首页 > 文章中心 > 数字集成电路设计

数字集成电路设计

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数字集成电路设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

数字集成电路设计

数字集成电路设计范文第1篇

1数字集成电路设计实验课程教学现状

数字集成电路设计课程为黑龙江大学集成电路专业学生本科阶段的必修课。传统的数字集成电路设计实验教学课程可使学生加深对所学理论知识的理解,熟练软件使用过程,增强动手操作能力,但还存在如下三方面问题:A.实验教学方法有待改进。在传统的数字集成电路设计实验教学中,上课前,学生基本不了解实验仪器和软件,也不清楚实验课的内容。课程开始后,教师需要把相应理论知识、仪器操作和软件使用等内容一一讲授清楚,在有限学时内,更多的讲授时间就压缩了学生动手实验和探索更深入问题的时间,不利于学生实践能力的培养。B.实验课程内容相对简单。目前,黑龙江大学数字集成电路设计实验课程的内容较为基础,基本单元电路的设计仿真占比较大,开放性实验项目不多。实验内容主要涉及比较器、编码器和加法器等基础门电路的仿真,学生使用ModelSim软件通过Verilog语言编写相应电路的网表,然后编写对应testbench文件并进行仿真验证所写电路网表功能的正确性。这类基础实验有利于学生熟练掌握编程语言和软件使用,并加深对基本单元电路的理解,但内容相对简单,对于学生设计综合能力的进一步培养还有所欠缺。C.实验课程考核机制单一。传统数字集成电路设计实验课程的考核成绩只做为其理论课程总成绩的一小部分。黑龙江大学的数字集成电路设计实验课程的考核形式一般为学生每次实验课程中是否完成了几项规定的实验内容,所有实验内容完成后所得成绩的叠加即为该门实验课程的总成绩。由于实验内容具有固定性和同一性,成绩较好的学生快速完成实验内容后难于进一步进行探索研究,这种简单的考核方式无法很好反映出学生掌握实验技能的梯度,也不利于学生发挥创新型思维进行设计实验,阻碍了学生的实践能力发展。

2基于翻转课堂教学模式的改革探索

A.课堂翻转,提升学生学习质量。在翻转课堂教学模式中,教师应由专注“如何教”转向研究学生“如何学”。在数字集成电路设计实验教学中,教师可根据本次课程的实验内容,在课程开始前一周将相应的学习知识点、软件操作、硬件搭建及要解决的问题以电子文档或视频的形式放于共享平台上。学生需要在共享平台上进行课前学习,学习期间应查阅相关参考资料,将简单的知识点尽量通过自学解决,将重点难点问题标记出来,在课堂中与教师或学习小组交流、讨论,并最终解决问题[2]。这种翻转课堂教学模式改变了传统课堂的教学方式,强化了学生主动学习的意识,提高了课堂时间利用率,可提升学生的学习质量[3]。B.实验课程内容和模式改革。实验课程对学生基础知识掌握情况的检验和设计能力的培养至关重要,因此,应打破传统实验课程辅助理论课程开设的现状,将数字集成电路设计课程实验部分作为一门拥有独立学分的必修课。实验内容应具有基础性、多样性、创新性和完整性,确保学生在做好基础性实验后,切实提升创新性实验能力。实验内容中应增加综合电路设计题目所占比重。目前,实验室拥有SEED-XDTKFPGA教学实验平台,拥有视频显示、LED显示、数码管等验证设备,可开设多种实验教学项目。学生可利用该平成编写源代码、综合、编写测试文件、功能仿真、约束设计、布局布线后仿真、生成FPGA下载代码文件、FPGA下载程序和实验平台验证结果全流程。应充分利用SEED-XDTKFPGA教学实验平台的强大功能,将该平台贯穿数字集成电路设计实验课程始终,如:可增加数码管显示、LED跑马灯、频率计等基础实验项目,独立电路设计项目也应利用该平台进行开展。这对于提高学生的数字电路设计能力、动手实践能力和掌握FPGA开发过程具有重要意义。C.完善实验课程考核机制,注重学生创新能力培养。应建立课前学习考核制度,督促学生做好课前学习。翻转课堂教学模式若要在数字集成电路设计实验教学中达到好的效果,就必须建立适当的课前考核机制。可将学生课前学习时长和通过课前学习掌握基础知识的程度作为一项课程考核指标,考核分数计入最终实验课程成绩内(占实验总成绩的20%),进而督促学生必须做好课前学习。数字集成电路设计课程实验部分的主要任务是培养学生的数字集成电路设计能力,因此,要注重实验中创新性设计能力的考核。以往实验总成绩由每次实验得分累加获得,改革后,实验总成绩应为课前学习考核得分(20%)、每次完成实验内容考核得分(20%)和完成一个独立电路设计实验考核得分(60%)三项累加获得。独立电路设计实验需要完成电路建模、电路网表编写、testbench编写和在FPGA实验箱进行功能验证等工作。教师可根据学生在设计过程中每一步骤的完成情况给出准确的评价分数,这样可以较为细致地检验学生对基础知识和电路设计能力的掌握情况,而且独立电路设计实验分值占比较高,如果不能完成电路设计,则该门课程无法通过考核,可通过这种方式调动学生的积极性,加强学生的紧迫感,提高学生的学习质量。

