、学生的学习状况(包括学习兴趣、学习能力、学习负担等)及生活状况,发现问题及时解决。

我们通过组织学生座谈会,了解学生对于导师制的意见和建议,改进导师制的实施办法;同时,也了解班主任或辅导员、学院学生党委等对于导师制的意见。在我们收集的意见中,班主任或辅导员、学院学生党委等都对我们的工作给予了高度的赞扬和充分的肯定;而学生们可能对各种细节提出自己的观点或问题,但有一点是高度统一的,就是所有学生都很支持本科生导师制的实施,认为与同届的其他专业学生相比,自己能接受这样的培养方式是极其自豪的。

毕业生就业后,我们分别对他们和用人单位进行调查,收集各种反馈意见,并做出相应的评估、调整或改进。目前实施时间较短,上述计划尚未得到实践的经验。

3 智能科学与技术专业本科生导师制的实施与思考

自2011年9月启动智能科学与技术专业本科生导师制以来,导师与学生之间保持至少每月一次的沟通频率。除此之外,导师组还针对学生反映的普遍问题,例如课程与课外活动的时间平衡、学业与未来规划、学风与考风等,召开集体班会,进行更广泛和深入的交流。在坚持导师与学生日常沟通的同时,我们也十分注意加强导师与导师之间的日常交流,充分利用每周一次的教师例会时间,每次都辟出一段时间沟通讨论近期导师指导学生的心得或问题,尤其是观察员充分发挥了“旁观者清”的作用,经常对各种细节提出直率而宝贵的意见和建议,对于各位导师统一思想认识和提高工作方法起到了积极有效的作用。

通过导师对学生的全程指导,我们发现有很好的效果。首先,导师能动态地掌握学生的学习、兴趣、心理等方面的变动情况,并及时对学生加以引导,从而更有效地促进学生成长和发展;其次,学生在学习或生活中遇到困惑时,能直接得到导师的引导或帮助,使个性培养与专业教育的内容和形式更加丰富,有利于提高学生的积极性,增进学生的自我认识。

但是,在导师制的实施过程中我们也看到了一些问题,还需要进行深入研究并解决。

1)导师的职责难以明确。

本科生阶段的导师制侧重由导师引导学生自主学习、自我发现与成长,使学生树立正确的“三观”与高尚的道德情操,并培养学生独立思考和解决问题的能力。而导师在指导学生时,容易出现2个片面的方式:一是传统的以课本为基础的“传授式”,指导本科生的课程学习;二是以科研项目为中心的“任务式”,管理本科生的科研工作。前者忽略了培养学生的学习兴趣和自觉性,后者则忽略了本科生与硕士生、博士生在知识结构、独立科研能力、培养目的等方面的差异。在这个过程中如果缺少合理的引导和帮助,学生很容易产生消极的挫败感。

2)教与育的尺度难以调节。

导师制所遵循的教育理念应是培养智慧与理性全面发展的人才,提高学生探究知识和独立思考的能力。同时,本科生导师制也强调人文关怀,不仅传授知识和技能,在面对学生的各种问题时,包括考风问题、个人感情问题、与人处事问题等,导师还要以自己良好的师德和品格影响学生,做到既教书又育人。

智能科学技术论文范文第3篇

钟老师,您已经研究了几十年的信息科学。《信息科学原理》一书已经重印到第五版。您能否给读者们讲一讲,信息科学是什么?有什么特点?

钟义信:简要地说,信息科学就是研究信息及其运动规律的科学。具体地说,信息科学是“以信息为研究对象、以信息运动规律为研究内容、以信息科学方法为研究指南、以扩展人的智力能力(它是信息能力的有机整体)为研究目标”的一门新兴横断科学。

武健:从概念、定义来看,信息科学与计算机科学并不完全一样。因为信息科学是以信息运动规律为研究内容的,研究内容既不专指计算,也不是专指计算机。从这个角度思考,信息科技课程与计算机课程的内容将有很大的区别。这对于一线信息技术教师来说,了解信息科学就更加重要了。您能否给我们讲一讲信息科学的核心内容是什么?它对于整个社会能发挥什么作用?

钟义信:信息科学的概念(定义)也可以通过它的基本模型来表现(见下页图1)。

这个模型也可以简化为以下更直观一些的模型(见下页图2)。

考察信息科学的定义和它的基本模型(以及简化模型)可以知道:

信息科学最大的特点是研究“信息”(而不是物质和能量)。

它的核心内容就是研究“信息运动规律,即信息-知识-智能转换的规律”。

世间一切物质的运动都会产生信息。人类正是通过研究信息,才能认识世界(包括自然和社会)。因此,信息科学的研究目标,就是“扩展人类的智力能力,也就是扩展人类认识世界和改造世界的能力”。这就是信息科学对于整个社会的作用所在。

武健:我记得您曾经讲过信息分成主客体关系,那么我们理解基本模型与简化模型也是一步步地发展出来的。从简到繁是否可以这样理解?(如下页图3)

从信息定义的基本模型中,还可以看到信息科学在特别关注着策略,尤其是人的策略。从这个角度来看,信息科技课程中会有着一批以前没有的教学内容。技术课中的学习计算机操作的教学目标是学会操作。而信息科技框架下的课程则需要以应用技术,挖掘其中的问题解决策略,了解信息科学概念与原理为主要目标了。

每个学科都会有一批本学科的科学家,像牛顿对于物理,哈勃对于天文,欧姆对于电学……信息科学是一门新兴的横断科学,那么您认为这门学科中有代表性的信息科学家有哪些人?

