前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇gps技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
线锤铅直投测法是一种比较古老的测量方法,测量精度难以满足高层建筑越来越严格的技术要求,并且测量施工容易受到气候、风等天气因素的影响,所以,它在高层建筑中的应用并不广泛;而经纬仪斜投测方法的测量精度能够满足高层建筑的测量要求,但是,其开展过程比较烦琐,具有一定的局限性,适用性不强;激光测量方法则包括经纬天顶仪、天底仪竖向投测等测量方案,施工精度很高,并且施工测量的适应性优于经纬仪测量方法,是目前高层建筑施工中常用的测量方法之一。将这些测量技术与gps测量技术比较发现,在施工过程中,使用这些方法都需要维持通视孔的畅通,而且建筑高度增加不能有效克服温度、日照载荷对其的影响,增加了施测的难度。使用GPS测量技术则能够在维持较高精度的同时快捷地完成测量工作,是一种比较理想的测量方法。
2高层建筑施工GPS测量技术
2.1测点选择
与其他几种高层建筑施工的测量技术相比,GPS最大的优势在于观测点之间不要求互相通视,并且测量网图形结构比较灵活,测点选择工作更加简单,可以按照以下几点选取原则选择。减少电磁场干扰点位应该选择在远离大功率无线电发射源的位置,要远离电视台、微波站等地,距离不小于200m的测点定位不能靠近高压线,距离不得小于50m的测点要远离焊接场地和焊机。远离电磁波大面积反射介质点位不能设置在大面积水域或对电磁波反射、吸收强烈的物体附近,以削弱路径效应的影响。易于设备安装点位需要设置在接收设备易于安装、视野开阔并且目标明显的位置。将其布置在即成建筑物或者高层建筑操作层上是比较理想的。与此同时,要保障视场周围15°以上无障碍物,防止信号被吸收或遮挡。方便交通测点要尽量设置在交通方便的位置,便于与其他测量设备联合定位。选点技术人员在选择点位时要踏勘,按照实地规程选点定位。如果需要进行水准联测时,要实地踏勘水准路线。基础稳定测点要有稳定的地面基础,以保证其具有良好的稳定性和接收设备的完好度。只有它符合要求后,才能投入测量工作中。
2.2标志设定
高层建筑施工测量需要设置明显、精确的标志,标志要明显可见,并且要有效利用它,尤其是在施工场地外的测点,要格外注意相关标志不能在施工期间被破坏。测点名称需要在与施工单位沟通之后确定,以便保护标志,防止施工期间场内外的施工人员对其造成破坏。标志要设置在不受影响的位置,还要有专人保护,并要在工程结束之后填写相关的技术资料。
2.3测量精度设计
高层建筑施工GPS测量精度的设计,按照水平距离和精度可划分为二、三、四核一,二级。因为高层建筑GPS网中,相邻测点之间的距离通常都超过了1km,所以,属于二级测量。GPS测量精度是GPS网络测量中非常关键的量,精度级别对GPS网点布置方案、观测计划和数据处理有非常大的影响。如果高层建筑的边长在200m以内,那么,边长误差应该在20mm内。在实际选用中,还要考虑工程人力、物力、财力等情况,但也不能忽略建筑施工企业的生产规模和作业经验。
2.4测点天线安装
正常的测点天线应该设置在三角架上,并在安置标志中心上方对中,同时,整平天线基座上的圆水准气泡。一些特殊测点的天线可能需要设置在三角点基板或者回光台上,这就需要将觇标顶部拆除,减少信号的遮挡。如果觇标顶部不能拆除而将接收天线设置在标架内,就会导致信号不连续。此时,可以进行偏心观测,在距三角点100m以内的位置,可以采用解析法测定归心元素。将天线定向标志线指向整备,考虑到磁偏角,减弱相位中心偏差,天线定向误差要按照定位精度确定,同时,底盘要接地,避免出现雷击天线。遇到恶劣天气,比如风天,在高度较高、风力较强的测点,比如建筑物施工层,需要从3个方向固定天线,避免它倒地。圆盘天线120°间隔3个方向量取天线高度,控制误差在3mm内,要取其3次结果的平均值记录到测量手簿中。在高层建筑施工中,可以不观测气象要素,但是要做好相应的记录。
