首页 > 文章中心 > 数字图像处理论文

数字图像处理论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数字图像处理论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

数字图像处理论文

数字图像处理论文范文第1篇

(1. 武警工程大学 信息工程系,陕西 西安 710086;2. 武警工程大学 电子技术系,陕西 西安 710086)

摘 要:针对数字图像处理课程基础理论抽象、实用性强的特点,分析和探讨该课程教学中存在的若干问题及原因,从师资力量建设、课程标准制定、教学方法与设计、考核方法4个方面阐述数字图像处理课程的教学优化改革方案。

关键词 :数字图像处理;教学优化改革;师资力量;课程标准

基金项目:全军学位与研究生教育研讨会研究课题“军队院校研究生教育中的导师与研究生关系研究”(YJZX14C14)。

第一作者简介:孔韦韦,男,讲师,研究方向为图像处理,kwwking@163.com。

0 引 言

数字图像处理[1-2]是信息处理领域的重要分支,通过该课程我们可以完成图像的几何变换、算术处理、图像增强、图像复原、图像重建、图像编码、模式识别、图像理解等多个方面的工作。目前,随着计算机软硬件处理能力的不断提升,数字图像处理技术已被广泛应用于医学检测、反恐处突、弹道导弹精确制导等多个军(民)用领域。由于该门课程的特殊地位和广泛应用,国内外几乎所有信息类专业都开设了该课程,许多专家、学者也针对课程的教学方式提出了自己的观点[3-8]。

军队院校作为高等院校中的一类特殊群体,无论在课程设置还是人才培养需求上均与地方高等院校有很大的不同。军队院校自身的特殊属性要求培养出的人才不仅要有扎实的理论基础和科研能力,还能运用这些知识对作战以及日常训练中出现的问题加以解决,因此,军队院校对人才的理论与实践结合能力提出了更高也更为严格的要求。

武警部队负责维护国家安全和社会稳定,有效打击国内外各种恐怖势力,保障人民安居乐业。当前,世界各国都将“反恐”作为维护国家稳定和保卫人民生命财产安全的一项重要任务。反恐图像目标的识别和监视能力更体现了一个国家的反恐技术力量和能力水平,其关键在于反恐图像目标的识别。因此,有效地将数字图像处理技术应用于反恐处突领域,不仅有助于提升针对恐怖势力的打击力度,还可以有效减少伤亡,最大限度地保障国家和人民的生命财产安全。

1 数字图像处理课程的特点

数字图像处理课程主要有以下几个特点:①理论基础要求高,涉及高等数学、信号与信息系统、信息论、计算机编码等多个领域的知识;②数字图像处理课程覆盖的内容广泛,知识点繁杂零碎;③新兴理论的不断出现要求广大学者能够敏锐把握数字图像处理技术的发展前沿;④数字图像处理技术的应用领域不断拓展,处理方法也更为复杂。

2 军队院校数字图像处理课程教学中存在的问题

2.1 课程设置不灵活

相比地方高等院校,军队院校的课程设置自由度十分受限,具体体现为课程的教学内容、学时安排、课堂组织形式甚至是开课时间均有严格的规定和限制,不能根据学生理论基础和学习能力的实际情况做自适应的调整。

尽管研究生有自己的导师和研究方向,且很多研究生日后学位论文的研究方向可能与数字图像处理领域并无关联,然而,由于许多信息类专业院校的研究生培养方案均严格限定该课程为学位必修课,导致一些研究生为了学分和学位只得选择一门与自己研究领域完全无关的课程,无形中造成了教学资源的浪费。

2.2 课时少内容多

数字图像处理课程是国内外几乎所有信息类专业的必修课。地方高等院校通常会开设50个学时,而军队院校大多只开设40学时,有的学校甚至只将其作为学位选修课开设20学时。众所周知,该课程涉及的教学内容非常繁杂且对相关课程的理论基础提出了较高要求,这类课程即使安排50学时也很难将重点内容讲授完毕,军队院校课程课时不足无疑对该课程的教学质量造成重大影响。

2.3 教学形式单一

军队院校的特殊属性在一定程度上约束了课堂多种教学形式的存在与发展,传统的教师主体式教学法是主流。这种过于单一和机械的教学形式将对研究生的学习积极性造成不利影响。另外,军队中上下等级关系往往扼杀了研究生质疑教师的勇气和可能,使研究生不敢对教师的见解有所质疑,不敢擅自踏入教师未首肯的领域中积极主动地发现问题、分析问题和解决问题,导致研究生的学习完全处于被动境地。

3 教学优化改革

3.1 师资力量建设

数字图像处理课程专业性强、理论难度大,涉及的基础学科门类较多,因此,在条件允许的情况下应尽可能安排科研方向或理论研究方向属于图像处理领域的教师担任任课老师。一方面,长期从事该领域的教师对课程的基本内容和理论了如指掌,基本功非常扎实,授课更为流畅、自然;另一方面,教材中介绍的只是图像处理领域的基础理论和经典模型,长期从事该领域研究的老师在研究过程中往往对课程中的概念及理论模型有更深刻的理解,在授课过程中必然会附带介绍本人在该领域内的研究现状和最新进展,有利于开阔研究生视野,激发学习兴趣,提高授课质量。