钟义信:横断科学,是在概括和综合多门学科的基础上形成的一类学科。它不是以客观世界的某种物质结构及其运动形式为研究对象,而是从许多物质结构及其运动形式中抽出某一特定的共同方面作为研究对象,其研究对象横贯多个领域甚至一切领域。所以,信息科学家、信息技术专家会有自己的领域,但会在共同的信息方向有突出贡献。

如香农(Shannon)在1948年发表了论文“通信的数学理论”,奠定了“通信信息论”;维纳(Wiener)在1948年出版了著作《控制论》,奠定了随机控制理论,贝塔朗菲(Bertalanffy)在20世纪60年代出版了《一般系统论》,建立了系统论。西蒙(Simon)对功能模拟的人工智能理论做出了奠基性的贡献,费根鲍姆(Feigenbaum)是人工智能专家系统的开拓者,闵斯基(Minsky)对人工神经网络和认知理论有突出的贡献,查德(Zadeh)创建了支持信息科学研究的模糊集合和模糊逻辑, 柯尔莫戈洛夫(Kolmogorov)对信息理论和控制理论都有杰出贡献,等等。这些人都在信息科学领域有过不同方面的重要建树,都可以称之为信息科学家。

由于我国只有各种信息技术的学术机构而没有专门的信息科学的学术机构,很少纯粹信息科学方面的交流机会,因此很难确定谁是信息科学家。不过,由于我国信息化建设的迅猛发展,确实出现了不少在信息科学技术方面做出重要贡献的人员。

武健:信息科学是一门新兴的学科。既然是“新兴”,那么它一定在发展,甚至是快速发展。您认为信息科学主要研究的方向与进展如何?现阶段出现了什么样的困难?

钟义信:相对而言,信息科学是一门非常年轻的学科。因此,它的主要研究方向应当是信息科学的基础理论,研究信息的基本运动规律。其中包括信息理论、知识理论、智能理论,特别是信息、知识、智能之间的转换理论(一体化理论)。

经过半个多世纪的研究和探索,我们在这些基础研究方面取得了可喜的进展,具体表现在:建立了超越与拓展传统信息论的“全信息理论”,发现了“知识的生态学规律”,创建了“机制模拟的人工智能理论”,实现了“结构主义、功能主义、行为主义人工智能理论”的统一,还创建了“基础意识―情感―理智三位一体的高等人工智能”,特别值得提到的是,发现了意义重大的“信息转换与智能创生定律”。

在取得这些进展的过程中,发现物质科学(代表性科学是物理科学)的科学观(还原论)和方法论(分而治之)不适用于信息科学(和智能科学)研究,总结并提出了适用于信息科学研究的新的科学观和方法论。

面临的主要困难是:由于信息科学和智能理论的研究对象多数是非常复杂的问题,因此现有的数学工具不敷应用,特别是其中的逻辑理论还相当单薄,不足以支持这些复杂问题的创新研究。这是当前信息科学发展中的“瓶颈”。

武健:信息科学关系到的方法论可以分成信息科学研究的方法论和信息技术应用的方法论。根据这样的观点,在信息科技课程中,需要以完整的信息综合活动展开教学,而不适合片面地学习信息获取、信息处理某一个片段。因为信息科学方法论更强调从整体到局部,不建议从信息运动中的某一细节去理解典型的信息过程。

信息科技的方法论分成理论研究层级和技术应用层级。您认为在信息科学研究中,常用的方法与手段有哪些?

钟义信:与物理科学研究方法最大的不同,是不再采用“分而治之,各个击破”这种流行了数百年之久而且一直行之有效的传统科学研究方法论,而是改为运用全新的“信息转换与智能创生”方法论。

原因是:“分而治之”方法论在把系统分解为若干子系统的时候,必定会丢失各个子系统之间相互联系相互作用的信息,而这些信息正是复杂信息系统的生命线。就像研究人脑思维奥秘的时候,如果采用“分而治之”的方法把人脑分解为若干部分进行研究,即使把每个部分都研究好了,也无法揭示人脑思维的奥秘,因为分解之后的这些人脑部分根本无法复原为活的人脑。

“信息转换与智能创生”方法认为,信息系统是一个生态系统:由信息生成知识进而生成智能(策略),从而按照策略解决问题。它强调信息、知识、智能(策略)之间的相互联系和相互作用,强调信息、知识、智能(策略)之间的生态联系,根据外部世界客体的信息和认识主体的目的,可以通过学习创生解决问题的智能策略。

至于具体的研究工具,基本也是硬件试验和软件仿真(包括虚拟现实)。

武健:在信息科学体系中,您认为这个领域中最基本的概念和原理是什么?