2.5测量
GPS观测作业的关键工作是接收GPS卫星信号,并实现跟踪、处理,从而获得施工测量需要的定位信息和观测数据。天线安置完毕后,在离开天线的适当位置或者建筑物上,就可以安放GPS接收机,接通接收机、电源、天线、控制器电缆,预热和静置之后启动接收机,就可以开始观测。接收机锁定卫星记录数据之后,观测员就可以开始输入和查询相关数据。在掌握相关操作系统前不能进行数据操作,并且在测量过程中不能随意设置参数。只有保证外界电源电缆和天线等连接无误之后才能够接通电源,接收机开机。开机后,接收机的相关指示和仪表显示正常后才可以设置参数和自检。接收机开始正常工作、接收相关测量数据之后,要注意查看卫星数量、信号、定时定位结果等。在一个观测时段中,不能关闭又重新启动接收机,也不能改变卫星高度角和天线的位置,不能执行数据采样间隔和关闭文件、删除等操作。
3结束语
关键词GPRS;热网监控系统;通讯终端;调度中心
1引言
我国北方地区冬季供暖普遍采用集中供热方式。通常一个城市有几个区域供热网,一个区域供热网包含有几十个到上百个换热站。为了使热网尽可能地在最佳工况下稳定运行,热网监控系统需要将各换热站的运行数据传送给调度中心,以便调度人员随时了解各换热站的工作状况和有关信息,实现全网的热能统一调配。
热网的特点是点多面广,距离较远,现场情况千差万别。因此,我国多数城市的热网监控系统都没有专门铺设通信线路,而是采用数传电台或电话线拨号上网【1-3】。采用数传电台作通信设备,需要向无线电管委会申请专用频点,易受风雨雷电的影响,需要人工巡查维护,并且由于体积大和发射功率大,易对仪表运行造成干扰。利用电话线拨号上网方式,虽然安装费用低,但运行期间电话费很高,速度不稳定,也无法很好的满足系统需要。
针对上述两种通信方式存在的不足,本文采用GPRS无线通信方式予以解决。GPRS是在现有GSM系统上发展的一种新的承载业务,目的是为GSM用户提供分组形式的数据业务【4】。现有的基站子系统(BSS)可以提供全面的GPRS覆盖。GPRS网络具有如下特点【5】:永远在线、按流量计费、高速传输、组网简单灵活、维护便捷、使用安全。因此,使用GPRS构建热网监控系统,可以充分弥补现有通信方式的不足。
2系统结构与总体方案设计
热网监控系统由换热站现场测控设备、GPRS通讯终端和调度中心组成。系统的拓扑结构如图1所示。
图1热网监控系统总体结构图
监控系统的工作过程一般分为以下几个步骤:
(1)现场测控设备实时采集热网运行数据,对数据进行处理、分析,根据分析结果对换热站设备的运行状态进行调节;
(2)响应GPRS通讯终端的数据发送请求,将采集处理后的数据上传给通讯终端。通讯终端将数据打成IP包,通过GPRS网络,经Internet发送至调度中心;
(3)调度中心软件将IP包解包,还原数据,并根据热网总体运行情况实现远程监控。
本文主要设计通讯终端和调度中心两部分。设计的主要内容包括终端硬件电路设计、TCP/IP协议处理、终端与调度中心的互联、调度中心的网络接入与功能实现等。
3GPRS通讯终端设计
3.1硬件电路设计
通讯终端的硬件结构如图2所示,其中最主要的是微处理器和GPRS模块。本设计采用PhilipsLPC2106作为微处理器,它是一个支持实时仿真和跟踪的ARM7TDMI-SCPU。考虑到其内部已带有一个64KB的SRAM和一个128KB的高速Flash,因此无需外扩存储器。
GPRS模块选用SiemensMC39i,可工作于EGSM900和GSM1800两种模式,支持语音、短消息、数据业务和传真等。模块内集成天线、RF和基带处理器等,支持标准RS-232接口,外接SIM卡。它支持AT指令集,与微处理器的接口比较简单。
