首页 > 文章中心 > 移动通信新技术论文

移动通信新技术论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇移动通信新技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

移动通信新技术论文

移动通信新技术论文范文第1篇

【论文关键词】移动通信;3G;发展;展望

伴随着移动通信市场的快速发展,用户对更高性能的移动通信系统提出了更高要求,希望享受更为丰富和高速的通信业务。第二代移动通信运营商发展速度趋于缓和而竞争越加激烈,为寻找新的增长点,通过发展数据业务来提高自身的服务质量和业务类型,需要3G的支持。同时由于第二代移动通信无线频率资源日趋紧张,已不能满足长期的通信需求发展需要。

一、移动通信的发展历程

第一代移动通信系统是在20世纪80年代初提出的,它完成于20世纪90年代初。第一代移动通信系统是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。

第二代移动通信系统(2G)起源于90年代初期。欧洲电信标准协会在1996年提出了GSMPhase2+,目的在于扩展和改进GSMPhase1及Phase2中原定的业务和性能。它主要包括CMAEL(客户化应用移动网络增强逻辑),SO(支持最佳路由)、立即计费,GSM900/1800双频段工作等内容,也包含了与全速率完全兼容的增强型话音编解码技术,使得话音质量得到了质的改进;半速率编解码器可使GSM系统的容量提高近一倍。在GSMPhase2+阶段中,采用更密集的频率复用、多复用、多重复用结构技术,引入智能天线技术、双频段等技术,有效地克服了随着业务量剧增所引发的GSM系统容量不足的缺陷;自适应语音编码(AMR)技术的应用,极大提高了系统通话质量;GPRS/EDGE技术的引入,使GSM与计算机通信/Internet有机相结合,数据传送速率可达115/384kbit/s,从而使GSM功能得到不断增强,初步具备了支持多媒体业务的能力。尽管2G技术在发展中不断得到完善,但随着用户规模和网络规模的不断扩大,频率资源己接近枯竭,语音质量不能达到用户满意的标准,数据通信速率太低,无法在真正意义上满足移动多媒体业务的需求。

二、第三代移动通信系统概述

第三代移动通信业务主要是话音和中低速数据,码率为384kb/s(局域网可达2Mb/s),因而可传送比目前GSM(第二代移动通信)更高码率的信息。随着多媒体业务的发展,2Mb/s的码率将越来越不能满足用户各种新的宽带业务的需要,因此国际上已开始研究第四代移动通信系统,第一步目标是10Mb/s以上。我们国内则尚未启动。因此需尽早开始研究其关键技术。需要解决的关键技术有:宽带多媒体移动通信系统的体系结构,包括频段、多址方法、无线接入技术、软件无线电的硬件和软件、多载波调制和OFDM技术、自适应天线阵、高效信道编码技术(如Turbo码)等。

第三代移动通信系统(3G),也称IMT2000,是正在全力开发的系统,其最基本的特征是智能信号处理技术,智能信号处理单元将成为基本功能模块,支持话音和多媒体数据通信,它可以提供前两代产品不能提供的各种宽带信息业务,例如高速数据、慢速图像与电视图像等。如WCDMA的传输速率在用户静止时最大为2Mbps,在用户高速移动时最大支持144Kbps,所占频带宽度5MHz左右。但是,第三代移动通信系统的通信标准共有WCDMA,CDMA2000和TD-SCDMA三大分支,共同组成一个IMT2000家庭,成员间存在相互兼容的问题,因此已有的移动通信系统不是真正意义上的个人通信和全球通信;再者,3G的频谱利用率还比较低,不能充分地利用宝贵的频谱资源;第三,3G支持的速率还不够高,如单载波只支持最大2Mbps的业务,等等。这些不足点远远不能适应未来移动通信发展的需要,因此寻求一种既能解决现有问题,又能适应未来移动通信的需求的新技术(即新一代移动信:nextgenerationmobilecommunication)是必要的。第三代移动通信技术的基本特点:(1)全球统一频段,统一标准,全球无缝覆盖和漫游。(2)频谱利用率高。(3)在144kbps(最好能在384kbps)能达到全覆盖和全移动性,还能提供最高速率达2Mbps的多媒体业务。(4)支持高质量话音、分组多媒体业务和多用户速率通信。(5)有按需分配带宽和根据不同业务设置不同服务等级的能力。(6)适应多用户环境,包括室内、室外、快速移动和卫星环境。(7)安全保密性能优良。(8)便于从第二代移动通信向第三代移动通信平滑过渡。(9)可与各种移动通信系统融合,包括蜂窝、无绳电话和卫星移动通信等。(10)终端(手机)结构简单,便于携带,价格较低。