钟义信:信息科学最基本的概念包括信息、知识、智能。人们往往把信息科学技术仅仅局限在“信息”范畴,这其实是对信息科学技术严重的。经过这样的信息科学技术的作用,就大大被削弱了。

信息科学最基本的原理则是:信息―知识―智能转换原理。正确运用这个基本原理,人们就可以在具体的环境中求出解决问题、而且保证实现“主客双赢”的智能策略,从而满意地解决问题。

武健:一般人都知道,现代科学与技术有着不可分割的密切关系。一方面,很多人还不知道什么是信息科学,另一方面,还不能想象信息科学与信息技术之间有什么关系。您认为两者有什么样的区别与联系?

钟义信:信息科学与信息技术是一对孪生的概念,信息科学是信息技术的理论基础,信息技术是信息科学理论的具体实现。两者相互联系,相互促进。

武健:很多人认为信息技术就是计算机技术加上网络技术,信息技术就是能够用计算机上网。这部分人觉得,信息技术就是信息技术,不是什么“关于信息的技术”。关于这些观点您是怎么看的?从信息科学的角度来看信息技术应当包含什么内容?

钟义信:只要对照信息科学的简化模型,就可以很明确地回答:信息技术不等于计算机技术和网络技术,因为这个说法很不全面,忽略了传感技术,忽略了控制技术,特别是忽略了人工智能技术。

实际上,在以往,关于“信息技术”的概念,确实曾经流行过很多各不相同的说法。其中比较出名的包括:

1C说――认为“信息技术就是Communication技术”,理由是:信息论就是通信论;也有一些人认为“信息技术就是Computer技术”,理由是:计算机就是用来处理信息的技术。

2C说――认为“信息技术就是Computer+ Communication技术”。

3C说――认为“信息技术就是Computer+ Communication + Control技术”。

但是,对照信息科学的简化模型就可以明白,这些说法都属于“以偏概全”的认识,都是不全面的认识。

从信息科学的简化模型可以非常清晰地了解到具体的信息技术内容,包括实现信息获取功能的“传感技术”,实现信息传递和策略传递功能的“通信技术”,实现信息预处理功能的“计算机技术和存储技术”,实现信息认知功能和智能决策功能的“人工智能技术”,实现策略执行功能的“控制技术”,以及实现反馈学习和策略优化的“信息系统自组织技术”等。

武健:您认为未来20~30年,信息科技最有意思的发展可能是什么?

钟义信:根据“科学技术拟人律”,未来20~30年,信息科学技术最有意义的发展将是人工智能技术。

对照信息科学简化模型就知道,扩展感觉器官功能的传感技术、扩展传导神经系统的通信技术、扩展思维器官预处理功能的计算机技术以及扩展效应器官功能的控制技术都是相对而言的技术,扩展思维器官认知功能和决策功能的人工智能技术才是核心技术。目前信息技术已经得到长足的发展(未来当然还会继续发展),这就为核心信息技术的发展打好了基础,也产生了需求。因此,未来20~30年间,人工智能科学技术必然成为发展的主导潮流。

武健:您认为学习信息科技的知识对于中小学生来说有何意义?有没有哪一部分内容需要在现阶段特别强调的?

钟义信:中小学生绝对应当学习基本的信息科学知识,掌握信息技术的基本能力。当今的时代是信息时代,不学习信息科学技术,就会成为落伍的一代,被淘汰的一代。这是非常危险的。

当然,中小学生学习信息科学技术应当遵循“循序渐进”的认知规律和“兴趣引导”的教学方法。事实上,信息科学技术本身的发展就是循序渐进的,如图4所示。

武健:您对中小学的信息科学与技术课程(不等同于计算机课程)有何期望与要求?

