首页 > 文章中心 > 监测系统论文

监测系统论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇监测系统论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

监测系统论文

监测系统论文范文第1篇

参考注射泵的检测标准和出厂标准,确定微量注射泵的质量检测流程。在Hydrograph软件中登记微量注射泵的设备编号和所属科室信息,将流速和测试时间分别设为10mL/h和30min,同时设置微量注射泵的流速为10mL/h,记录流速为10mL/h的平均流速和累积流量。测试完成后分别设置Hydrograph软件和微量注射泵的流速为60mL/h,测试10min,记录流速为60mL/h的平均流速和累积流量。图1所示为Hydrograph软件记录的60mL/h流量检测曲线示意图,图中双纵坐标分别为实时流速和累积流量,横坐标为测试时间,可读得平均流速和总的累积流量分别为60.31mL/h和9.82mL,测试时间共9min46s。流速相对设定值误差在±5%内合格。流速测试完成后,分别设置Hydrograph软件和微量注射泵的流速为99.9mL/h进行阻塞压力报警测试,记录报警时间、报警压力和停止压力。阻塞压力分为高低两档,高档阻塞压力设定值为800mmHg,偏差值在±200mmHg内合格;低档阻塞压力设定值为300mmHg,偏差值在±100mmHg内合格。图2所示为Hydrograph软件记录的阻塞压力报警曲线示意图,可见报警压力为294mmHg,报警时间为37s,停止压力约为120mmHg。

2结果

剔除由于数据缺失影响统计分析的检测个案后,有效检测个案共251例(通道)。10mL/h和60mL/h的流速测试结果分别见表1和表2。可见流速为10mL/h的合格率为64.9%,60mL/h的合格率为93.2%。表3所示为平均流速接近或大于流速设定值两倍的流速测试原始记录。图3和图4所示分别为低阻塞压力和高阻塞压力报警统计分布图,结果表明低阻塞压力分布的合格率为38.4%,低于和高于合格范围的占比分别为50%和11.6%。高阻塞压力分布的合格率为13.4%,低于和高于合格范围的占比分别为84.3%和2.3%。高低阻塞压力均合格的仪器仅有29台。

3讨论

由表1可见10mL/h流速相对误差小于-5%的微量注射泵占30.3%,由表2可见60mL/h流速相对误差小于-5%的微量注射泵占4.8%。由于10mL/h和60mL/h流速测试的累积流量分别为5mL和10mL,可见增加测试的累积流量可以显著改善流速测试结果。推头和滑杆中存在粘稠液体或金属滑杆生锈,或者推头松动造成推头和滑道之间摩擦力增大,均会导致测量流速偏低。喷除锈清洁剂清洗后微量注射泵流速精度合格。

表3中序号1和2的60mL/h流速误差在±5%内,而10mL/h流速明显大于流速设定值的两倍,且10mL/h流速测试的累积流量大于设定值5mL的两倍,这里的测试误差主要是由10mL/h测试中测试人员人为推动推头造成的,重新测试发现流速测试合格。序号3-6流速均接近设定值的两倍,且有部分数据缺失(表3中用“0”表示),这里的数据缺失是由于完成一项流速测试发现流速误差过大因而未对另一项流速进行测试,属于测试人员的主观行为。虽然10mL/h和60mL/h测试结果中各有一组数据缺失,不会影响10mL/h和60mL/h的流速测试结果中相对误差的一致性,但会影响两组流速的合格率。考虑这两组缺失数据的影响,流速为10mL/h和60mL/h的合格率分别应该修正为64.5%和92.8%。如表3序号3-6所示,共有四台(占比1.59%)微量注射泵流速接近设定值的两倍,检查发现内部芯片引脚短路,更换芯片后微量注射泵工作正常。

由图3和图4可见,注射泵的阻塞压力合格率较低,且低于合格范围的占比远大于高于合格范围的占比。注射泵集中检测时反复使用,造成注射器活塞与管壁摩擦力变大,导致在较低的管路阻塞压力下产生压力报警,这一报警压力并不能精确地反映注射泵正常工作时的报警功能。建议使用与注射泵匹配的全新注射器进行注射泵的质量检测,并及时进行注射泵质量检测结果的统计分析,在压力报警明显偏低时考虑更换注射器。微量注射泵的质量受到动力泵性能、检测传感器和压力传感器的灵敏度等多个因素的影响,输液精度很大程度上取决于输液管路的精度,使用非注射泵专用注射器和泵管会使得流速相对误差显著增加。微量注射泵的外观检查和性能测试中任意一项不符合要求即为不合格,本次统计结果显示注射泵的总体合格率为13.4%。不合格因素主要是性能测试不达标,主要来源是阻塞压力偏低,且高阻塞压力相对低阻塞压力合格率更低。