三、第四代移动通信系统

4G系统中有两个基本目标:一是实现无线通信全球覆盖;二是提供无缝的高质量无线业务。目前正在构思中的4G通信具有以下特征:(1)网络频谱更宽。要想使4G通信达到100Mbps的传输速率,通信运营商必须在3G网络的基础上进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍;(2)通信速度更快。人们研究4G通信的最初目的是为了提高蜂窝电话和其他移动终端访问Internet的速率,因此,4G通信最显著的特征就是它有更快的无线传输速率。据专家估计,第四代移动通信系统的传输速率速率可以达到10M~20Mbps,最高可以达到100Mbps;(3)通信更加灵活。从严格意义上说,4G手机的功能已不能简单划归“电话机”的范畴,因为语音数据的传输只是4G移动电话的功能之一而已。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端;(4)智能性更高。第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多目前还难以想象的功能;(5)兼容性更平滑。要使4G通信尽快地被人们接收,还应该考虑到让更多的用户在投资最少的情况下较为容易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从3G平稳过渡等特点。

总之,随着新问题、新要求的不断出现,第四代移动通信技术将会相应地调整、完善和进一步发展。纵观移动通信技术的发展规律和第四代通信技术的优点,我们相信,不远的将来,人们将不受时间、地点限制,可以自由自在地利用移动网络获取和传递信息。从而人们的学习、工作、生活将会发生更深刻的变化。

参考文献:

[1]胡可刚,王树勋,刘立宏.移动通信中的无线定位技术[J].吉林大学学报,2005,23(4)

移动通信新技术论文范文第2篇

对于5G的应用和未来憧憬,产业界和学术界对其都进行了相关阐述,从他们的阐述中得出,人们对未来5G技术的需求,相比之下,5G应具备下面的基本特征。

1.1数据流量的增长

产业界人士预测10年以后,移动数据量将达到1000倍。5G的吞吐量能力特别大,就算在很忙的时候也能提升到1000倍,至少可以到达100Gbit/s/km2以上。

1.2联网设备扩大100倍

伴随着智能终端和物联网的迅速发展,预计10年后,联网的设备数目将增加到600~1000达部,在未来里,5G网络单位覆盖面积将大大增加,相比之下是目前4G网络将增长100倍,相对一些特殊的应用,单位面积将通过5G网络的设备数目达到100万/km2。

1.3峰值速率至少达到10Gbit/s

面向2020年以后的5G网络,相对于目前的4G网络的峰值速率需提高10倍以上,然而达到10Gbit/s,在特殊情况下,用户单链峰值速率都要求需达10Gbit/s。

1.4用户速率可达到10Gbit/s,特殊需求达到100Gbit/s

在未来的5G网络中,在一般条件下,用户在任何时候都能获得10Gbit/s以上的速率,对于特殊需求的业务和用户将达到100Gbit/s,比如:急救车内高清医疗图像传输服务。

1.5可靠性高与时间短

2020年后的5G网络,需要满足用户在线服务,能随时随地的进行各种体验,并且还需满足工业信息系统、应急通信等更多场景需求。需要进一步地降低用户的控制时延,与4G网络相比,缩短了5~10倍。对于关系重大财产安全的业务和人类生命可靠性必须提升到99.9999%以上。

1.6频谱利用相对较高

由于5G网络用户的业务量大、规模大、流量高,相对来说,使用频率需求量也大,需要通过压缩等创新技术及频率倍增的应用,来提高频率利用率。相对4G网络来说,5G的频谱效率要5~10倍的提高,来解决流量带来的频谱短缺问题。