钟义信:根据“信息科学技术”的定义,“计算机科学技术”只是“信息科学技术”的一个组成部分。部分不等于全体,部分不能代替全体。所以,不能用“计算机”课程代替“信息科学技术”课程。

中小学的信息科学技术教育是一个极其重要的问题,又是一个十分复杂的问题。我们不能就事论事孤立地讨论中小学的信息科学技术课程,而应当把它作为“国家信息科学技术教育系统工程”来统筹考虑:小学阶段学什么?中学阶段学什么?大学阶段学什么?硕士研究生阶段学什么?博士研究生阶段学什么?等等。

按照“信息科学技术教育系统工程”的思路,中小学生应当通过“学习最为基础的信息科学概念”和“掌握最为基本的信息技术能力”形成“最浅层(然而又是准确的)的信息科学技术观念和浓厚的兴趣”。其中,“观念和兴趣”是最重要的,而“概念和能力”则是支撑这种“观念和兴趣”的支柱。

武健:钟老师,感谢您的指导。您认为2010年后,学科基本研究才逐步成熟起来。一门学科从成熟到走进基础教育往往需要十多年的工作,而信息科技课程的发展将是长期的。希望您以后能够经常关注基础教育中的信息科技课程发展,给我们更多指导。

附录:

智能科学技术论文范文第4篇

论文摘要:介绍了桂林电子科技大学在计算机网络课程教学改革方面的具体措施和方法。结合实际情况提出坚持“教师为主导、学生为主体,因材施教”的教学模式;采用“发现式”互动教学方法,引进多媒体教学,网络教学;重视实践环节,以网络技术构建网络课程教与学的互动平台,理论与工程应用并重。 

一、教学目标定位 

“计算机网络”课程是桂林电子科技大学计算机科学技术、网络工程、信息安全等专业的核心专业技术基础课之一,也是电子信息工程、自动化、智能科学等专业的专业限选课或任选课之一,通过该课程的教学使学生懂得网络的总体框架结构,能建立网络的概念,重点是使学生掌握网络基本原理和核心协议,并熟悉最常用的网络服务和网络工具,了解网络技术的新发展。 

教学目标的正确定位是教学改革行之有效的前提和保障,即明确教学是为培养什么类型人才而服务。计算机网络的教学目标大致可分为三个层次:[1]网络基本应用、网络管理员或网络工程师、网络相关科学研究。其中,网络基本应用目标要求掌握计算机网络的基础知识,在生活、学习和工作中可熟练利用各种网络资源,如浏览新闻、收发电子邮件和查找资料等,适合于电子信息工程、自动化、智能科学等非计算机专业;网络管理员或网络工程师目标要求掌握网络集成、网络管理、网络安全、网络编程等知识和技能,并对其中一项或若干项有所专长,可以胜任如网络规划设计、网络管理与维护、架设各种服务器和网络软硬件产品的开发等工作,适合于计算机科学与技术、网络工程、信息安全等专业;网络相关科学研究要求具备深厚的网络及相关学科的理论基础,今后主要从事科研和深层次开发工作,适合网络相关的研究生。本文主要研究第二层次的改革与实践。 

二、“计算机网络”课程教学中存在的问题 

传统的“计算机网络”课程教学模式不利于提高学生的学习兴趣,对新形势下的培养目标有一定的制约作用,主要问题表现在几个方面。[2] 

1.教材知识结构理论性偏强,教学内容偏离实际应用 

目前国内的大多数计算机网络教材都是以osi/rm为索引,分层次展开,全方位介绍各个网络层次的工作原理、相关协议、运行机制等,知识点较多且内容抽象,学生理解起来比较困难,难以提高学习兴趣。osi体系结构是一个较为全面的网络层次结构,但是在实际中并没有得到广泛应用,实际中的网络案例又不完全符合osi体系结构,这往往会使学生对网络结构感到困惑。 

2.教学模式落后 

最初的教学模式是以教师为中心,通过黑板板书和语言描述向学生传授网络知识。这种方式有利于教师组织和监控整个教学过程,便于系统地传授知识,但不利于学生认知主体作用的发挥,不利于学生自主学习能力的培养。对于网络协议这类较为抽象的理论知识,单纯的板书和描述难以帮助学生对学习内容进行深入理解。 

3.实践环节薄弱 

一方面,计算机网络实验室的建设相对薄弱,实验设备落后,与实际应用的网络设备具有较大差距,且数量不足,无法保证每名学生具有较好的实验环境。另一方面,实验课程的内容过于流程化和简单化,没有突出对学生创新能力的培养。 

4.忽视工程应用 

课程的综合性、设计性实验缺乏与工程应用相结合的内容,与之相适应的软件建设滞后,难以将工程应用融入到课堂。 

三、“计算机网络”课程的改革与实践 

针对以上不足,我们主要在五个方面进行了改革和实践。 

1.教材选用与内容优化 

不同的专业有不同的教学目标,必须选择相对应的教材。对桂林电子科技大学计算机科学与技术、网络工程、信息安全等专业而言,“计算机网络”课程是专业技术基础课之一,除了要掌握一定的基本网络理论和核心协议,还要求掌握更高一等的技术和技能。经过课题组成员比较,选择谢希仁教授主编的《计算机网络》;在外文教材和双语授课时选择andrew s.t.的《computer network》英文教材。 