3结语

通过对翻转课堂教学模式的研究,结合黑龙江大学数字集成电路设计实验教学课程现状,探索了基于翻转课堂的实验教学方法。该方法根据目前实验教学课程存在的问题,提出了课堂翻转、完善课程考核机制和实验内容改革的方法,可以增强师生之间的交互性,增加学生动手实验的时间,有助于教师在课堂上更好地掌握每一位学生真正的学习状态和学习效果,从而有效提升学生的数字集成电路设计能力、创新思维能力和实践能力。

参考文献:

[1]石端银,张晓鹏,李文宇.“翻转课堂”在数学实验课教学中的应用[J].实验室研究与探索,2016,35(01):176-178.

[2]王伟.基于翻转课堂的《土木工程材料》实验教学研究[J].四川建材,2018,44(08):245-246.

数字集成电路设计范文第2篇

一、完善课程设置

合理设置课程体系和课程内容,是提高人才培养水平的关键。2009年,黑龙江大学集成电路设计与集成系统专业制定了该专业的课程体系,经过这几年教学工作的开展与施行,发现仍存在一些不足之处,于是在2014年黑龙江大学开展的教学计划及人才培养方案的修订工作中进行了再次的改进和完善。首先,在课程设置与课时安排上进行适当的调整。对于部分课程调整其所开设的学期及课时安排,不同课程中内容重叠的章节或相关性较大的部分可进行适当删减或融合。如:在原来的课程设置中,“数字集成电路设计”课程与“CMOS模拟集成电路设计”课程分别设置在教学第六学期和第七学期。由于“数字集成电路设计”课程中是以门级电路设计为基础,所以学生在未进行模拟集成电路课程的讲授前,对于各种元器件的基本结构、特性、工作原理、基本参数、工艺和版图等这些基础知识都是一知半解,因此对门级电路的整体设计分析难以理解和掌握,会影响学生的学习热情及教学效果;而若在“数字集成电路设计”课程中添加入相关知识,与“CMOS模拟集成电路设计”课程中本应有的器件、工艺和版图的相关内容又会出现重叠。在调整后的课程设置中,先开设了“CMOS模拟集成电路设计”课程,将器件、工艺和版图的基础知识首先进行讲授,令学生对于各器件在电路中所起的作用及特性能够熟悉了解;在随后“数字集成电路设计”课程的学习中,对于应用各器件进行电路构建时会更加得心应手,达到较好的教学效果,同时也避免了内容重复讲授的问题。此外,这样的课程设置安排,将有利于本科生在“大学生集成电路设计大赛”的参与和竞争,避免因学期课程的设置问题,导致学生还未深入地接触学习相关的理论课程及实验课程,从而出现理论知识储备不足、实践操作不熟练等种种情况,致使影响到参赛过程的发挥。调整课程安排后,本科生通过秋季学期中基础理论知识的学习以及实践操作能力的锻炼,在参与春季大赛时能够确保拥有足够的理论知识和实践经验,具有较充足的参赛准备,通过团队合作较好地完成大赛的各项环节,赢取良好赛果,为学校、学院及个人争得荣誉,收获宝贵的参赛经验。其次,适当降低理论课难度,将教学重点放在掌握集成电路设计及分析方法上,而不是让复杂烦琐的公式推导削弱了学生的学习兴趣,让学生能够较好地理解和掌握集成电路设计的方法和流程。第三,在选择优秀国内外教材进行教学的同时,从科研前沿、新兴产品及技术、行业需求等方面提取教学内容,激发学生的学习兴趣,实时了解前沿动态,使学生能够积极主动地学习。