1.7网络消耗能源

相对来说较低节省能源、绿色低碳是未来通信技术的发展的方向,在未来的5G网络中,需要利用节约能源的设计,使网络能耗效率都有待提高1000倍,来满足1000倍流量的需求,但是现有网络与能耗有相当的水平。

25G关键技术概述

从目前的角度看,5G的关键技术仍在发展阶段和研究阶段,但学术界和产业认为,5G的关键技术应包含下几个方面:一是5G关键技术与无线网络构架;二是5G无线输送的关键技术;三是5G移动通信总体技术系统;四是5G移动通信验证技术。接下来对业界十分关注的5G技术进行总的介绍。

2.1高频段传输

目前,移动通信系统频段主要是3GHz以内,伴随着用户人数的增加,频谱资源也变得十分拥挤,然而在高频段里,如毫米波频率是27.3~350GHz,而带宽则高达284.6GHz,超过微波全部带宽的12倍。微波与毫米波相比,元器件的尺寸要小很多,毫米波系统能轻而易举小型化,实现进行极高速短距离通信,支持5G传输速率和容量需求。

2.2多天线传输技术

多天线技术,经历了从二维到三维,从无源到有源,从高阶多输入多输出到大规模阵列的发展,能把频谱利用率提高到数十五倍甚至再高,是目前5G技术唯一重要研究方向。

2.3同时同频全双工技术

同时同频全双工技术被称为高效的频谱效率技术,该技术在相同的物理信道上对两个方向信号的进行传输,在通信双工节点的接收机处通过对取消自身发射的信号干扰,在发射信号时候,同时接收另一节点的相同频信号。

2.4设备间直接通信技术

以往的移动通信系统连网方式,以基站为中心点,实现对市区覆盖,基站及中继站是不能随便移动的,网络结构是有限制的,在未来的5G网络里,用户规模大,数据流量大,以传统的基站模式为中心的组网方式,是没办法满足业务需求。D2D直接通信技术在没有基站的情况下也能运转,实现通信设备的直接通信,开拓了接入方式和网络连接。

2.5密集网络技术

5G是一个智能化、宽带化、多元化、综合化的网络,数据流量是4G的1000倍。想要实现目标有两种技术:一是在宏基站处布置大规模天线来取得室外空间增益,二是布置密集网络来满足室外和室内数据需求。在未来里,向高频段宽带,将采用更加密集的方案,部署高达200个以上扇区。

2.6新型网络架构技术

为了满足在未来里,使用高容量、大规模的用户需求,未来的5G网络架构将具有低时延、低成本、易维护、扁平化特点。目前产业界主要集中在云架构和C-RAN的研究上。

2.7智能化技术

5G的中心网络,是由大型的服务器来组成的云计算平台,通过交换机网络及数据交换功能的路由器与基站相连接,宏基站具有大数据存储功能和云计算功能,时效性特强或特别大的数据,提交到云计算中心进行网络处理,终端或基站的数量、形态多,不一样的业务选取不一样的频段,连接方式和天线多样化。所以,需要具有自动模式切换、智能配置、智能识别的功能,实现智能组网,在未来里,智能化技术是实现5G网络的是关键技术。

3研究情况及趋势

从目前来看,全球对5G技术的研究,都处在早期阶段,将来还需要进行标准化、外场试验、技术研究等阶段,最后才能实现商用部署,但是,尽管对5G技术和概念仍然在进行深究,对5G标准的大方向,现在产业界和学术界在基本上达成了共识。

4结束语

移动通信新技术论文范文第3篇

关键词:第四代移动通信(4G);正交频分复用;多模式终端

一、引言

移动通信是指移动用户之间,或移动用户与固定用户之间的通信。随着电子技术的发展,特别是半导体、集成电路和计算机技术的发展,移动通信得到了迅速的发展。随着其应用领域的扩大和对性能要求的提高,促使移动通信在技术上和理论上向更高水平发展。20世纪80年代以来,移动通信已成为现代通信网中不可缺少并发展最快的通信方式之一。