对电子信息工程、自动化、智能科学等专业而言,“计算机网络”课程是专业限选课或任选课之一,侧重于网络基本理论与应用。经过课题组成员比较,拟选择乔正洪的《计算机网络技术与应用》。 

针对教材内容太多、偏重于介绍理论、欠缺实践环节、与工程联系不够紧密等问题,在讲授的时候略去了部分内容,比如安全方面的内容(另外一门课讲授),增加了一些实践相关的内容,如winsock编程、路由器基本操作等。在教学内容上力求推陈出新,引进和精选当代网络技术新发展及新应用作为网络基础的指向,在不断更新教学内容的同时优化课程体系,将基础知识与现代技术紧密结合,培养学生的创新意识和发展意愿。 

2.坚持“教师为主导、学生为主体,因材施教”的教学模式 

(1)贯彻基础课的教学必须和科学技术同步发展的教学观念,[3]建立终身教育的观念。科学发展与基础课程的教学改革相结合,以学科建设推动基础课程教学的改革。基础课程教学的改革又支撑新型专业建设与学科的发展,推进人才培养目标的实现。 

更新教学内容的同时优化课程体系,将基础知识与现代通信技术紧密结合,将专业基础知识传授、能力培养和素质教育融为一体,实施知识结构合理、基础扎实、适应能力强、有创新精神和实践能力为基本内容的人才培养模式。 

(2)教师为主导,学生为主体,因材施教。改进课堂的教学方法,以人为本,因材施教,充分发挥学生的潜力,提高教师的授课质量。教师努力研究课程的基本知识点以及这些知识点之间的相互关系,处理好信号、数据、信息之间的关系和传输特点;研究重点理论和实践知识点的教学方法,使教学内容更贴近学生,引导和帮助学生掌握基础知识和基本技能。 

教师采用“发现式”互动教学方法,通过精心设计教学过程,采用“提出问题+要求解决方法”、“引导思考+适当提示”、“找出学生思路正确部分引申”、“扩充认识解决问题的条件”等方式,把握课程的进度,活跃课堂气氛,开发学生的潜能,使学生在获得知识的同时能从应用的角度思考网络通信中的问题和解决问题的思路,使学生建立科学的思维方法与创新意识。 

3.采用先进的教学手段 

(1)把多媒体技术引入课堂教学中,使理论和协议架构分析变得生动、形象、具体,同时解决了传统教学中课堂画图既费时效率又低的问题。再辅以现场概要线图等,让学生在学习具体知识时心中有网络体系大框架,便于知识定位。 

(2)建立网络教学环境。目前桂林电子科技大学已有四个相关网上资源供学生使用:“计算机网络”课程网站,使师生在任何时候都可以利用网络资源学习;网络辅助教学平台(blackboard):向学生提供资源下载口、作业提交口、讨论区等;思科网络技术培训网站(http://cisco.netacad.net)作为思科网络技术培训基地之一,目前为部分优秀学生开放思科培训网站,让学生参与全球交流,直接接触最新网络技术;教师ftp:作为系统冗余,从教师ftp中学生也可以下载课件等。

4.加大实践教学环节,重视实践能力培养,培养学生的创新意识和创新能力 

计算机网络是理论和实践结合非常紧密的一门课程。目前国内外计算机网络相关教材一般都偏重于理论的讲授,而忽视了动手实践方面的引导,为此应实验单独设课,独立考试。实验课学时占总学时的25%,并要求课外1∶1配套。实验内容根据学生的层次、学生的兴趣分为基础层、提高层、综合应用层三个层次。同时,补充了教材上没有的相关内容,如利用套接字进行网络通信编程,培养实践动手能力。而且把原来以教师为中心的实验教学变成了以学生为中心,积极开展开放性实验,延长实验室开放时间,增加大量的设计性或综合性实验,为学生近一步提高动手能力奠定了良好的基础,培养学生的创新意识和创新能力。 

5.在课程教学的各环节中大力开发和应用网络技术,以网络技术构建网络课程教与学的互动平台,理论与工程应用并重 

计算机网络是一门理论和实验实践相结合的专业基础课程,教师在讲授的过程中贯彻教学理念,引用网络发展历史背景故事和实际应用具体案例来帮助学生理解理论知识,引导学生形成提出问题、分析问题和解决问题的思维模式,培养学生的创新思维能力和综合专业素养。教学采用理论结合实践教学法,通过实验课程开设、实际网络系统参观和课程设计三个渠道将相关网络技术的应用充分融合到课程教学之中,使同学们接触到真实的网络世界,提高实践运用能力,理论与工程应用并重。 

实验课程通过综合设计性实验,充分发挥学生的想象力和创新能力,是使学生获得对网络的工作原理与操作方法的感性认识,加深理解、验证、巩固课堂教学内容的最佳途径。 

实际网络系统参观是在课程讲授过程中安排并带领学生参观校园网、学院局域网和企业的网络系统,使学生对计算机网络有感性认识。 

课程设计要求学生独立设计一个网络应用系统或者分析企业已有计算机网络系统中存在的问题,提出改进方案,为企业设计满足实际需求的计算机网络系统,使学生理论联系实际,加深对计算机网络课堂教学内容的理解,培养学生灵活运用所学知识的能力。 