二、变革教学理念与模式

CDIO(构思、设计、实施、运行)理念,是目前国内外各高校开始提出的新型教育理念,将工程创新教育结合课程教学模式,旨在缓解高校人才培养模式与企业人才需求的冲突。在实际教学过程中,结合黑龙江大学集成电路设计与集成系统专业的“数模混合集成电路设计”课程,基于“逐次逼近型模数转换器(SARADC)”的课题项目开展教学内容,将各个独立分散的模拟或数字电路模块的设计进行有机串联,使之成为具有连贯性的课题实践内容。在教学周期内,以学生为主体、教师为引导的教学模式,令学生“做中学”,让学生有目的地将理论切实应用于实践中,完成“构思、设计、实践和验证”的整体流程,使学生系统地掌握集成电路全定制方案的具体实施方法及设计操作流程。同时,通过以小组为单位,进行团队合作,在组内或组间的相互交流与学习中,相互促进提高,培养学生善于思考、发现问题及解决问题的能力,锻炼学生团队工作的能力及创新能力,并可以通过对新结构、新想法进行不同程度奖励加分的形式以激发学生的积极性和创新力。此外,该门课程的考核形式也不同,不是通过以往的试卷笔试形式来确定学生得分,而是以毕业论文的撰写要求,令每一组提供一份完整翔实的数据报告,锻炼学生撰写论文、数据整理的能力,为接下来学期中的毕业设计打下一定的基础。而对于教师的要求,不仅要有扎实的理论基础还应具备丰富的实践经验,因此青年教师要不断提高专业能力和素质。可通过参加研讨会、专业讲座、企业实习、项目合作等途径分享和学习实践经验,同时还应定期邀请校外专家或专业工程师进行集成电路方面的专业座谈、学术交流、技术培训等,进行教学及实践的指导。

三、加强EDA实践教学

首先,根据企业的技术需求,引进目前使用的主流EDA工具软件,让学生在就业前就可以熟练掌握应用,将工程实际和实验教学紧密联系,积累经验的同时增加学生就业及继续深造的机会,为今后竞争打下良好的基础。2009—2015年,黑龙江大学先后引进数字集成电路设计平台Xilinx和FPGA实验箱、华大九天开发的全定制集成电路EDA设计工具Aether以及Synopsys公司的EDA设计工具等,最大可能地满足在校本科生和研究生的学习和科研。而面对目前学生人数众多但实验教学资源相对不足的情况,如果可以借助黑龙江大学的校园网进行网络集成电路设计平台的搭建,实现远程登录,则在一定程度上可以满足学生在课后进行自主学习的需要。其次,根据企业岗位的需求可合理安排EDA实践教学内容,适当增加实践课程的学时。如通过运算放大器、差分放大器、采样电路、比较器电路、DAC、逻辑门电路、有限状态机、分频器、数显键盘控制等各种类型电路模块的设计和仿真分析,令学生掌握数字、模拟、数模混合集成电路的设计方法及流程,在了解企业对于数字、模拟、数模混合集成电路设计以及版图设计等岗位要求的基础上,有针对性地进行模块课程的学习与实践操作的锻炼,使学生对于相关的EDA实践内容真正融会贯通,为今后就业做好充足的准备。第三,根据集成电路设计本科理论课程的教学内容,以各应用软件为基础,结合多媒体的教学方法,选取结合于理论课程内容的实例,制定和编写相应内容的实验课件及操作流程手册,如黑龙江大学的“CMOS模拟集成电路设计”和“数字集成电路设计”课程,都已制定了比较详尽的实践手册及实验内容课件;通过网络平台,使学生能够更加方便地分享教学资源并充分利用资源随时随地地学习。