3.2 课程标准的制定

结合军队院校课时不足的教学实际以及人才培养类型的定位需求,我们完全有必要重新制定数字图像处理课程的教学标准,在保证理论系统性完整的基础上,侧重实践能力以及解决实际问题能力的培养和提升。具体措施如下:①教学对象精确定位,扭转以往研究生课程频频出现的“被选课”现象,切实保障“选修权”,允许研究生按照自己学位论文的研究需求选课;②由于学时有限,在制定课程标准时必须全面分析和研究教学内容,梳理与课程内容相关的知识目标、技能目标和素质目标,适当地删减一些非重点内容,重新划分各章节的学时;③数字图像处理虽然是一门理论性很强的课程,但学习的最终目的还是应用,因此,在制定课程标准时必须为研究生学员留有一定的实践操作以及课堂研讨课时;④要反映部队特色,在授课过程中重点介绍能够直接应用于部队实际的模型和方法,譬如模式识别、图像理解版块,并要求研究生动手实践;⑤紧跟发展前沿,保持知识的先进性,充分利用网络资源,以完善的学习资料、丰富的课程资源、真实的实践环境作为课程的基础和支撑。

3.3 教学方法与设计

结合课程标准,我们拟将整个教学过程分解为4个阶段:①基本理论讲授;②专题讨论;③专题讲座;④实践操作。

3.3.1 基本理论讲授

教师对教学内容中的基本理论加以讲解,旨在为研究生扫清基本理论障碍。该部分的讲解并非只是对课本内容的简单复制和重申,而是在介绍基本理论的基础上,对基本概念中涉及的各层次知识点和潜在疑问加以梳理和阐释,为下一阶段的专题讨论做铺垫。该阶段以教师讲授为主体,采取案例式教学和启发式教学相结合的授课方式。

3.3.2 专题讨论

所谓专题讨论,就是基于教师先前讲授的某一个或某一类基本理论,探讨具体应用效果以及可能影响最终图像处理效果的若干因素。这一环节将彻底打破经典教学模式中的“教师主体”模式,转变为“教师确定讨论范围—研究生为讨论主体—教师最后总结”的模式。在整个过程中,教师和研究生的角色完全转换,由研究生基于自身掌握的知识充分发挥自己的想象,针对若干问题展开探讨或者辩论。譬如,教师在探讨前先介绍图像去噪理论的相关知识,包括噪声产生的原理、噪声的种类、噪声在图像中的表现、几类经典图像去噪方法等,上述部分内容讲授完毕后确定3个问题,即均值去噪和中值去噪方法的原理有何不同?各自的优缺点何在?各自在去噪过程中可能影响最终效果的因素有哪些?下一次课教师可安排专题讨论,并将研究生在讨论中的表现作为课程成绩的一项重要依据。

在该门课程课代表的组织下,研究生被分成若干小组,大家利用课余时间分别对两种去噪方法展开了深入研究,并通过Matlab软件仿真验证,记录诸如峰值信噪比PSNR等相关指标值,初步得出可能会影响最终去噪效果的若干因素;几位同学针对一些不太一致的观点展开激烈的讨论;最后,由教师进行内容总结和答疑解惑,一些研究生还对教师的某些结论提出质疑。

专题讨论完毕后,教师和研究生普遍感觉以往枯燥又不合时宜的教学方法得到了彻底改变,研究生内心的求知热情得到了极大的激发。此外,整个专题讨论过程也锻炼了他们的逻辑思维,为了说服“对手”,他们必须要找到支撑自己观点的科学依据,包括权威论坛上的答疑解惑以及仿真软件仿真出来的实际结果等。有了这些证据后,他们还要对数据进行分析研究、组织语言、理清思路,而在以往的教学模式下,研究生并不会主动花费时间查找资料,教师由于课时的关系也不可能对每一种理论都进行仿真演示。

3.3.3 专题讲座

担任数字图像处理课程任务的教师必须从事图像处理领域研究,因此,在教学过程中,适时安排1~2次专题讲座,由任课教师将自己在本领域的研究成果或是研究体会以讲座的形式向研究生进行报告。在讲座过程中,教师将从一个较高的层次,把一些新的内容介绍给研究生,同研究生一起分享图像处理领域最新的发展动态和研究成果,开拓研究生的视野,为研究生动态更新最新的前沿知识。另一方面,由于课程标准制定过程中教学对象已实现了精确定位,凡是选修数字图像处理课程的研究生日后均要从事该领域的研究,因此专题讲座的开展也在一定程度上为研究生日后的学位论文撰写提供灵感和研究方向。显然,专题讲座是课程教学强大而又有益的补充。

3.3.4 实践操作

由教师从教学内容中选取若干重难点且与部队作战(训练)密切关联的内容,交由研究生自行仿真实现,记录主客观评价指标数值,对仿真结果进行比较与分析,并得出结论;对仿真结果中的不足展开讨论,给出可能的解决方案。显然,该阶段侧重课程标准中“反映部队特色”的宗旨,要求学员学以致用,切实将书本中的理论知识运用到部队实际中,为部队服务,提高作战能力,体现军队院校“向部队靠拢,向实战靠拢”的办学宗旨。

在实际操作中,为了贴合武警部队反恐处突场景的作战实际,教师为学生布置了模式识别版块中的图像融合仿真实验,给出了国际TNO组织提供的联合国营地源图像,源图像取自同一场景,一幅由灰度可见光图像传感器获得,另一幅由红外图像传感器获得。该实践场景十分类似于武警部队对潜藏在树林中的恐怖分子进行围捕的场景,要求研究生对现行资料中融合效果较好的6种融合方法进行仿真,记录仿真结果并加以分析讨论。

通过这一阶段的训练,研究生将书本中的理论知识与实际应用进行了有机结合,取得了良好的效果,并为日后将相应方法应用于部队作战(训练)提供了理论基础和支持。

3.4 考核方法

课程考核采取百分制,并综合考虑研究生在笔试、专题讨论、实践操作3个环节中的表现,3者的比例为0.30:0.35:0.35。在考核中,教师更看重研究生在该门课程中针对实际问题的分析能力和实践动手能力,以期学生真正理解和消化书本中的理论知识。笔试采取开卷方式进行,侧重考核研究生对该门课程中的基本理论、概念、公式的掌握情况,因此,同以往的纯闭卷考试相比,该考核方法灵活度更高,考核效果也更理想。在最终考核中,由于采取了更为有效的考核方式,学生只要认真参与教学活动,必然可以顺利通过考试并拿到高分。如今,两年的教学改革已经使该课程在研究生中小有名气,从往日学员们的“黑名单”课程转而成为“热销品牌”。