回顾移动通信的发展历程,移动通信的发展大致经历了几个发展阶段:第一代移动通信技术主要指蜂窝式模拟移动通信,技术特征是蜂窝网络结构克服了大区制容量低、活动范围受限的问题。第二代移动通信是蜂窝数字移动通信,使蜂窝系统具有数字传输所能提供的综合业务等种种优点。第三代移动通信的主要特征是除了能提供第二代移动通信系统所拥有的各种优点,克服了其缺点外,还能够提供宽带多媒体业务,能提供高质量的视频宽带多媒体综合业务,并能实现全球漫游。现在用的大多是第二代技术,第三代技术还不太成功,但已有了第四代技术的设想。第四代移动通信系统(4G)标准比第三代具有更多的功能。

二、4G移动通信简介

第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。第四代移动通信标准比第三代标准拥有更多的功能。第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时、数据采集、远程控制等综合功能。此外,第四代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。目前正在开发和研制中的4G通信将具有以下特征:

(一)通信速度更快

由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信的特征莫过于它具有更快的无线通信速度。专家预估,第四代移动通信系统的速度可达到10-20Mbit/s,最高可以达到100Mbit/s。

(二)网络频谱更宽

要想使4G通信达到100Mbit/s的传输速度,通信运营商必须在3G通信网络的基础上对其进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍。

(三)多种业务的完整融合

个人通信、信息系统、广播、娱乐等业务无缝连接为一个整体,满足用户的各种需求。4G应能集成不同模式的无线通信——从无线局域网和蓝牙等室内网络、蜂窝信号、广播电视到卫星通信,移动用户可以自由地从一个标准漫游到另一个标准。各种业务应用、各种系统平台间的互联更便捷、安全,面向不同用户要求,更富有个性化。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端。

(四)智能性能更高

第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多难以想象的功能。例如,4G手机将能根据环境、时间以及其他因素来适时提醒手机的主人。

(五)兼容性能更平滑

要使4G通信尽快地被人们接受,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从2G、3G平稳过渡等特点。

(六)实现更高质量的多媒体通信

4G通信提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频的信道传送出去,为此4G也称为“多媒体移动通信”。

(七)通信费用更加便宜

由于4G通信不仅解决了与3G的兼容性问题,让更多的现有通信用户能轻易地升级到4G通信,而且4G通信引入了许多尖端通信技术,因此,相对其他技术来说,4G通信部署起来就容易、迅速得多。同时在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,这样就能够有效地降低运营成本。

三、4G移动通信的接入系统

4G移动通信接入系统的显着特点是,智能化多模式终端(multi-modeterminal)基于公共平台,通过各种接技术,在各种网络系统(平台)之间实现无缝连接和协作。在4G移动通信中,各种专门的接入系统都基于一个公共平台,相互协作,以最优化的方式工作,来满足不同用户的通信需求。当多模式终端接入系统时,网络会自适应分配频带、给出最优化路由,以达到最佳通信效果。目前,4G移动通信的主要接入技术有:无线蜂窝移动通信系统(例如2G、3G);无绳系统(如DECT);短距离连接系统(如蓝牙);WLAN系统;固定无线接入系统;卫星系统;平流层通信(STS);广播电视接入系统(如DAB、DVB-T、CATV)。随着技术发展和市场需求变化,新的接入技术将不断出现。

不同类型的接入技术针对不同业务而设计,因此,我们根据接入技术的适用领域、移动小区半径和工作环境,对接入技术进行分层。

分配层:主要由平流层通信、卫星通信和广播电视通信组成,服务范围覆盖面积大。

蜂窝层:主要由2G、3G通信系统组成,服务范围覆盖面积较大。

热点小区层:主要由WLAN网络组成,服务范围集中在校园、社区、会议中心等,移动通信能力很有限。

个人网络层:主要应用于家庭、办公室等场所,服务范围覆盖面积很小。移动通信能力有限,但可通过网络接入系统连接其他网络层。

固定网络层:主要指双绞线、同轴电缆、光纤组成的固定通信系统。

网络接入系统在整个移动网络中处于十分重要的位置。未来的接入系统将主要在以下三个方面进行技术革新和突破:为最大限度开发利用有限的频率资源,在接入系统的物理层,优化调制、信道编码和信号传输技术,提高信号处理算法、信号检测和数据压缩技术,并在频谱共享和新型天线方面做进一步研究。为提高网络性能,在接入系统的高层协议方面,研究网络自我优化和自动重构技术,动态频谱分配和资源分配技术,网络管理和不同接入系统间协作。提高和扩展IP技术在移动网络中的应用;加强软件无线电技术;优化无线电传输技术,如支持实时和非实时业务、无缝连接和网络安全。