 四、结束语 

本课程已建立课堂教学、实验教学、网络教学和工程应用交叉融合的教学结构,各教学环节相辅相成、互相交融,实现“加强基础,注重实践,因材施教,促进创新”的目标,形成了立体化的教学模式。通过这样的互动平台,使教与学进入互动沟通的最佳状态。不仅使教师实现了教懂、教准、教活,学生达到了乐学、善学、活学,而且增强了学生日常使用网络的能力,培养了学生的创新精神和实践能力。 

 

参考文献: 

[1]王绍强.应用型本科计算机网络教学改革的研究与实践[j].计算机教育,2009,(18):16-18. 

智能科学技术论文范文第5篇

一、引言

随着市场经济的深入发展,中国高等教育事业也获得了长足的进步。高校办学自主权逐渐放开,招生规模(包括本科和研究生)不断扩大,办学模式和形式也呈现多样化的趋势,高校发展中的每一步都成为人们议论的焦点和热点,中国高等教育的发展从“精英教育”阶段进入到“大众化”阶段。随着高校招生规模的扩大,传统的办学模式和办学思路逐渐开始出现许多问题,如何保证在质量和数量之间取得一个双赢的局面等许多问题成为了中国高等教育管理部门需要着重考虑和解决的难题。在这样的背景下,教育部于2003年启动了“高等学校本科教学质量与教学改革工程”(简称“质量工程”)[1],从课程建设、人才队伍建设、专业建设、学科建设的角度进一步推动本科教学工作,切实提高本科教育质量。

专业建设在高等教育发展过程中具有十分重要的地位,专业建设水平直接体现了学校的整体办学思路和发展水平,加强专业建设是提高办学水平,优化教学质量的关键。985工程是中国政府为建设若干所世界一流大学和一批国际知名的高水平研究型大学而实施的高等教育建设工程[2]。经过14年的发展,985工程稳步推进,使一批学科专业达到或接近国际一流水平。对985高校专业建设成果进行评价,有利于弄清国内较高水平本科院校的具体情况,对政府、高校制定更科学的发展路线和改革方针具有重要的现实意义。

二、评价方法设计

(一)评价对象

985工程共实施两期,第一期确定了33所高校[3],第二期增补6所高校[4]。其中,国防科学技术大学为军事院校,因涉及众多保密资料,通过公开数据源获得的国防科学技术大学的信息无法反应真实信息,因此,这里所指的985工程高校仅包括除国防科学技术大学之外的38所高校。在专业的确定上,按照教育部高等教育司2011年9月最新公布的《普通高等学校本科专业目录(修订二稿)》,共涉及12个学科门类(军事学门类除外),2012-2013年中国大学及学科专业评价的对象是新目录中94个专业类的428种专业。根据数据处理后得到985高校2011-2012年有招生的专业共315种2 436个专业。38所985高校的专业评价是2012-2013年全国本科院校专业评价的一部分,评价结果所反映的是985高校开设专业在全国所有本科院校开设专业中的相对情况。

(二)指标体系

为反映高等院校专业建设水平和实力,中国科学评价研究中心建立的中国大学本科教育专业评价指标体系包括4个一级指标、21个二级指标,具体指标见表1,主要从师资建设、学生状况、教学和科研水平等方面进行考核。在权重的设置上,教学和科研水平最能够反映专业的建设水平,且本科阶段更应该重教学,因此教学水平在所有指标中权重最大。与此同时,考虑到研究生教育和科研工作与本科教育密切相关,相辅相成,从不同角度反映了学校的人才培养质量和水平,所以表1中也包括了部分研究生阶段教育的主要指标,如博导数、学位点、重点学科、百篇优秀博士论文等。同样,也考虑了自然科学

(三)数据来源与处理

评价数据来源的公开性是保证结果客观的重要基础,此次评价原始数据主要来自四个渠道,包括有关政府部门的统计数据资料(汇编、年鉴、报表等),国内外有关数据库(SCI、EI、CNKI等),有关政府部门、高校网站,国家有关刊物、书籍、报纸、内部资料等。因此,原始数据均可重新验证。关于数据处理,首先对原始数据进行了全面筛查,处理了异常的数据,有的与其他的数据来源进行核对,有的则与相关学校联系进行核实。

参照指标体系可以发现,某些反映专业基本条件的指标主要考虑往年发展的存量数据,如师资队伍的建设是一个长期的过程,并不能以当年度师资方面的增加情况反映专业实力,因此该指标均以存量数据为评价依据;在科研水平中的众多数据则更侧重反映该专业当年度的发展状况,如权威、核心期刊论文数,获准专利数等指标则主要采用增量数据。对于具体的某些指标数据,如教育部人文社科奖隶属科研获奖中,但该奖项并非每年都评选,因此选择距评价开展年度最近的一次结果为评价依据。