4 结 语

两年的实践结果表明,相比传统的授课方式,该改革方案更符合高等院校的教学规律和实际情况,尤其是将部队的实战需求充分融入课程标准的制定过程,更加贴近了当前军队院校的人才培养需求,充分体现了军队院校“向部队靠拢,向实战靠拢”的办学宗旨。

参考文献:

[1] 冈萨雷斯. 数字图像处理[M]. 北京: 电子工业出版社, 2014.

[2] 贾永红. 数字图像处理[M]. 武汉: 武汉大学出版社, 2010.

[3] 杨淑莹, 张桦.“数字图像处理”理论与实践相结合教学模式[J]. 计算机教育, 2009(24): 84-86.

[4] 周海芳.“数字图像处理”课程研讨式教学[J]. 计算机教育, 2010(24): 93-97.

[5] 周耿烈, 鲁逢兰. 图像处理技术精品课程建设[J]. 计算机教育, 2010(18): 101-104.

[6] 何楚, 冯倩, 杨芳, 等. 数字图像处理课程实验教学过程设计[J]. 计算机教育, 2011(18): 74-77.

[7] 沈晓晶, 王艳, 赵慧娟. 应用型院校数字图像处理本科教学探索[J]. 计算机教育, 2012(1): 86-88.

数字图像处理论文范文第2篇

关键词:ImageJ;图像处理;数字滤波;小波变换;算法设计

中图分类号:TP751文献标识码:A文章编号:1009-3044(2011)07-1638-03

Image Processing Algorithm Design Research Based on ImageJ

ZHAO Yi-li

(Dept. of Computer, Southwest Forestry University, Kunming 650224, China)

Abstract: Proposing an image processing algorithm design program based on ImageJ software, the program can complete digital image processing algorithm design quickly and accurately, and it is a useful complement for which based on MATLAB or C/C++ language environments. Through two examples of digital filtering and wavelet transform, the paper shows the benefits of the program for the image processing algorithm design task. Meanwhile, with the ImageJ's open plug-in architecture, making the design has good modularity and scalability.

Key words: imagej; image processing; digital filtering; wavelet transform; algorithm design

1 数字图象处理算法设计概述

在进行数字图像处理算法仿真时,采用的方案主要有两大类。一类是使用MathWorks公司开发的MATLAB软件。另外一类基于C和C++语言,以及Microsoft公司的Visual Studio平台和MFC框架。

1.1 基于MATLAB的图像处理算法设计

由MathWorks公司开发的MATLAB[1]软件非常适合用于处理向量和矩阵,在科学研究和产品的原型开发与设计中得到了广泛的应用。并且被国内外许多大学采用作为线性代数和数值计算的计算机辅助教学软件。该软件本身提供了一种高级语言,能够通过编程的方式解决问题。由于MATLAB附带了一个功能完整的图像处理工具箱[2],因此很多研究者都基于MATLAB进行数字图像处理算法的设计[3-5]。

采用MATLAB软件作为原型系统设计具有可靠和快速的优点,但是也存在三个缺点。第一,由于MATLAB是一个商业软件,软件的版权费用比较昂贵。第二,MATLAB对相应的图像处理算法行了封装。因此,很难有机会看到相关算法的实现代码。第三,在MATLAB中开发的程序必须要有MATLAB的运行库支持,脱离了MATLAB环境就无法运行。

1.2 基于C和C++语言的图像处理算法设计

另外一类设计方案基于C和C++语言。C语言是很多图像处理和数值分析库的首选编程语言。但是,使用C语言需要通过指针访问图像数据,而且需要手动进行内存的分配和释放。因此在使用C语言进行算法设计的时候,往往会把注意力转移到其它和图像处理无关的领域上面,而且C语言本身也没有提供用户界面接口环境。

随着C++语言的普及,越来越多的研究者开始采用C++语言进行图像处理算法设计。这些设计大部分都是基于Visual C++环境,并且使用MFC完成相关的用户界面接口。由于C++语言本身的复杂性,以及MFC具有相对陡峭的学习曲线,使得这个方案开发效率不是很高。言内容。

2 基于ImageJ的图像处理算法设计

为了能够解决以上提到的问题,作者在进行数字图像处理工程实践中,采用基于Java语言编写的ImageJ平台的算法仿真方案。通过一些项目的实践,取得了不错的效果。下面对采Java语言和ImageJ平台的原因进行阐述。

2.1 采用Java语言的原因

随着Java语言及其平台的日益成熟,使得Java语言[6]在多个领域都得到了广泛的应用。选择Java语言的原因是(1)Java语言是跨平台的,可以使用多个操作系统来进行算法设计,例如Windows、Linux或者Mac OS;(2)Java语言是免费和开放的;(3)Java语言带有网络开发的标准库,这使得开发基于Web的图像处理系统更加方便;(4)Java语言带有用户界面库AWT和Swing,可以将图像处理算法和处理结果的可视化无缝衔接起来;(5)Java语言是面向对象的,并且支持垃圾回收和良好的异常处理机制。这样研究者更容易把注意力集中在算法实现上面,而不是指针的操作以及内存的手动分配与回收这些与问题域无关的事物上面;(6)Java程序运行速度很快,这意味着可以得到算法运行结果的即时反馈,即实时性。