四、4G移动通信系统中的关键技术

(一)定位技术

定位是指移动终端位置的测量方法和计算方法。它主要分为基于移动终端定位、基于移动网络定位或者混合定位三种方式。在4G移动通信系统中,移动终端可能在不同系统(平台)间进行移动通信。因此,对移动终端的定位和跟踪,是实现移动终端在不同系统(平台)间无缝连接和系统中高速率和高质量的移动通信的前提和保障。

(二)切换技术

切换技术适用于移动终端在不同移动小区之间、不同频率之间通信或者信号降低信道选择等情况。切换技术是未来移动终端在众多通信系统、移动小区之间建立可靠移动通信的基础和重要技术。它主要有软切换和硬切换。在4G通信系统中,切换技术的适用范围更为广泛,并朝着软切换和硬切换相结合的方向发展。

(三)软件无线电技术

在4G移动通信系统中,软件将会变得非常繁杂。为此,专家们提议引入软件无线电技术,将其作为从第二代移动通信通向第三代和第四代移动通信的桥梁。软件无线电技术能够将模拟信号的数字化过程尽可能地接近天线,即将A/D和D/A转换器尽可能地靠近RF前端,利用DSP进行信道分离、调制解调和信道编译码等工作。它旨在建立一个无线电通信平台,在平台上运行各种软件系统,以实现多通路、多层次和多模式的无线通信。因此,应用软件无线电技术,一个移动终端,就可以实现在不同系统和平台之间,畅通无阻的使用。目前比较成熟的软件无线电技术有参数控制软件无线电系统。

(四)智能天线技术

智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,能满足数据中心、移动IP网络的性能要求。智能天线成形波束能在空间域内抑制交互干扰,增强特殊范围内想要的信号,这种技术既能改善信号质量又能增加传输容量。

(五)交互干扰抑制和多用户识别

待开发的交互干扰抑制和多用户识别技术应成为4G的组成部分,它们以交互干扰抑制的方式引入到基站和移动电话系统,消除不必要的邻近和共信道用户的交互干扰,确保接收机的高质量接收信号。这种组合将满足更大用户容量的需求,还能增加覆盖范围。交互干扰抑制和多用户识别两种技术的组合将大大减少网络基础设施的部署,确保业务质量的改善。

(六)新的调制和信号传输技术

在高频段进行高速移动通信,将面临严重的选频衰落(frequency-selectivefading)。为提高信号性能,研究和发展智能调制和解调技术,来有效抑制这种衰落。例如正交频分复用技术(OFDM)、自适应均衡器等。另一方面,采用TPC、Rake扩频接收、跳频、FEC(如AQR和Turbo编码)等技术,来获取更好的信号能量噪声比。

五、OFDM技术在4G中的应用

若以技术层面来看,第三代移动通信系统主要是以CDMA为核心技术,第四代移动通信系统技术则以正交频分复用(OrthogonalFreqencyDivisionMultiplexer,OFDM)最受瞩目,特别是有不少专家学者针对OFDM技术在移动通信技术上的应用,提出相关的理论基础。例如无线区域环路(WLL)、数字音讯广播(DAB)等,都将在未来采用OFDM技术,而第四代移动通信系统则计划以OFDM为核心技术,提供增值服务。

在时代交替之际,旧有系统之整合与升级是产业关心的话题,目前大家谈的是GSM如何升级到第三代移动通信系统;而未来则是CDMA如何与OFDM技术相结合。可以预计,CDMA绝对不会在第四代移动通信系统中消失,而是成为其应用技术的一部份,或许未来也会有新的整合技术如OFDM/CDMA产生,前文所提到的数字音讯广播,其实它真正运用的技术是OFDM/FDMA的整合技术,同样是利用两种技术的结合。因此未来以OFDM为核心技术的第四代移动通信系统,也将会结合两项技术的优点,一部份将是以CDMA的延伸技术。