四、搭建校企合作平台

数字集成电路设计范文第3篇

反相器是可以将输入信号的相位反转180度,这种电路应用在模拟电路,比如说音频放大,时钟振荡器等。在电子线路设计中,经常要用到反相器。

随着微电子技术与工艺的不断发展和创新,以计算机为代表的各类数字电子产品应用越来越广泛,与此同时也面临着更加复杂的电磁环境。CMOS反相器是几乎所有数字集成电路设计的核心,具有较大的噪声容限、极高的输入电阻、极低的静态功耗以及对噪声和干扰不敏感等优点,因此广泛应用于数字集成电路中。

(来源:文章屋网 )

数字集成电路设计范文第4篇

1)设计题目

简易数字频率计

2)设计任务和要求

要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为:

1)测量范围:1HZ—9.999KHZ,闸门时间1s;

10

HZ—99.99KHZ,闸门时间0.1s;

100

HZ—999.9KHZ,闸门时间10ms;

1

KHZ—9999KHZ,闸门时间1ms;

2)显示方式:四位十进制数

3)当被测信号的频率超出测量范围时,报警.

3)原理电路和程序设计:

(1)整体电路

数显式频率计电路

(2)单元电路设计;

(a)时基电路

(b)放大逻辑电路

(c)计数、译码、驱动电路

(3)说明电路工作原理;

四位数字式频率计是由一个CD4017(包含一个计数器和一个译码器)组成逻辑电路,一个555组成时基电路,一个9014形成放大电路,四个CD40110(在图中是由四个74LS48、四个74LS194、四个74LS90组成)及数码管组成。

两个CD40110串联成一个四位数的十进制计数器,与非门U1A、U1B构成计数脉冲输入电路。当被测信号从U1A输入,经过U1A、U1B两级反相和整形后加至计数器U13的CP+

,通过计数器的运算转换,将输入脉冲数转换为相应的数码显示笔段,通过数码管显示出来,范围是1—9。当输入第十个脉冲,就通过CO输入下一个CD40110的CP+

,所以此四位计数器范围为1—9999。

其中U1A与非门是一个能够控制信号是否输入的计数电路闸门,当一个输入端输入的时基信号为高电平的时候,闸门打开,信号能够通过;否则不能通过。

时基电路555与R2、R3,R4、C3组成低频多谐振荡器,产生1HZ的秒时基脉冲,作为闸门控制信号。计数公式:来确定。

与非门U2A与CD4017组成门控电路,在测量时,当时基电路输出第一个时基脉冲并通过U2A反相后加至CD4017的CP,CD4017的2脚输出高电平从而使得闸门打开。1s后,时基电路送来第二个脉冲信号,CD4017的2脚变为低电平,闸门关闭,测量结束。数码管显示即为所测频率。当555第三个脉冲送过来的时候,电路保持间歇1S,第四个脉冲后高电平加至R,使计数器复位。为下一次计算准备。

(4)元件选择。

标号

封装

数量

芯片

CD40110

GK7491AG

陶瓷熔扁平

4

CD4017

62F2X6KE4

陶瓷熔扁平

1

74LS00

陶瓷熔扁平

1

74LS10

陶瓷熔扁平

1

NE555

K104G4

双列直插型号

1

显示器

七段共阴数码管

4

电阻

300Ω

4

1KΩ

1

5.1KΩ

1

10KΩ

2

100KΩ

4

1MΩ

1

10KΩ(滑动)