2.2 采用ImageJ的原因

ImageJ是由美国国家卫生总局的维恩开发的一个功能强大的图像处理和分析软件[7],在全世界被很多生物学家和医学图像处理研究者应用于生物医学图像处理研究[8]。由于ImageJ本身是使用Java语言编写的,因此可以运行在任何一个安装了Java虚拟机的操作系统上面。同时,在ImageJ的网站上也提供了相应的源程序和帮助文档下载,研究者可以通过下载ImageJ的源代码对ImageJ内部的工作机制和原理进行分析。最重要的是ImageJ的设计基于插件架构体系,可以通过编写插件对其功能进行扩展。利用ImageJ的插件机制,可以将不同的图像处理算法编写为相应的插件。通过Java虚拟机和ImageJ提供的插件动态加载功能,当用户对插件进行更改以后,直接编译就可以在ImageJ中进行加载和运行,而无需重新启动应用程序,即提供了所谓“热拔插”的功能。

3 图像处理算法设计示例

下面将通过两个例子来说明如何基于ImageJ平台进行数字图像处理算法设计。通过这两个例子可以看到ImageJ的插件机制为图像处理算法的实现提供了一个非常好的平台。

3.1 数字滤波

随着数字滤波是图像平滑和锐化算法的理论基础[9]。论文实现了数字滤波的两种算法,一种使用不可分离算法,另外一种使用可分离的算法。一个大小为m*n的滤波器,对于每个像素,不可分离算法的时间复杂度为O(m*n),可分离算法的时间复杂度为O(m+n)。因此,可分离算法在模块化和计算时间方面更有优势。

算法1 垂直边缘滤波器的不可分离算法

public ImageProcessor nonseparable(ImageProcessor input) {

int w = input.getWidth();

int h = input.getHeight();

ImageProcessor output = new ImageProcessor(w, h);

double[][] block = new double[3][3];

double value = 0.0;

for (int x = 0; x < w; x++) {

for (int y = 0; y < h; y++) {

input.getNeighborhood(x, y, block);

value = (block[2][0] - block[0][0] + block[2][1] - block[0][1] + block[2][2] -block[0][2])/6.0;

output.putPixel(x, y, value);}}

return output;}

算法2 垂直边缘滤波器的可分离算法

public ImageProcessor separable(ImageProcessor input) {

int w = input.getWidth();

int h = input.getHeight();

ImageProcessor output = new ImageProcessor(w, h);

double rowin[]= new double[w];

double rowout[] = new double[w];

for (int y = 0; y < h; y++) {

input.getRow(y, rowin);

difference(rowin, rowout);

output.putRow(y, rowout);}

double colin[]= new double[h];

double colout[] = new double[h];

for (int x = 0; x < nx; x++) {

output.getColumn(x, colin);

average(colin, colout);

output.putColumn(x, colout);}

return output;}

private void average(double in[], double out[]) {

int n = in.length;

out[0] = (2.0 * in[1] + in[0]) / 3.0;

for (int k=1; k

out[k] = (in[k-1] + in[k] + in[k+1]) / 3.0;}

out[n-1] = (2.0 * in[n-2] + in[n-1]) / 3.0;}

private void difference(double in[], double out[]) {

int n = in.length;

out[0] = 0.0;

for (int k=1; k

out[k] = (in[k+1] - in[k-1])/2.0;}

out[n-1] = 0.0;}

表1列出了ImageJ的均值滤波的测试时间,测试环境为:512 x 512的灰度图像,JRE 1.6.0_21,Intel Core Quad/2.33GHz,4GB RAM。从表1中可以看到可分离算法相对于不可分离算法的优势,特别是当滤波器尺寸加大以后更加明显。

3.2 小波变换

另外一个例子是实现可分离的二维Haar小波变换[10]。

算法3 二维Haar小波变换

public ImageProcessor analysis(ImageProcessor input, int nbScale) {

int nx = input.getWidth();

int ny = input.getHeight();

ImageProcessor output = input.duplicate();

ImageProcessor buffer;

for (int i=0; i

buffer = new ImageProcessor(nx, ny);

ouput.getSubImage(0, 0, buffer);

buffer = split(buffer);

output.putSubImage(0, 0, buffer);

nx = nx / 2;

ny = ny / 2;}

return output;}

private ImageProcessor split(ImageProcessor input) {

int nx = input.getWidth();

int ny = input.getHeight();

ImageProcessor output= new ImageProcessor(nx, ny);

double rowin[]= new double[nx];

double rowout[] = new double[nx];

for (int y=0; y

input.getRow(y, rowin);

split_1D(rowin, rowout);

output.putRow(y,rowout);}

double colin[] = new double[ny];

double colout[] = new double[ny];

for (int x=0; x

output.getColumn(x, colin);

split_1D(colin, colout);

output.putColumn(x,colout);}

return output;}

private void split_1D(double in[], double out[]) {

int n = in.length / 2;

double sqrt2 = Math.sqrt(2.0);

int k1;

for (int k=0; k

k1 = 2 * k;

out[k] = (in[k1] + in[k1+1]) / sqrt2;

out[k+n] = (in[k1] - in[k1+1]) / sqrt2;}}

图1是基于ImageJ设计的Haar小波变换仿真的运行结果。

3 结论

论文提出的基于ImageJ软件的数字图像处理算法设计方案对传统的基于MATLAB和C/C++语言的方案是一个非常好的补充。通过相关的两个实例也展现了这种方案在实现数字图象处理算法时的简洁和快速,对于研究者设计和验证新的图像处理算法是一个非常好的平台。同时由于ImageJ基于插件的架构体系设计,使得研究者可以将不同的图像处理算法编写为相应的插件,对其进行扩充和二次开发。

参考文献:

[1] The MathWorks Inc. MATLAB,Natwick,MA.[CP/OL].