图2通讯终端硬件结构图
本系统扩展了RS232和RS485通讯接口,采用LPC2106的UART0口来实现。RS232接口用于终端与PC机进行通讯,主要用于系统调试;RS485接口用于终端与用户设备之间的数据通讯。整个系统的输入电压为高质量的5V直流稳压电源,共需要4种电压。CPU内核电压为1.8V,I/O口电压为3.3V;MC39i电压范围是3.3~4.8V,取4.3V供电;其余部分5V供电。
3.2终端软件设计
终端软件设计采用在嵌入式实时操作系统下编程的方法,软件结构主要包括以下几个功能模块:终端初始化模块、GPRS通信初始化模块、TCP/IP协议处理模块和应用程序模块等。
为了节省费用,通信终端采用了动态IP地址分配方式,即终端每次上电后GPRS网络为其分配动态IP地址和端口号,终端将此动态IP地址和端口号发给调度中心,以便于调度中心访问。终端需要定时向调度中心注册,以维持先前动态分配的IP地址和端口号。
终端上电或复位后,首先等待参数配置命令,如果收到配置命令,则进入配置状态;否则,读取片内用户Flash中保存的配置信息。接着通过串口向GPRS无线模块发送相应的AT指令,GPRS终端开始进行拨号和PPP协商过程。当PPP协商成功,无线模块登录网络成功后,系统通过加载PPP/TCP/UDP/IP等协议,同中心建立起Socket连接,数据的双向传输通道建立,系统进入发送接收用户数据、监测上报故障和定时向中心注册的循环状态。
4调度中心设计
调度中心的主要功能是:接收各换热站通讯终端发来的数据,并对数据进行分析处理;保存各终端的动态IP地址,监视各终端的状态;维护热网数据库,提供用户数据查询、打印报表;实现调度与远程控制等。
这些主要功能由软件实现,使用了VB6.0进行开发。软件设计主要包括6个相对独立的功能模块:实时监测模块、数据分析模块、数据库管理模块、远程控制模块、参数设置模块、换热站自动上传报警信号处理模块,如图4所示。
调度中心有以下几种组网方式:光纤专线方式;ADSL方式,中心需要申请一个固定的IP地址,或使用动态IP地址+域名;GPRSMODEM方式,使用SIM卡绑定固定IP地址的方式。本系统采用ADSL+固定IP地址的接入方式。在对GPRS通讯终端进行配置时,写入这个固定的IP地址,这样终端一开机就能自动与调度中心进行通信。调度中心数据收发的流程如图5所示。
图4调度中心软件功能
图5调度中心数据收发流程图
5结束语
城市集中供热行业中,利用计算机技术监控热网的运行可实现能源的充分利用,减小环境污染。同数传电台相比,利用GPRS网络传输数据可靠性高,在建设成本和维护成本上都有很大的优势,对于供热企业提高工作效率和生产管理水平、保证供热质量和热网的安全稳定运行具有重大的现实意义和广泛的应用价值。随着GPRS网络的完善和费用的进一步降低,基于GPRS网络的热网远程监控系统将得到更广泛的应用。
参考文献
[1]丁艳华.热网远程监控系统的设计与实现[J].城市公共事业,2005,19卷2期:34~37
[2]林艳,杨建华等.集中供热监控系统的设计[J].控制工程,2003,10卷6刊:539~541
[3]董志国.集中供热管网的监控系统[J].煤气与热力,2005,25卷10期:19~21
关键词:惯性导航,陆基导航,星基导航
0引言
导航是一种为运载体航行时提供连续、安全和可靠服务的技术。航空和航海的需求是导航技术发展的主要推动力。尤其是航空技术,由机在空中必须保持较快的运动速度,留空时间有限,事故后果严重,对导航提出了更高的要求;同时飞机所能容纳的载荷与体积较小,使导航设备的选择受到较大的限制。对于航空运输系统来讲,导航的基本作用就是引导飞机安全准确地沿选定路线、准时到达目的地。