(四)评价结果的表示

单纯用排名表示评价结果,过于强调评价对象的先后顺序,不利于整体分析。因此,2012-2013年本科专业评价采用5星、4星、3星、2星和0星衡量高校学科专业质量的水平。在获取原始数据后,通过评价指标及其权重获取该专业在2012-2013年大学评价中的得分,然后按照从高到低进行排名。5星表示重点优势专业,指排名前5%的专业;4星表示优势专业,指排名5%~20%的专业;3星表示良好专业,指排名20%~50%的专业;2星表示一般专业,指排名50%~80%的专业;0星表示排名80%~100%的专业。从总体看,专业星级的比例呈纺锤形分布。

三、985高校专业优秀率与星级分布

(一)专业优秀率分析

专业优秀率是指某个学校所有专业中在全国范围内具有优势的专业占该校年度招生专业总数的比例,反映到专业评价结果中,即某个学校5星与4星专业数量占该校专业总数的比例。专业优秀率能够反映一个学校学科专业建设是否重点突出、特色鲜明以及学科专业建设的结构和水平。需要注意的是,专业优秀率计算一般以全国开设数量在5个高校以上的专业为基础进行计算,某些特定的开设数量极少的专业恰恰说明了开设院校在这个专业上的特色和实力,但为了使各高校之间的专业优秀率更具可比性,在计算时剔除了全国招生学校在5个(不包括5个)以下的专业。

表2 列出985高校的专业优秀率,其中排名为985高校内部专业优秀率排名,即使是排在985高校最后的中央民族大学的专业优秀率也有32.43%,远高于全国各高校平均专业优秀率20%的水平,但985高校开设专业的总平均优秀率为62.35%,仅20所高校超过了平均水平,说明各个高校间的专业建设成效仍存在明显差异。结合2012-2013年大学综合竞争力排名[6],可以发现综合竞争力的排名与专业优秀率的排名不完全正相关,按照大学综合排名和专业优秀率的关系,大致分为以下四类:(1)排名高,专业优秀率也高。如北京大学、清华大学、南京大学、武汉大学、浙江大学、哈尔滨工业大学等。这些学校不仅综合实力强,而且学科专业建设也均衡发展,学科建设整体水平高。(2)排名高,专业优秀率较低。如上海交通大学、吉林大学、四川大学等,表明这类学校建设重综合、全面,但特色、重点相对不够突出,优势学科不够,学科建设整体水平有待提高。(3)排名较低,但专业优秀率高。如中国人民大学、中国科学技术大学、大连理工大学、西北工业大学和天津大学等,这些学校往往设置的专业数量不多,总体排名也不在最前列,但却少而精,尤其是中国科学技术大学只有36个专业,但优秀率达到88.24%,排名第三。(4)排名低,专业优秀率也低。如湖南大学、中国海洋大学、西北农林科技大学、兰州大学和中央民族大学等。这类学校要想进一步发展成为一流大学,必须做出更大的努力,需要从软、硬件方面共同协调发展。

利用对应分析得到的38所高校星级分布对应分析二维散点图如图1所示,从中可以看出985高校间在学校整体的专业结构布局上的相似性。左下角的象限为5星专业显示度比较高的学校,尤其是北京大学、浙江大学、清华大学、中国人民大学等高校距离代表5星的节点最近,组成了一个圈子,说明这几个学校全国最优专业的数量很高,占该校专业总数的比例也高。左上角的象限中,各学校距离5星、4星数量占全部的比例基本相同,如南京大学、中国科学技术大学、西安交通大学等高校在图中与表示5星的点和4星的点距离均差不多,这部分高校主要是优秀率较高,专业建设成果较突出的学校。

右上角象限中多为4星专业占学校全部专业比例较高的学校,其中武汉大学与华中科技大学的表现比较特别,两个学校专业建设成果较类似,其专业优秀率主要是靠4星专业数量做出的贡献,这两个学校在专业建设上已经取得了良好的成果,但拔尖专业明显偏少。代表0星的点和2星的点集中在右侧两个象限之间,两个节点之间的距离很近,如果从中心点开始画向量,指向0星的向量和2星的向量几乎在同一直线上,根据对应分析中余弦定理,两个属性点向量之间的夹角越小,则两个点之间越相似,0星和2星在38所985高校中的表现具有十分类型的特征,围绕其周围的节点所代表的学校如北京理工大学等均存在专业短板。右下角象限中距离3星节点的学校如中国农业大学、中国海洋大学等专业建设成果相对不明显。