[2] Rafael C,Richard E,Steven L.Digital Image Processing Using MATLAB [M].[S.l]:Prentice Hall,2004.

[3] 安平,王朔中.建立在MATLAB平台上的数字图像处理教学实验系统[J].实验室研究与探索,2001(1).

[4] 贾永红.现代化教学手段在数字图像处理教学中的应用研究[J].测绘通报,2006(1).

[5] 张国琴,吴周桥.MATLAB在数字图像处理教学中的应用[J].武汉科技学院学报,2005(10).

[6] The Java Language.[CP/OL].

[7] Image J.rsb.info.nih.gov/ij[CP/OL].

[8] Sage D,Unser M.Teaching Image-Processing Programming in Java[J].IEEE Signal Processing Magazine,2003,20(6):43-52.

数字图像处理论文范文第3篇

论文关键词:数字图像处理,方差,均方差,卫星图像

遥感有着高效、快捷且不受时间空间限制的特点,被广泛应用于农、林、地、矿、军事等诸多领域。通过卫星遥感技术获得的地球表面客体或事物的卫星遥感图像也越来越多地应用在地球资源的调查、自然灾害预测预报环境污染监测、气象卫星云图处理以及用于军事目的的地面目标识别等各个方面。有着遥感作用的NOAA气象卫星的运行周期短、覆盖面广,目前正广泛受到人们的关注,并作用于农业估产、林火监测、渔况预报、城市热岛等方面。但是,NOAA卫星图像数据的使用效率并不高,再加上云的存在,使卫星资料反演的各种参数出现误差,而对于同一幅NOAA卫星图像中的薄云和浓云的处理目前还未见到很适用算法,所以,研究时效性的除云算法在军事、环境、气候、自然灾害等领域有重要的意义和研究价值。

1云检测方法

根据同一卫星图像,它在各个分量上的水汽、二氧化碳、一氧化碳、甲烷等气体据有相同的属性参数,截取目标区域图像和该区域附近的无云样品区域进行处理。

由于云是不稳定因子,它随时间和空间变化而变化,即不同季节云的反射率和亮温不同,不同空间高度云的反射率和亮温又有所不同。因此,要能较好地识别云区范围就要了解它的空间和时间分布特性,并采用行之有效的方法来解决这个难题。然而鉴于不同的云相对于植被、土壤、水域等不同下垫面在可见光和近红外波段具有较高的反射率,而在热红外波段由较低的亮温,这就给我们判云带来了有利条件。针对与所选用的热红外通道,我们采用了以下几种方法进行了检测云。

1.1单通道探测值阈值检测

任取NOAA气象卫星的某一通道图像资料,并给定一个云区灰度阈值,凡高于该阈值的像元皆为云。

1.2可见光和近红外通道反射率阈值检测

计算可见光和近红外通道图像的反射率,给定反射率阈值,凡高于该阈值的为云。

1.3红外通道温度阈值检测

运用普朗克公式计算红外通道的亮温和温度,设立温度阈值,凡低于该阈值的为云。

2除云方法讨论

云检测的目的是找出云影响的测量值,回归晴空测量值后用于计算海面温度。云检测是基于观测目标自身的特性,比如,海面温度梯度变化不大;在红外和可见光波段中,海面较云顶有较高的温度和低得多的反射率;海面和云顶在不同红外窗区通道反射率上的差异等,推测出有云影响的数据。

在气候变化中,云与辐射起着关键的作用,云层影响着地球的辐射收支地球表面温度以及气候变化趋势。遥感图像处理中,与覆盖时最常见的噪声之一,它不仅对图像的处理带来诸多困难。

2.1国外遥感温度研究

从70年代开始,研究者开始尝试从机理方面着手研究亮温与地表温度的关系。由于卫星获得的亮温是由大气顶层接收的辐射亮度值换算而成的,而大气对遥感器接收地表信息的影响较大,所以早期的研究主要集中于大气辐射校正上。到目前为止,己经研究出很多辐射校正方法,但是这些方法大部分都需要其它气象数据的支持,比如不同高度的大气湿度等。

大气校正方法比较烦琐,后来有的学者基于相邻波段大气吸收特性提出了一种全新的方法,直接运用两个波段的亮温数据去推算地表的温度。这就是一种比较简单有效的温度反演方法,即分窗口技术法(Split-windowTechnology),该方法可在少量的地表参数支持下从气象卫星数据反演出地表温度。目前温度反演研究主要集中在NOAA卫星图像的热红外波段。

2.2国内遥感温度研究

国内在遥感地表温度研究中主要采用的还是数理统计方法,此后沿袭这些研究思路和研究方法,特别是中国科学院遥感应用研究所在土壤水分方面进行了大量的研究,但是作为其中最为重要的参数之一的地表温度的研究却进展不大,没有跟上国际上由数理统计研究取得的结果。

北京大学学者提出了一种新的改进分窗口技术方法,该方法的特色之处在于引入相邻像元的概念。研究者给定了两种情况下的温度反演法,第一种情况是假设地表辐射率已知,然后运用迭代反演方法求解地表温度。该方法模拟结果与其它共5种模型结果分析比较,精度有较大的提高。第二种情况是地表辐射率未知,来反演地表温度与辐射率。这时采用双通道双像元法去求解相应的参数。通过模拟计算取得了较好的精度,在大气廓线总水汽含量误差小于10%时,反演的温度均方根误差0.7。辐射率均方根误差0.013,地表辐射项的均方根误差小于0.6%,己经可以满足陆地表面温度反演1的精度要求。

双通道双像元法是经典分窗口技术法的延伸,利用相邻像元间辐射率之间的关系,在地表辐射率未知的情况下反演地表温度是个很好的方法。但是该方法也有局限性,在大气水汽含量误差大于20%时,反演的温度误差就会显著增加。

陆面温度反演中分窗口技术法经过不断改进,反演精度有所提高,但是这些改进的方法还没有达到大面积应用阶段,更不能像海温研究那样进入业务运行阶段,因此,要达到陆面温度反演的实用化程度,还需要继续拓展。最近几年遥感界出现了一个热门的研究领域,就是多角度遥感数据反演研究,这个方法可能为组分温度遥感提供一个新的思路。

参考文献

1 陆玲,王蕾,桂颖.数字图像处理[M],北京:中国电力出版社, 2007.