1

电容

1000PF

1

0.1μF

1

100μF

1

二极管

1N4148

2

发光LED

1

开关

单刀双掷

1

导线

导线

若干

三极管

9014

1

电源

12V直流电源

1

4)电路和程序调试过程与结果:

a)、设计逻辑流程:

b)、理论波形图:

c)、仿真波形图:

1)、时基电路

2)、未、已经过施密特的波形:

d)、误差分析:

本实验的误差来自多方面的原因:一、时基电路NE555的滑动变阻器调节导致误差;二、闸门开放时间与信号输入时间的冲突导致测量不准确;三、整体电路的阻抗、容抗对电路信号的影响。

对于第一点,先计算相关的滑动变阻器的相应阻值大小,然后可以在关闭电源的情况下用万用表测量后才进行测量;第二点有点系统的偶然性;第三点可以尽量减少电路布局,从而减少相应的影响。

5)总结

这个电路多处使用了集成IC芯片,让电路更加简洁明了,并且提高了电路的安全性、可行性,减少了整个电路的功耗和整个电路的布线。但是此电路没有完全地符合实验要求:首先,整个电路没有施密特触发器,输入信号放大电路,数码管的小数点驱动,满位报警电路。因此我首先加入以三极管9014为核心的放大电路;然后用74LS00两个双输入与非门构成施密特触发器,对输入信号进行整形;对于报警电路,由于集成IC没有译码电路引脚,所以选择了一个8输入与非门和一个74LS00结成,这样可以充分考虑到唯一性;还有就是它的计数不是直接显示频率,而是显示一个数字,再与闸门的时候计算才可以得出真正的频率。

总体来说,电路还是存在一点小问题没有得到很好的解决,因为74LS00组成的施密特触发器没有很好地整形波,在示波器上出现脉冲波,还得于计算,可以改为以NE555组成的施密特电路。改用其他的数码管驱动,从而驱动小数点。

通过这次实验,让我认识到数字电路的万千变化,集成IC的推出,大大提高安全性和可行性。理解了科学就是力量。最主要是学习到设计电路的思想以为加强自己的焊接能力。让自己的电子技术更上一层楼。

附录:完整的电路PCB图,完整的源程序名列表(不需要把源程序打印出来,作为电子文档提交)。

数字集成电路设计范文第5篇

关键词:IP技术 模拟集成电路 流程

中图分类号:TP3 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-02

1 模拟集成电路设计的意义

当前以信息技术为代表的高新技术突飞猛进。以信息产业发展水平为主要特征的综合国力竞争日趋激烈,集成电路(IC,Integrated circuit)作为当今信息时代的核心技术产品,其在国民经济建设、国防建设以及人类日常生活的重要性已经不言

而喻。

集成电路技术的发展经历了若干发展阶段。20世纪50年代末发展起来的属小规模集成电路(SSI),集成度仅100个元件;60年展的是中规模集成电路(MSI),集成度为1000个元件;70年代又发展了大规模集成电路,集成度大于1000个元件;70年代末进一步发展了超大规模集成电路(LSI),集成度在105个元件;80年代更进一步发展了特大规模集成电路,集成度比VLSI又提高了一个数量级,达到106个元件以上。这些飞跃主要集中在数字领域。

(1)自然界信号的处理:自然界的产生的信号,至少在宏观上是模拟量。高品质麦克风接收乐队声音时输出电压幅值从几微伏变化到几百微伏。视频照相机中的光电池的电流低达每毫秒几个电子。地震仪传感器产生的输出电压的范围从地球微小振动时的几微伏到强烈地震时的几百毫伏。由于所有这些信号都必须在数字领域进行多方面的处理,所以我们看到,每个这样的系统都要包含一个模一数转换器(AD,C)。