监测系统论文范文第2篇

(1)地球站的安全问题地球站作为卫星通信网络地面应用系统的重要组成部分,是负责发送和接收通信信息的地面终端,地球站的数据和发送的信令是用户行为的直接体现。作为卫星通信网络中的节点,地球站的正常运行直接关系到整个卫星通信网络通信的质量高低和安全性。地球站异常包括很多方面,除了地球站本身的故障之外,还包括地球站被仿冒、丢失,被非法用户使用或者被敌方缴获等。在非安全的环境下,敌方可以通过监听网络、控制信道,分析网络管理信息的模式、格式和内容,获得通信网的大量信息,这些信息包括网内地球站成员及其入退网事件,通信流量和多个地球站之间的通信频率。同时,也可以直接伪造、篡改网控中心信息、对地球站设置非法参数、干扰地球站的通信流程、使地球站之间的通信失败、使合法用户异常退网。敌方还可以侵入地球站,干扰网管主机、窃取网络配置信息、篡改网络运行参数等。造成地球站异常的这些原因中,由于用户的非法操作和非法用户的入侵行为引起的异常,对卫星网的安全威胁更大,造成的损失更严重。因此,通过卫星网络检测到地球站的行为异常,对整个卫星通信网的安全运行具有重要的意义。(2)地球站的工作网管中心相当于管理器,主要完成网络管理与控制功能,是全网的核心控制单元(ControlUnit,CU),其信令在卫星网中担负网络管理协议的作用。网络管理与控制功能可以是集中式或分散式,对于星上透明转发卫星通信系统,卫星不具有星上处理能力,只完成放大、转发的功能,由地面的主站集中进行网络管理与控制。卫星网管作为一个资源管理控制系统,它对全网的信道资源、地球站配置资源、用户号码资源进行控制;同时它作为操作员对全网的通信进行控制、检测和干预,向用户提供配置资源管理查看的接口以及资源状态显示和统计接口,并将当前通信系统中的异常情况向用户进行报告;它还具备用户设备操作权限管理、网控中心其它设备管理等功能。

2卫星通信网入侵检测系统的实现

2.1入侵检测系统的体系结构

入侵检测是检测计算机网络和系统以发现违反安全策略事件的过程。如图2所示,作为入侵检测系统至少应该包括三个功能模块:提供事件记录的信息源、发现入侵迹象的分析引擎和基于分析引擎的响应部件。CIDF阐述了一个入侵检测系统的通用模型,即入侵检测系统可以分为4个组件:事件产生器、事件分析器、响应单元、事件数据库。

2.2入侵检测系统的功能

卫星通信网络采用的是分布式的入侵检测系统,其主要功能模块包括:(1)数据采集模块。收集卫星发送来的各种数据信息以及地面站提供的一些数据,分为日志采集模块、数据报采集模块和其他信息源采集模块。(2)数据分析模块。对应于数据采集模块,也有三种类型的数据分析模块:日志分析模块、数据报分析模块和其他信息源分析模块。(3)告警统计及管理模块。该模块负责对数据分析模块产生的告警进行汇总,这样能更好地检测分布式入侵。(4)决策模块。决策模块对告警统计上报的告警做出决策,根据入侵的不同情况选择不同的响应策略,并判断是否需要向上级节点发出警告。(5)响应模块。响应模块根据决策模块送出的策略,采取相应的响应措施。其主要措施有:忽略、向管理员报警、终止连接等响应。(6)数据存储模块。数据存储模块用于存储入侵特征、入侵事件等数据,留待进一步分析。(7)管理平台。管理平台是管理员与入侵检测系统交互的管理界面。管理员通过这个平台可以手动处理响应,做出最终的决策,完成对系统的配置、权限管理,对入侵特征库的手动维护工作。