2 高成,董长虹,郭磊等.Matlab 图像处理与应用(第二版)[M],北京:国防工业出版社.2006.

3 何东健,耿楠,张义宽. 数字图像处理[M],西安电子科技大学出版社,2003.

4 陈良富,徐希儒.陆面温度反演的新进展[J],国土资源遥感,1999,3:47-50.

数字图像处理论文范文第4篇

关键词:稀疏表示 图像质量 几何结构

中图分类号:TP3 文献标识码:A 文章编号:1674-098X(2012)12(c)-00-01

1993年Mallat和Zhang提出了信号的稀疏表示,在信号逼近上取得了出色的表现,迅速引起了广大学者的普遍关注,信号稀疏表示研究很快被从一维信号推广到二维信号图像的研究上。

稀疏表示的模型可以表示为:

式中为向量的l0范数,表示向量x中非零元素的个数,x即为信号y的稀疏表示。

在数字图像处理中,由于图像的数据信息具有冗余性,为冗余字典,因此可以在冗余字典上进行稀疏表示,y则为图像子块的列向量表示。如何构造表达能力强、训练简单的冗余字典是图像处理中的关键一步,自稀疏表示理论的提出,在图像去噪、去模糊、超分辨率、图像修复等方面得到了广泛的应用,取得了比传统方法更好的处理结果。

1 稀疏表示理论在提高数字图像质量中的应用

Michael Elad是较早将稀疏表示理论应用于图像去噪与超分辨率的代表人物[1],他将K均值聚类方法引入字典训练过程中。在K均值算法中,求解一个包括K个代码的码本,使得在此码本上,根据最邻近分配法则,对包含N个信号的集合进行分类,得到最佳分类。在稀疏表示中,稀疏表示的过程可以看做广义矢量量化过程,其中的每个信号用多个代码的线性组合表示。当要求K-SVD中的每个信号只能用一个原子来近似时,K-SVD算法就退化为K均值算法。K-SVD在稀疏编码与字典更新之间交替迭代,保证总误差单调下降,因此可保证能收敛到局部(或全局)最小值,从而得到性能优良的过完备字典。K-SVD训练字典方法广泛的应用在图像复原问题上。基于K-SVD训练得到的过完备字典,取得了较好的图像去噪与超分辨率结果。

统计学中的主成分分析(PCA)的概念,也被引入到字典训练当中。在统计学当中,变量个数太多会增加问题的复杂性主成分分析作为一种统计分析方法,它可以从多元事物中解析出主要影响因素,简化复杂问题。PCA的核心思想,就是将高维数据投影到低维空间。寻找 r 个新变量,使其反映事物的主要特征,每个新变量是原有变量的线性组合,体现原有变量的综合效果,则这 r 个新变量称之为“主成分”,它们两两正交不相关。这 r 个主成分可以在很大程度上反映原来变量的信息。Hui Zou引入了SPCA(Sparse PCA)的概念,他修改了传统的PCA方法,利用主成分负载的稀疏性,使算法变得更加易懂,且得到更为稀疏的结果。

形态学成分分析(MCA)作为一种新兴的信号分解方法,吸引了很多人的注意。MCA根据图像信号组成成分的形态差异性,将图像内容分割为纹理区域和卡通区域。不同区域其拟合字典类型不同。小波变换可以很好的表示图像光滑区域的特征,curvelet变换通过带方向的局部傅里叶基,可以有效的处理边缘特征。离散余弦变换(DCT)以及Gabor变换是纹理区经常采用的两种处理方式。MCA充分的考虑了图像的结构组成部分以及内部特征,广泛用于盲源分离、图像分解、图像修补等。

Julien Mairal将自然图像的自相似性引入到图像恢复模型中。图像的自相似性,其根本是自然图像的统计特征。Julien Mairal非局部模型与稀疏编码结合成一个框架,将噪声在相似块之间进行平均,取得了较好的去噪、去马赛克结果。同样,自相似性在图像去模糊、图像修补方面也展示了其良好的性能。

Weisheng Dong提出了一种新的图像复原模型CSR,利用减小退化图像分解系数与原图分解系数之间的差异来达到复原图像的目的,其本质是自相似性的应用。在超分辨率方面,他提出了自适应稀疏域选择超分辨率算法,认为超分辨率重建结果的优劣很大部分取决于稀疏域的选择,对输入的样本先采用K-均值聚类,采用PCA算法进行词典训练,将非局部相似性(NL)和图像去噪中的自回归(AR)模型与超分辨率重建模型有效结合,提高了超分辨率重建质量。

Nebojsa创造性的提出了图像摘要的概念。他将图像的特征提取为一幅摘要图,在图像处理过程中,对该摘要图进行分解处理,这是合理并且有效的。Louise 利用该思想,在图像去噪方面取得了较好的去噪结果。

Kostadin在变换域,通过一组协作滤波器,将一幅图像中结构相似的二位块聚合成一组,形成一个三维模型,以增强其表示的稀疏性。Aram利用该3D理论,建立了一个新的图像模型―BM3D。BM3D在图像复原方面表现了其卓越的性能。