(2)数字通信:由于不同系统产生的二进制数据往往要传输很长的距离。一个高速的二进制数据流在通过一个很长的电缆后,信号会衰减和失真,为了改善通信质量,系统可以输入多电平信号,而不是二进制信号。现代通信系统中广泛采用多电平信号,这样,在发射器中需要数一模转换器(DAC)把组合的二进制数据转换为多电平信号,而在接收器中需要使用模一数转换器(ADC)以确定所传输的电平。

(3)磁盘驱动电子学计算机硬盘中的数据采用磁性原理以二进制形式存储。然而,当数据被磁头读取并转换为电信号时,为了进一步的处理,信号需要被放大、滤波和数字化。

(4)无线接收器:射频接收器的天线接收到的信号,其幅度只有几微伏,而中心频率达到几GHz。此外,信号伴随很大的干扰,因此接收器在放大低电平信号时必须具有极小噪声、工作在高频并能抑制大的有害分量。这些都对模拟设计有很大的挑战性。

(5)传感器:机械的、电的和光学的传感器在我们的生活中起着重要的作用。例如,视频照相机装有一个光敏二极管阵列,以将像点转换为电流;超声系统使用声音传感器产生一个与超声波形幅度成一定比例的电压。放大、滤波和A/D转换在这些应用中都是基本的功能。

(6)微处理器和存储器:大量模拟电路设计专家参与了现代的微处理器和存储器的设计。许多涉及到大规模芯片内部或不同芯片之间的数据和时钟的分布和时序的问题要求将高速信号作为模拟波形处理。而且芯片上信号间和电源间互连中的非理想性以及封装寄生参数要求对模拟电路设计有一个完整的理解。半导体存储器广泛使用的高速/读出放大器0也不可避免地要涉及到许多模拟技术。因此人们经常说高速数字电路设计实际上是模拟电路的

设计。

2 模拟集成电路设计流程概念

在集成电路工艺发展和市场需求的推动下,系统芯片SOC和IP技术越来越成为IC业界广泛关注的焦点。随着集成技术的不断发展和集成度的迅速提高,集成电路芯片的设计工作越来越复杂,因而急需在设计方法和设计工具这两方面有一个大的变革,这就是人们经常谈论的设计革命。各种计算机辅助工具及设计方法学的诞生正是为了适应这样的要求。

一方面,面市时间的压力和新的工艺技术的发展允许更高的集成度,使得设计向更高的抽象层次发展,只有这样才能解决设计复杂度越来越高的问题。数字集成电路的发展证明了这一点:它很快的从基于单元的设计发展到基于模块、IP和IP复用的

设计。

另一方面,工艺尺寸的缩短使得设计向相反的方向发展:由于物理效应对电路的影响越来越大,这就要求在设计中考虑更低层次的细节问题。器件数目的增多、信号完整性、电子迁移和功耗分析等问题的出现使得设计日益复杂。

3 模拟集成电路设计流程

3.1 模拟集成电路设计系统环境

集成电路的设计由于必须通过计算机辅助完成整个过程,所以对软件和硬件配置都有较高的要求。

(1)模拟集成电路设计EDA工具种类及其举例

设计资料库―Cadence Design Framework11

电路编辑软件―Text editor/Schematic editor

电路模拟软件―Spectre,HSPICE,Nanosim

版图编辑软件―Cadence virtuoso,Laker

物理验证软件―Diva,Dracula,Calibre,Hercules

(2)系统环境

工作站环境;Unix-Based作业系统;由于EDA软件的运行和数据的保存需要稳定的计算机环境,所以集成电路的设计通常采用Unix-Based的作业系统,如图1所示的工作站系统。现在的集成电路设计都是团队协作完成的,甚至工程师们在不同的地点进行远程协作设计。EDA软件、工作站系统的资源合理配置和数据库的有效管理将是集成电路设计得以完成的重要保障。