自无线电导航技术的广泛应用以来,导航已从通过观测地形地物、天体的运动以及灯光电磁现象,改变为主要依赖电磁波的传播特性来实现,部分摆脱了天气、季节、能见度和环境的制约,以及精度十分低下的状况。飞机在云海茫茫的天上,能随时掌握自己的位置,大大降低了飞行安全风险。导航已成为民航完全可以依赖的技术手段,促进了世界民航事业的发展。
20年代70世纪发展起来的信息技术使导航技术呈现了新面貌。卫星导航(GPS和GLONASS)以及其增强系统和组合系统,已经能够方便、廉价地为全球任何地方、全天候提供较高精度和连续的位置、速度、航姿和时间等导航信息,成为支持未来航空运输发展的又一股强大动力。
1民航导航技术的现状
1.1支持航路的导航技术
1.1.1惯性导航系统
从20世纪20年代末开始,虽然陆基无线电导航逐渐成为航空的主要导航手段,但由于需要地面系统或设施的支持,无法实现自主定位和导航,限制了航空的发展。首先,军事上对导航系统提出了生存能力、抗干扰、反利用和抗欺骗的需求,具有自主导航能力的惯性导航系统(INS)于60年代在航空领域投入使用。但民用飞机采用INS的主要原因是由于INS提供的导航信息连续性好,导航参数短期精度高,更新速率高(可达50~1000Hz)。
20世纪70年代后,由于数字计算机的使用和宽体飞机的发展,INS也开始了大发展阶段。由于INS具有许多陆基导航系统不具备的优点,尤其是可以产生包括飞机三维位置、三维速度与航向姿态等大量有用信息,在民航中得到了应用,是民航飞机的基本导航系统。当然它自生的垂直定位功能不好误差是发散的,不能单独使用,在现代民用飞机上通常与气压高度表组合使用,确定垂直高度信息。一般航空用INS平均无故障间隔时间超过600h,定位误差漂移率为0.5n mile/h~1.5n mile/h,测速精度0.8m/s,准备时间8min左右。
1.1.2陆基无线电导航系统
陆基无线电导航尽可能把整个导航系统的复杂性集中到了地面导航台,使机载导航设备比较简单,因此价格低廉且可靠性较高,迅速得到了推广使用。
目前支持民航航路空中交通管理的主要地面设备包括:NDB、VOR和DME。硕士论文,惯性导航。NDB已不建议使用,本部分中不再做介绍;VOR/VOR和VOR/DME由于定位精度无法满足较高的区域导航要求,ICAO现在更多的采用DME/DME支持航路的导航。
1.1.3星基导航系统
GPS是投入运行最早,一直稳定工作的星基导航系统,而且一直在不断的创新和改进中。硕士论文,惯性导航。已有其他的卫星导航系统在做改进和新研制的卫星导航系统在设计过程中,都以GPS作为蓝本和参考,并在尽可能的条件下与之兼用。GPS已深入到现代军事和国民经济的各个方面,成为提供位置、速度和时间(PVT)基准的赋能系统,围绕GPS及其应用已形成了一个庞大的产业,是了解现代星基导航技术的基础。目前阶段,民航在GNSS应用方面的工作也主要集中于GPS及相关技术的研究,试图解决其在民航应用中的特殊性问题,主要是解决完好性监测等问题所开展的增强技术。美国利用其技术上的优势,在这方面开展了以GPS广域增强系统(WAAS)和机载增强系统(ABAS)的研究工作。其他国家开展的相关增强技术也同期进行,其中包括:日本等国家开展的基于卫星的广域增强技术和澳大利亚等国开展的基于陆基区域增强系统(GRAS)。
1.2终端区进近引导技术分析
1.2.1大规模应用中的ILS系统
ILS的作用是向处于着陆过程中的飞机提供着陆引导信息,包括航向道信息、下滑道信息和距离信息。目前ILS在民航中广泛应用。根据性能,ILS可以分为I类、II类和III类。I类ILS是从覆盖其边沿开始,导航道和下滑道的高度不低于60m的范围提供引导信息的设备;II类ILS能够引导飞机到30m的设备;III类ILS能引导飞机降落到跑道的设备。我国现在装备的绝大多数系统只能达到I类标准,只有少数系统性能可以达到II类。主要原因除设备性能外,很大的因素取决于场地;场地达不到标准,障碍物较多、场地不平整,造成航道、下滑道弯曲,超出类别标准。同时周边地区的电磁干扰也会导致引导信号超过使用标准。硕士论文,惯性导航。