最近,保持图像几何结构的思想吸引了很多人的注意。Samy Bengio将图像分割成相互重叠的块,结构相似的块组成一个群组,分别对每个组进行分解训练,这就是群组编码的思想,其基本思想类似于非局部思想,也是利用了自然图像的自相似性。关于结构稀疏方面的研究展示了结构分组比简单不重叠的分组更一般的特性。例如,树状分组或是重叠分组。结构稀疏正则化具有十分广阔的应用前景。结构稀疏PCA作为一种新型的有效的非凸稀疏方法,在字典训练方面,可以取得较为理想的结果。

纵观稀疏表示理论出现以后的图像处理论文,广大研究者着重于研究如何获得表示能力强的冗余字典,以及通过结合多重约束,如平滑约束,相似性约束,几何结构不变性约束等来得到高质量的图像,近年来取得了很大的进展。但是稀疏表示属于一种优化问题,涉及到字典学习和稀疏求解的计算过程比较复杂,因而对于该理论在图像的实时处理上受到了限制,因此如何缩短计算时间也是这个模型急需解决的问题。

2 结语

该文介绍了稀疏表示模型,重点对其在提高数字图像质量方面的应用进行了综述,最后指出稀疏表示模型在图像处理中要实用化必须缩短计算时间。

数字图像处理论文范文第5篇

摘要:本文主要介绍了基于结构光双目立体视觉技术的焊缝识别与测量的处理方法,实现了焊缝图像识别与测量的自动化。通过对已有算法的组合设计出了一套相应的算法处理流程。重点研究了焊缝图像预处理以及特征提取部分。在焊缝图像预处理部分,采取中值滤波和灰度最大化对图像进行简要处理,并且结合后续处理步骤对灰度最大化算法进行了一些改变,即只在焊缝边缘附近进行灰度最大化。在特征提取部分,分别介绍了两种不同中心线提取的方法和基于最远距离的特征点提取方法。在以上工作的基础上,运用HALCON进行编程并且开发出一个MFC简单操作界面,将所有程序模块进行集成。实验部分首先验证了该视觉系统的有效性、稳定性和精度,同时为了更加真实的模拟现实情况,我们还进行了强光干扰实验,并且对实验数据进行分析,提出了一些改进措施。

关键词焊缝视觉识别测量,图像处理,特征提取,HALCON,干扰实验

Visual Recognition and Measurement of Weld Seam

Abstract: A vision processing method to identify and measure the weld seam based on structured light binocular stereo vision technology is described in this paper and we automated image recognition and measurement of weld seam. We design a corresponding algorithm processing by a combination of existing algorithms. This paper focuses on the pre-processing and feature extraction section of weld seam image. In image pre-processing part, we use the methods of median filtering and grayscale maximizing to process image briefly, and we change the grayscale maximizing method based on subsequent processing steps, that is, only use it near the edge of the weld seam. In the feature extraction part, we introduce two different methods to extract the centerline and the method of feature point extraction based on the distance. Based on the above work, we program with HALCON and develop a simple user interface of MFC, and then all program modules are integrated. In the experimental section, the validity,stability and accuracy of the visual system are verified, and at the same time, we also conduct a light interference experiments for a more realistic simulation of the actual situation. Finally we analyze the experimental data and make ​​some improvements.

Keywords:Visual measurement and recognition of weld seam, image processing, feature extraction, HALCON, interference experiment

1 绪论

视觉识别与测量以计算机视觉技术为基础,涉及光学、光电子学、信号处理、图像处理等一系列学科。其快速发展使得这一技术已经从实验室研究开始慢慢走向实际生产,具有广泛的应用前景,逐渐受到各类研究人员的重视,已成为生产过程中的关键技术之一。鉴于焊接技术的发展现状以及焊接过程中各种因素的影响,焊接之后焊缝尚无法达到很高的质量,焊缝的后续处理短期内无法避免。要获得质量较高的焊缝就需要进行后期的焊缝磨抛,而人工打磨费时费力,劳动强度大,还不能保证打磨质量。因此研究焊缝视觉识别与测量对磨抛过程实现智能化和自动化是一项非常有意义的工作。本论文旨在通过组合设计一套焊缝图像的识别与测量的算法流程,并且进行编程实现,同时通过实验进行验证以及改进。

2 视觉算法

首先介绍一下双目立体视觉技术,双目立体视觉技术基于视差原理,两摄像机同时记录下空间某一物体的同一特征点,分别获得点P的图像。由P在图像上所处的位置通过一些换算可以求得P在左右摄像机坐标系下的,然后通过坐标的旋转与平移可以得到P点的三维坐标。为了便于理论分析及计算,对实际情况情况进行适当转化做出其原理图,如图2.1所示。

图2.1 双目视觉技术原理图

上述双目立体视觉原理在本论文中很多地方都有运用,包括CCD标定原点获取以及三维测量,在后续不再介绍。

获取焊缝的图像之后,由于采集现场的各种干扰,在对图像进行特征提取之前需要采取相应的措施降低图像的各种干扰,增强图像的对比度,在不破坏图像保存的原有信息的前提下使焊缝更加便于后续的处理。此处重点介绍中值滤波去噪、灰度最大化等过程,这些对于后期焊缝轮廓以及特征点的提取有较大的影响,直至影响最终的测量结果。

中值滤波通常用于去除图像中的噪声以及毛刺,它是一种基于排序统计理论非线性信号处理技术,其基本思路是将待处理数字图像中某一点的灰度值用该点附近邻域中各点灰度值的中值来代替,从而消除孤立的噪声点。处理效果如下图2.2所示。