2.3数据挖掘技术

入侵检测系统中需要用到数据挖掘技术。数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。将数据挖掘技术应用于入侵检测系统的主要优点:(1)自适应能力强。专家根据现有的攻击从而分析、建立出它们的特征模型作为传统入侵检测系统规则库。但是如果一种攻击跨越较长一段时间,那么原有的入侵检测系统规则库很难得到及时更新,并且为了一种新的攻击去更换整个系统的成本将大大提升。因为应用数据挖掘技术的异常检测与信号匹配模式是不一样的,它不是对每一个信号一一检测,所以新的攻击可以得到有效的检测,表现出较强实时性。(2)误警率低。因为现有系统的检测原理主要是依靠单纯的信号匹配,这种生硬的方式,使得它的报警率与实际情况不一致。数据挖掘技术与入侵检测技术相结合的系统是从等报发生的序列中发现隐含在其中的规律,可以过滤出正常行为的信号,从而降低了系统的误警率。(3)智能性强。应用了数据挖掘的入侵检测系统可以在人很少参与的情况下自动地从大量的网络数据中提取人们不易发现的行为模式,也提高了系统检测的准确性。

3结束语

监测系统论文范文第3篇

农村的光缆线路障碍点难以排查,就要在安装之初建立准确完整的原始材料,在光缆续接监测时,记录测试端至每个接头点,位置的光纤累计长度及中继段光纤总和减值。准确记录各种光缆余数,详细记录每个接头坑,终端盒、ODF架等部位光纤盘留长度,以便在换养故障点路由长度时予以扣除。

天气变化对有线电视网路的影响

这一方面主要从雷雨天气分析。进入夏秋之交的九月,阴雨天气也开始增加,遭遇雷击的可能性增大。在农村有线电视系统中,众所周知,雷电是自然现象,雷击释放能量很大,直接遭雷击,在放电通道上毁坏性巨大,也增加了弄寻有线电视线路检修的难度。在干线较长的农村有线电视系统中,需要注意防雷,防水和监测。这3个方面具体表现在:

1)防雷:要保证有线电视的“村村通,长期通”,防雷是必不可少的监测点之一。一般说来,有线电视的被损部位有前端放大器、架空电缆的分支、分配器被击毁等。最简单的防雷措施在于材料的安全选择上,如电缆要带有防雷的安全保护,在传输网中,进入前端的电缆安置分流雷电的避雷器,金属外皮就近接地,可有效地避免光缆遭受雷击;

2)防水:有线电视系统电缆传输中接头进水是个很普遍的问题。主要包括接头进水导致电缆部分进水和进水导致的接头氧化两种情况。在平常的收看电视过程中,高端信号变差,雪花点变多是进水常见的问题之一。对干线表现为放大器输出电平斜率很小或为负值。从而使供电出现故障,影响整个农村接收端的放大器正常工作,同时伴随斜率变大,信号质量恶化;

3)监测。各有线电视台在建台时往往经过上级广播电视主管部门的验收,验收基本上是以抽样测试点,对部分项目和指标进行夏初、冬初的两次考核。包括对主干线的线性分布的监测,用户接收端分支器,分配器的监测等。抓好常规维护,可以及时查出线路是否有故障或即将有故障的发生迹象,从而防患于未然,大大减少故障率。

常规维修监测技巧

前面我们讲过,因为农村地广人稀、农户居住先对分散,再加上通讯技术道路交通相对城市而言的薄弱,使得农村有线电视系统的监测和技术维护方面存在着更大的挑战。一般情况下,整个系统的无信号,故障在前端、主干线及供电部分;整个系统收不到某一频道信号,故障在信号源或调制器;部分用户无信号,故障在支干线或分配系统;个别用户无信号,故障在串接一分支或分支、分配器以及用户盒、用户线等用户器材上。只要仔细查找,故障就不难排除。

主观原因

监测系统论文范文第4篇

1.1监测内容根据设计单位提供的《施工图设计Z1号线文化中心站托换梁施工监测及检测要求》,本次监测的主要内容如下:1)托换梁及相关结构应力监测;2)托换梁挠度监测。3)被托换柱及邻近柱的沉降监测;4)托换梁上部结构变形监测;5)梁、柱接头的滑移监测;6)托换梁梁端的扭转变形监测;7)托换梁及相关板结构裂缝监测。