3.2 模拟集成电路设计流程概述

根据处理信号类型的不同,集成电路一般可以分为数字电路、模拟电路和数模混合集成电路,它们的设计方法和设计流程是不同的,在这部分和以后的章节中我们将着重讲述模拟集成电路的设计方法和流程。模拟集成电路设计是一种创造性的过程,它通过电路来实现设计目标,与电路分析刚好相反。电路的分析是一个由电路作为起点去发现其特性的过程。电路的综合或者设计则是从一套期望的性能参数开始去寻找一个令人满意的电路,对于一个设计问题,解决方案可能不是唯一的,这样就给予了设计者去创造的机会。

模拟集成电路设计包括若干个阶段,设计模拟集成电路一般的过程。

(l)系统规格定义;(2)电路设计;(3)电路模拟;(4)版图实现;(5)物理验证;(6)参数提取后仿真;(7)可靠性分析;(8)芯片制造;(9)测试。

除了制造阶段外,设计师应对其余各阶段负责。设计流程从一个设计构思开始,明确设计要求和进行综合设计。为了确认设计的正确性,设计师要应用模拟方法评估电路的性能。

这时可能要根据模拟结果对电路作进一步改进,反复进行综合和模拟。一旦电路性能的模拟结果能满足设计要求就进行另一个主要设计工作―电路的几何描述(版图设计)。版图完成并经过物理验证后需要将布局、布线形成的寄生效应考虑进去再次进行计算机模拟。如果模拟结果也满足设计要求就可以进行制造了。

3.3 模拟集成电路设计流程分述

(1)系统规格定义

这个阶段系统工程师把整个系统和其子系统看成是一个个只有输入输出关系的/黑盒子,不仅要对其中每一个进行功能定义,而且还要提出时序、功耗、面积、信噪比等性能参数的范围要求。

(2)电路设计

根据设计要求,首先要选择合适的工艺制程;然后合理的构架系统,例如并行的还是串行的,差分的还是单端的;依照架构来决定元件的组合,例如,电流镜类型还是补偿类型;根据交、直流参数决定晶体管工作偏置点和晶体管大小;依环境估计负载形态和负载值。由于模拟集成电路的复杂性和变化的多样性,目前还没有EDA厂商能够提供完全解决模拟集成电路设计自动化的工具,此环节基本上通过手工计算来完成的。

(3)电路模拟

设计工程师必须确认设计是正确的,为此要基于晶体管模型,借助EDA工具进行电路性能的评估,分析。在这个阶段要依据电路仿真结果来修改晶体管参数;依制程参数的变异来确定电路工作的区间和限制;验证环境因素的变化对电路性能的影响;最后还要通过仿真结果指导下一步的版图实现,例如,版图对称性要求,电源线的宽度。

(4)版图实现

电路的设计及模拟决定电路的组成及相关参数,但并不能直接送往晶圆代工厂进行制作。设计工程师需提供集成电路的物理几何描述称为版图。这个环节就是要把设计的电路转换为图形描述格式。模拟集成电路通常是以全定制方法进行手工的版图设计。在设计过程中需要考虑设计规则、匹配性、噪声、串扰、寄生效应、防门锁等对电路性能和可制造性的影响。虽然现在出现了许多高级的全定制辅助设计方法,仍然无法保证手工设计对版图布局和各种效应的考虑全面性。

(5)物理验证

版图的设计是否满足晶圆代工厂的制造可靠性需求?从电路转换到版图是否引入了新的错误?物理验证阶段将通过设计规则检查(DRC,Design Rule Cheek)和版图网表与电路原理图的比对(VLS,Layout Versus schematic)解决上述的两类验证问题。几何规则检查用于保证版图在工艺上的可实现性。它以给定的设计规则为标准,对最小线宽、最小图形间距、孔尺寸、栅和源漏区的最小交叠面积等工艺限制进行检查。版图网表与电路原理图的比对用来保证版图的设计与其电路设计的匹配。VLS工具从版图中提取包含电气连接属性和尺寸大小的电路网表,然后与原理图得到的网表进行比较,检查两者是否一致。

参考文献