图2.2 中值滤波后焊缝图像对比

灰度最大化处理指的是将原图像的灰度值范围扩大到0至255,一般对整体偏暗或者偏亮的图像处理效果明显。在对采集到的焊缝图像进行观察过之后,我们可以发现由于激光的能量是比较强的,其亮度一般较大,而背景处很暗,正常的灰度最大化处理效果不明显。在本课题中,我们只关注某一灰度范围内的灰度值,即焊缝边缘处附近的灰度。此处对边缘灰度最大化稍加改变,使得其只作用在焊缝边缘处,而背景和焊缝中心处的灰度被设置为0或者255。不仅使图像对比更明显而且达到了二值化的效果,剔除了一些不必要的干扰。处理效果如图2.3。

图2.3 经灰度最大化处理后焊缝图像对比

在提取出焊缝的轮廓之后,可以将焊缝上下两条轮廓的行坐标相加取平均值,列坐标不变得到焊缝中心线,如图2.4所示。也可以由HALCON中自带的算子直接提取焊缝中心线,它提取中心线是在轮廓曲线法方向上进行的。如图2.5所示。

图2.4 轮廓平均值方法求得的焊缝中心线

图2.5 直接求得的焊缝中心线

在得到焊缝中心线之后,我们就需要在中心线上找出关键点,用于计算焊缝的参数。如图2.6所示,B、C、D三点为关键点,可以通过坐标旋转进行提取。以C点为例,连接AE并且将中心线绕A旋转至AE水平找到曲线上行坐标的最大值,该最大值处所对应的点的坐标就是特征点C。同理可以找到B点和D点。找到左右目图像的特征点之后可以还原他们在世界坐标中的三维坐标,从而可以计算出焊缝的相关参数。

图2.6 焊缝特征点提取示意图

3 焊缝视觉软件开发

程序框架如下图3.1所示,第一步在HALCON中编写各个模块的组成程序,如二值化、中值滤波、边缘提取等等,然后在HALCON 中将其组合,使其能实现某一功能,比如图像增强、特征提取等等,在这之后我们将HALCON程序转存为VC程序,并且建立起对应的程序工程,使其可以实现独立的功能。最后编写MFC界面,在每个按钮对应的位置添加相应的响应函数调用之前的各个功能模块,将所有程序集合在一起,通过界面响应外界的操作。集成之后的软件如图3.2所示。

图3.1 程序总体框架

图3.7 MFC主要界面

4实验分析及研究

在测得实际数据(如图4.3)之后,我们使用视觉系统对相同的焊缝段进行测量,通过比较实测数据和视觉测量数据来验证算法的有效性。为避免实验的偶然性,我们采用视觉系统对划定好的焊缝重复测量三次,另一方面还能验证该套视觉处理系统的重复稳定性,即对同一段焊缝在完全相同的条件测量多次观察每次测量的数据是否一致。实验所得数据如下图4.2所示。

图4.1 视觉测量与实测焊缝余高对比图 4.2 视觉测量与实测焊缝余高对比综合图

由图4.1易知,视觉测得数据与实测数据之间并没有特别大的差距,其变化趋势也基本一致,这说明该视觉系统具有一定的可用性。从实验平均值来看,实测平均值为1.8923mm视觉测量平均值为1.8057mm,误差大概为5%。从图4.2可以看出,使用视觉测量时,三次测量结果之间没有明显差异,数据几乎一致,只存在很小的差别,考虑到现实测量过程中存在各种各样的随机误差,这些差异应该是被允许的。

图4.3 焊缝实测数据图 4.4 强光干扰下视觉系统所测数据与实际数据对比

在实际生产现场往往有可能出现强光干扰,这对于图像采集而言影响特别大,会使采集到的图像严重失真,存在很严重的噪点,严重时可能无法提取像素的有用信息,使得图像失去其意义,如图4.5右半部分。为防止这种情况出现,我们进行相应的强光干扰实验,并且提出相应的解决措施。在实验之前我们先采集在手电筒光照下的图片,观察发现干扰较强时,图片质量很低,几乎不能获得什么有用信息,如图4.4右目图像所示。为解决这一问题,我们使用了窄带滤波片,滤除不必要的干扰光,只让激光器的光所对应的频率光通过摄像机镜头。其后获得的图像对比如图:

图4.4 强光干扰下加滤光片前后采集图片对比图

由上图可以明显看出,加上滤光片之后采集到的图片质量有很大改善,右边图像明显无法进行利用,而左目图像则可以进行处理。在加滤光片的条件下,我们使用LED手电筒做干扰光源,在焊缝上方一米处垂直照射焊缝模拟强光烦扰情况,并且持续到所有焊缝图片采集结束。重复进行了三组实验,用来研究强光 干扰下系统的性能。此处给出其中一组数据如图4.4。强光干扰下测得实验数据如上图绿线所示,其平均值为1.7953mm,与之前视觉所测的数据相差不大,与实测数据的差距也没多大变化。可以看出在加上滤光片的前提下,强光对该系统测量性能影响不大。

5 结论

通过对已有算法的组合,设计出一套从焊缝图像预处理到特征提取,最后获得焊缝具体参数的算法流程。在软件方面,用HALCON对各个图像处理模块进行了编程,在VC环境中配置了HALCON函数库,并且制作了MFC界面使各个程序模块能够在该界面下集成。在上述工作基础上,进行了算法有效性和稳定性试验以及强光干扰试验,对实验数据进行了处理并且进行了一些改进。

参考文献

[1] Carsten Steger,Markus UlrichChristian,Wiedemann.Machine Vision Algorithms and Application. 北京:清华大学出版社,2008.

[2] 何斌等. Visual C++数字图像处理.北京市:人民邮电出版社,2002

[3] 张宏林.精通Visual C++数字图像处理典型算法及实现.北京市:人民邮电出版社,2008