1.2监测方法与设备1)托换梁及相关结构应力监测。a.监测仪器。托换梁应力监测仪器采用32钢弦式钢筋应力计(如图3所示),Z1线-3层侧墙和M10线底板则采用28钢弦式钢筋应力计。b.采集仪器。数据采集采用GeologgerDT80G型数据采集器,在埋设电测传感器就近处要设数据采集器,数据采集器外用金属箱加以保护。2)托换梁挠度监测。a.监测仪器。采用电水平尺(ELBeam),电水平尺是美国生产的精密测倾(角)仪器。根据现场的实际情况,监测点的布置图大致如图4所示。b.采集及处理系统。电水平尺的采集采用CR1000数据采集器。CR1000可以通过设备扩展从而形成一个数据采集系统,很多CR1000系统可以构建一个网络。3)被托换柱及邻近柱的沉降监测。对于被托换柱及邻近柱的沉降监测与托换梁上部结构的沉降监测,采用美国Trimple公司DiNi03型电子水准仪。4)梁、柱接头的滑移监测。采用钢弦式位错计进行测试,将位错计安装于柱与托换梁可能发生的最大滑动位移处。一端固定在柱体接头处,另一端固定在托换梁板上,导线引出做好保护。5)托换梁梁端的扭转变形监测。监测点布置在托换梁的梁端,用钢弦式位错计将梁端与侧方地下连续墙墙壁进行固定,测试方法与4)“梁、柱接头的滑移监测”相同。6)托换梁跨中钢筋应变监测。监测点位于托换梁跨中断面处,监测钢筋与振弦式钢筋应力计所测钢筋相邻如图5所示。点焊式应变计含有一根安装于金属管内的绷紧的钢弦,该金属管固定于一个金属端点,金属端点焊接到量测的结构物体上。

2监测结果分析

由于此工程监测测点过多,受篇幅的限制,此处仅列出部分测点的部分监测数据,来说明此监测系统在实际工程中的高效性和准确性。

2.1托换梁挠度监测数据分析利用电水平尺监测托换梁1-4的挠度变化情况可知,在整个监测期内,托换梁1-4的挠度监测值总体趋于稳定;监测期内,挠度监测数据在[-8mm,8mm]区间内波动,沉降量最大值为0.80mm,最小值为-1.39mm,符合控制值为8mm的监测控制标准,监测期内工程稳定安全。将立柱切割前后挠度值进行对比,并根据同一天不同测点的挠度值绘出挠度趋势线如图6所示。根据挠度对比图,托换梁在托换后有明显的下挠趋势,并且下挠后的挠度值在控制值范围内,说明切割立柱后托换梁承担了原本立柱所承担的竖向力,达到托换的目的。

2.2托换梁应力监测数据分析利用32钢弦式钢筋应力计监测托换梁1-4的应力变化情况,根据THL1-4应力监测数据可知,监测期内,托换梁1-4受施工流程中诸多因素影响,应力值会出现小幅度波动,但应力总体趋于平稳;监测期内,各个应力计的监测数据在[-100με,100με]区间内稳定波动,梁呈现上部受压,下部受拉的应力状态,拉应力最大值为40με,压应力最大值为-22με,符合控制值为100με的监测控制标准,监测期内工程稳定安全。

3结语

监测系统论文范文第5篇

检测系统由数据采集端、嵌入式网关远程发送端以及检测管理中心三部分组成。首先,传感器通过ZigBee协议发送所采集的植物生理参数信息到网关中的协调器节点,协调器将数据通过RS—232串口发送到基于ARM9的CDMADTU嵌入式模块,CDMADTU模块对数据进行处理后通过CDMA2000网络和Internet网络将数据发送到由PC构建的Web服务器,发送到服务器的优点是数据易存储易查询。最后,检测中心还能通过基于LabVIEW编写的上位机软件根据已知的数据分析出植物的生理生长状况,并设计了一种根据蒸腾速率和叶绿素含量等参数的自动报警界面,从而可以更精确地判断和控制植物的长势和各项经济指标。