六、结束语

对于现在的人来说,未来的4G通信的确显得很神秘,不少人都认为第四代无线通信网络系统是人类有史以来最复杂的技术系统。总的来说,要顺利、全面地实施4G通信,还将可能遇到一些困难。

首先,人们对未来的4G通信的需求是它的通信传输速度将会得到极大提升,从理论上说最高可达到100Mbit/s,但手机的速度将受到通信系统容量的限制。据有关行家分析,4G手机将很难达到其理论速度。

其次,4G的发展还将面临极大的市场压力。有专家预测,在10年以后,2G的多媒体服务将进入第三个发展阶段,此时覆盖全球的3G网络已经基本建成,全球25%以上的人口使用3G,到那时,整个行业正在消化吸收第三代技术,对于4G技术的接受还需要一个逐步过渡的过程。

因此,在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,使移动通信从3G逐步向4G过渡。

参考文献:

1、谢显忠等.基于TDD的第四代移动通信技术[M].电子工业出版社,2005.

移动通信新技术论文范文第4篇

1前言

移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。

2网络业务数据化、分组化

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。

6更有效利用频率

无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。

模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。

GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。

7网络趋于融合,走向统一

7.1第三代移动通信系统的结构

第三代系统的主要目标是将包括卫星在内的所有网络融合为可以替代众多网络功能的统一系统,它能够提供宽带业务并实现全球无缝覆盖。为了保护运营公司在现有网络设施上的投资,第二代系统向第三代系统的演进遵循平滑过渡的原则,现有的GSM、D-AMPSIS-136等第二代系统均将演变成为第三代系统的核心网络,从而形成一个核心网家族,核心网家族的不同成员之间通过NNI接口联结起来,成为一个整体,从而实现全球漫游。在核心网络家族的,形成一个庞大的无线接入家族,现有的几乎所有的无线接入技术以及WCDMA等第三代无线接入技术均将成为其成员。

移动通信新技术论文范文第5篇

(1)实验教学从属于理论教学,实验教学得不到足够的重视,实验是为验证理论知识,理论教学和实践教学相脱节;

(2)实验内容陈旧,无法赶上移动通信新型器件和装置的发展,缺乏新的实验教学手段和方法;设备的更新换代比较慢,实验的开展受到硬件实验设备的限制,跟不上技术革新的步伐;

(3)验证性实验多,综合性实验以及创新性实验少,在实验方法上基本是简单的模仿,学生被动学习,缺少积极的思维和创新,也没有探索的目标和方向,没有良好的实验教学改革措施;

(4)在移动通信原理课程中,关于调制解调等有关内容偏重理论,太过抽象,枯燥乏味。受资金和仪器设备不足等实验条件的限制以及学时较少的影响,很多移动通信原理实验(例如正交频分多路实验)不能由学生实际动手完成,一些实验内容仅仅能验证理论课学习的内容,显然对学生创新能力的培养是非常不利的。积极探索移动通信原理实验教学的改革,尝试开展仿真创新实验教学,对于学生更好地学习移动通信原理课程,培养创新能力起着重要的作用。

2仿真教学的引入与创新能力的培养

传统的移动通信原理课程理论教学,大多重在讨论某种技术或算法的原理及其理论推导,以方便理解调制解调器原理和无线电波变换过程,从而加深信源编解码和信道编解码、无线电波发射与接收等知识的理解。在常规的实验课上,对移动通信实验原理的讲解也要在黑板上书写,既不够形象、直观,又比较呆板。由于有大量的波形分析内容,教师在黑板上画图也是一件比较困难的事情,而且学生不易理解。在传统的设计性实验中,学生常因受到固定的实验设备的束缚而改变实验设计思路,不可避免地存在错误和不足,致使电路调试费时费力,甚至引起元器件和仪器设备损坏,使实验不能达到预期效果。因此,在移动通信原理实验教学中引入仿真实验,是对理论课教学的必要补充。学生可以充分利用仿真实验软件在数据采集、储存、分析、处理、传输及控制等方面的强大功能,进行方案的论证、选定和电路的设计,可以方便地改变参数来调整电路,使之更好地接近设计要求,设计出较为理想的电路。学生还可以根据要求输出电路的测试参量或波形,作为真实电路调试的依据和参考;可利用计算机进行不同的仿真操作,得到与使用实际实验装置进行真实实验相同的结果。另外,一些较为复杂的移动通信创新性实验和综合性实验,无法通过模拟实验完成实验课教学,但是通过引入仿真教学,便可以扩大实验教学的维度、扩大了实验教学的可操作性。移动通信是通信原理、高频电路和信号处理的交叉学科,学生只通过理论教学很难理解学科交叉性,对移动通信原理的理解也不够全面。通过引入仿真教学,既能加强学生对移动通信原理的认识,又能加强学生对实际电路的认识,为后续课程学习打下坚实的基础。仿真实验教学的引入,很好地支持了移动通信原理的学习,可以进行新技术的研究,拓展学生的工程意识,提高设计调试电路的灵活性,最大限度地发挥学生的创新思维,开阔学生的视野。