(三) 0星专业分析

从常规看,985高校代表了中国高等院校最高水平,其专业实力从理论上讲应该较少或极少有0星专业,因此对0星专业做特别分析。从评价结果看,出现0星专业主要有3种情况。

一是专业实力确实较差。比较普遍的情况是偏理工性质的大学开设的人文社科类专业和偏文科性质的大学开设的理工类专业。

二是全国范围内开设数量较少的专业。有些专业开设的学校数量非常少,本身就代表其特色,虽然被评为0星,但不能够认为该校这个专业较差。如北京理工大学、湖南大学被评为0星的飞行器动力工程专业,仅有12所高校开设;中国海洋大学评为0星的地球信息科学与技术专业,仅有8所高校开设;湖南大学被评为0星的智能科学与技术专业,仅有18所高校开设。

三是开设时间较短的专业。有些专业属于传统性较强学科下的新专业,设立时间不长,仍处于发展阶段,故而也出现被评为0星的情况。如北京理工大学的材料化学专业,该校材料学为国防特色学科,材料科学与工程为一级学科北京市重点学科,但从所属的同类专业看其特色主要在工程方面,材料化学是2003年最新设立,是同类学科下最年轻的专业,其实力较弱;又如中国海洋大学的船舶与海洋工程专业隶属该校海洋工程系,该系其他专业均比较优秀,船舶与海洋工程为2003年新设,为该系最年轻的专业,实力较弱,故而也被评为0星。

四、专业层面评价结果分析

从专业开设学校的数量看,并根据985高校和非985高校的性质,可以将所有的专业归纳为4种类型,即全国大部分高校均开设的专业、全国少部分高校开设的专业、985高校特有专业和985高校没有开设的专业。

(一)全国大部分高校均开设的专业

全国大部分高校都开设的专业,对办学条件、师资队伍要求一般,专业具有普遍性和普及性,此类专业是所属学科的主要且重要组成部分。一般主要为本科教育中的公共课或者热门专业,主要如英语(639)、计算机科学与技术(579)、市场营销(467)、法学(458)、数学与应用数学(441)、国际经济与贸易(433)、汉语言文学(426)、信息管理与信息系统(400)等50个200所以上学校开设的专业。图2以英语专业为例,统计了985高校的排名与星级分布情况。在全国639所开设英语专业的高校中,38所985高校的英语专业基本属3星以上专业,大多数类似专业同样遵循这样的特点。市场营销、国际经济与贸易等人文社科类专业在理工科院校同样表现十分突出,一方面是由于这类专业属于热门专业,容易受到更多关注,另一方面也充分说明理工科院校的学科建设正朝着综合全面方向发展。而文法类高校则在计算机科学与技术、数学与应用数学等全国大部分高校均有开设的理工类型专业上表现出了明显弱势,明显表现出学科间差异,即使在受到国家重点支持的985高校群体中仍难以避免。

(二)全国少数高校开设的专业

全国少数高校开设的专业,一般具有以下特点:开设该专业的学校数量从数10到200不等,专业应用性很强,专业建设两级分化较为严重。这类高校的情况相对特殊,以测绘工程为例(如表4所示),全国共有89所高校开设了该专业,包含6所985高校,除重庆大学外,其他5所高校均为优势学科。通过对这类专业考察后发现,这些专业大多数进入门槛相对较高,对硬件的要求一般较高,985高校的此类小规模专业往往拥有一批具有国际先进水平的学术带头人或优秀学术骨干;通过以人才队伍建设为基础,机制创新为指针,985高校在这类专业上一般均制定了打造国际一流、国内领先的专业建设目标,因此优势比较明显。

(三)985高校特有专业

表5列出了985高校特有专业的名单。这类专业比较明显的特征是专业化程度极强,多数属于学科类下细分程度很高的专业,由于专业性质与学校支持政策和办学资源的限制,一些专业仅985高校才有开设,比较突出的有天文学类专业,在最新的专业目录中,属于学科大类,下属天文学一个专业,全国仅有3所高校开设;北京大学东语系开设多门专业,全国并无其他院校有相应的师资,因此也在全国独一无二;985开设的这类专业大多数是学校具有一定历史积累的传统优势,代表了学校的专业特色。

(四)985高校未开设的专业评价分析

除以上三类专业,还有一些国内部分高校开设但985高校没有开设的专业(不包括国家控制类专业和学校自设特色专业)。开设这些专业的学校一般较少,多数专业只有10个以内的学校开设,且这些专业颇具专业性和特有性;也存在一些专业有较多学校开设而985高校没有开设,如投资学专业国内有26所高校开设,运动科学专业全国有25所高校开设,建筑电气与智能专业全国有23所高校开设等。专业建设中一个重要的标准即全面性,对于这些专业,985高校如果有相关或相近专业,则需对这类专业引起充分重视,在充分论证的基础上,开设这类专业有助于985高校形成专业集群特色。

五、结语