2系统硬件设计

2.1数据采集节点硬件设计

数据采集节点组要负责采集植物的各项生理参数(茎秆与果实直径、叶绿素含量、植物茎流等)和无线发送采集到的数据。无线收发芯片选用TI公司推出的CC2530作为ZigBee网络的射频收发送模块。CC2530是应用于ZigBee网络的真正片上系统(SOC)解决方案,包括一个高性能的2.4GHz射频收发器,内含一个高性能、低功耗的增强型8051内核和一个8通道12位A/D转换器。CC2530较以往常用的CC2430芯片具有灵敏度更高、功耗更小、通信距离更远等优点,因此,满足无线传感器及其网络对高性能、低成本、低功耗的要求。本设计中需要测量的茎秆直径采用基于LVDT的植物茎秆传感器,叶绿素含量测量采用基于透射型活体叶绿素传感器,植物茎流测量采用基于热平衡法传感器,这些传感器的输出均为模拟信号,在传感器部分对输出信号进行调理就能够直接与CC2530芯片连接。

2.2嵌入式网关硬件设计

嵌入式网关主要负责对接收的数据进行处理与存储,并实现ZigBee协议与TCP/IP协议之间的转换,从而将数据发送到远程检测系统。嵌入式网关主要由协调器和基于AM9的CDMADTU模块组成,CDMADTU模块包括AM9微处理器和DTU发送模块。本设计的CDMADTU选用CDMA2000通信模块,该模块采用AM9高性能工业级嵌入式处理器,供电范围宽(5~32VDC),数据传输速度高,系统稳定可靠。在使用CDMADTU之前需要做两步准备:一是因为本设计采用动态IP链接Internet网络与Web服务器,因此,要申请域名,申请域名解析服务后可以通过域名自动建立通信。接入CDMA网络前,需要向电信公司申请SIM卡,SIM卡可为CDMADTU提供链接Internet网络服务。二是使用前需要用终端软件或AT命令对参数设置,以决定进入网络透明数据传输模式的工作方式。

2.3锂电池供电模块设计

植物生理检测系统的实际应用环境很复杂,电源供给很难保障,因此,本设计中采用3.6V锂电池供电。但植物生理检测系统中传感器模块、CC2530等模块需要不同的电源供给,因此,本设计采用DC-DC芯片NCP500SN33G获得稳定的3.3V,该电压适用于SOC工作电压。采用TPS61040将3.6V自举到适用于各类传感器工作的12V电压。其电路图分别如图4、图5所示。

3系统软件设计

3.1数据采集节点软件设计

采集端传感器节点主要负责采集植物各项生理信息并组网将数据发送给嵌入式网关。本设计采用IAR集成开发环境自底向上构建ZigBee网络。为了节省电量,采用的传感器节点一般处于低功耗模式,直到收到上位机命令后才将对应的检测数据上传到网关。为了提高效率,上位机可设置每隔一段时间后对传感器发送上传数据命令。另外,还采用了中值平均滤波算法来消除个别传感器系统内部的随机干扰,提高了传感器的测量精度。

3.2嵌入式网关软件设计

嵌入式网关的软件设计是建立在Linuxredhatlinux操作系统上的,该操作系统具有多任务操作进程、支持硬件广泛、程序模块化、源代码公开等诸多优点而被广泛使用。使用IAR集成开发环境来建立嵌入式网关和远程检测管理中心的网络连接。

3.3上位机软件设计

系统采用LabVIEW平台编写上位机软件,根据设计要求,将软件分为数据显示模块、数据分析模块、数据存储三大模块。数据显示模块主要是将接收到的数据和分析后的结果显示在上位机的前面板上。数据分析模块主要是根据所要检测植物参数的不同选择合适的分析和处理方法。本系统分析模块实现的功能是:当测量数据在正常范围内时指示灯显示绿色,表示植物长势正常。当某一参数超出或者低于正常范围时,其对应的指示灯显示红色报警。数据存储模块主要是将数据存储到数据库中,由于LabVIEW不能直接访问数据库,因此,采用SQL语言来完成对数据库的访问。

4实验结果与分析

为了对设计的系统性能各方面进行验证,在29℃的温室环境下选择了4株番茄做为测试对象,4株番茄均匀分布于250mm×250mm的测试区域,将协调器放置在温室的中心区域从而组建星型网络结构。每株番茄同时采集茎流、叶绿素含量、番茄果实的直径等生理参数并将参数发送到上位机显示界面,采集间隔为2h,总检测时间为24h。

5结论