3仿真教学开展实例分析

3.1理论教学与正交调制解调分析

正交调制解调系统的原理是把整个可用信道频带B划分为N个带宽为f的子信道,把N个串行码元变换为N个并行的码元,将高速信号变换为低速的并行子数据流,分别调制这N个子信道载波进行同步传输,并在终端分开正交信号。信号的调制和解调实际是采用数字信号处理的方法来实现的。先将信号串并变换成低速支路,各支路的调制可以采用数字调制方式,然后进行快速傅里叶逆变换(IFFT)、快速傅里叶变换(FFT)来实现。

3.2正交频分电路仿真实验分析

通常在正交频分电路分析中,往往会忽略讲解和分析子载波调制快速傅里叶变换和反变换等内容。让学生从理论公式推导中理解OFDM原理,并利用Matlab编程实现不同子载波数的调制信号,可以验证对子载波数调制状态的影响,进一步验证理论公式并加深理解。可以用理论推导和实验验证两种方法来理解调制。通过正交频分各步骤的波形图,形象地描绘信号调制解调的过程,逼真地显现出真实信号传输变化的实时动态过程。

(1)确定参数。假设参数为:子载波数为8,FFT长度为8,符号速率、比特率、保护间隔长度为2,信噪比12,插入导频数。基本的仿真可以不插入导频,导频数可以为0。通过运行仿真及修改参数设置,教师可引导学生逐步实验,观察分析仿真结果并给出结论。通过示波器模块可以直观地观察到二进制随机信源。

(2)产生数据。使用随机数产生器产生二进制数据。可以将原序列化为16进制的码元图,通过改变数据率观察仿真波形。

(3)子载波调制。利用Matlab工具仿真实现BPSK、QPSK、16QAM、64QAM等4种调制方式。按照星座图,将每个子信道上的数据映射到星座图点的复数表示。通过改变支路不同的调制方式,观察到仿真波形,每次课都会有各式各样新的实验波形,可以直观地观察到二进制随机信源,以及将一路高速数据转换成多路低速数据的波形。

(4)IFFT运算。对上一步得到的同相分量和正交分量进行IFFT运算。为便于理解,可采用仿真软件直观地表现子信道上的数据与OFDM符号之间傅里叶逆变换关系。当子信道的脉冲为矩形脉冲时,具有sinc函数形式的频谱。当改变系统(N)时,OFDM功率谱形状也随之改变。

(5)加入保护间隔,加入噪声。由IFFT运算后的每个符号的同相分量和正交分量分别转换为串行数据,并将符号尾部G长度的数据加到头部,构成循环前缀。

(6)并串转换。将每个符号分布在子信道上的数据还原为一路串行数据。

(7)FFT运算。对每个符号的同相分量和正交分量按照(Ich+Qch×i)进行FFT运算。由于噪声和信道的影响,接收端收到的每个子信道上的数据,映射到星座图不再是严格的发送端的星座图。将得到的星座图上的点按照最近原则判决为原星座图上的点,并按映射规则还原为一组数据。利用以上设计的信号,在Matlab中编程实现该信号的调制,画出调制前后信号的时序图。此时,学生容易理解此种调制方式为何IFFT被称调制。在此基础上,学生通过理论分析以及Matlab实验画图验证,进一步加深了对正交频分电路的理解。

4结束语