在较早期装备的ILS系统中,一般采用指点信标给飞机提供到跑道入口的距离信息,现在更多采用DME测距的方式。在基本配置中采用DME/N,按照ICAO的规定,DME/N的系统精度是370m,对于III类着陆、曲线进近和自动驾驶仪相交联实施自动着陆来讲,误差显然过大,一般采用DME/P(精密测距器)。按规定,DME/P的路径跟随误差(PEE)在进近基准点上为±30m或±12m。硕士论文,惯性导航。
1.2.2重要的辅助设施助航灯光系统
助航灯对飞机的安全起降有着至关重要的作用,曾经对飞机的安全降落起到关键作用。随着ILS等着陆引导系统的应用,现在的助航灯光系统更多的承担辅助引导或备份的功能。但助航灯光系统本身也在不断的发展。除更高的工作可靠性和更长的工作时间外,现在的助航灯光系统更是集成了高级地面活动引导功能和单灯引导控制系统(简称),能够实现对每架飞机的个性化引导。硕士论文,惯性导航。实现了从空中到地面的无间隙引导,大大提高飞机滑行及跑道运行的安全保障,提高飞机地面运行效率和机场运行容量,给机组提供更准确、更简单、更人性化的引导信息。
1.2.3发展中的局域卫星增强系统
为了将GPS用机的精密进近和着陆,FAA在1994年以前主要着力于发展LAAS。它属于GBAS,有地面设施和机载设备组成。地面设施有一组高品质的GPS基准接收机,位于准确已知的位置上,所产生的数据经处理后,产生视界内GPS卫星的误差校正信号和完好性信息,在通过VHF数据链广播至进近中的飞机,以提高机载GPS设备的精度、完好性、连续性和可用性等性能,用以满足I类、II类和III类精密进近与着陆的要求。目前,ICAO和FAA对飞机精密进近系统的四性有明确且严格的规定,LAAS必须满足。
按原理,一套LAAS地面设施不仅可以覆盖一个机场的所有跑道,而且可以覆盖相距不远的几个机场,做曲线进近或折线进近均无问题。而ILS或MLS则每条跑道两端都要各设一套,因此LAAS在经济性上是非常有利的,对发达国家尤其具有吸引力,因为它们一个机场常有多条跑道,而大城市周围也会同时有多个机场。LAAS的地面台信号覆盖半径可达370km,如果布台合理,也可以用于本土的航路导航,满足终端区区域导航(RNAV)需要。
2导航技术的未来发展分析
2.1 GNSS发展分析
以GPS为代表的新一代星基导航技术正在受到普遍重视,但GNSS性能无法满足民航高可靠性的要求。美国开展以WAAS、LAAS和ABAS为核心的民航GPS应用研究,目前WAAS和LAAS已在大规模应用前的准备之中,ABAS技术也已在技术验证阶段。
但这种完全依靠美国军方控制的GPS系统实施导航,无法令世界其它一些国家放心,为此欧洲着手开展Galileo计划、中国正在开展北斗计划以及俄罗斯正在完善其GLONNASS,并开始加快现代化进程。但截至目前,GPS仍然是唯一可以实现全球定位导航的星基技术。
在过去几十年里,全球军、民用机场和飞机依靠地面安装的着陆系统卓有成效地保证了飞机的全天候盲目着陆,数以万计的飞机在仪表着陆系统、GCA、微波着陆系统和其他的陆基系统的精确引导下安全降落。硕士论文,惯性导航。但是,在最近几年,随着GPS开发应用的深入,其作用日益受到人们的关注。GPS应用机着陆的实验与研究工作成为最热门的项目。
2.2新型导航技术的研究
地形辅助导航:地形辅助导航系统基本上是一种低高度工作的系统,离地高度超过300m时其精度就会明显降低,而到800m~1500m的高度则无法使用。但是,该系统不仅能提供飞行器的水平精度位置,而且还能提供精确的高度信息;不仅能提供飞行器前方和下方的地形,而且还能提供视距范围以外的周围地形信息。
视见着陆设备:由前视探测器生成视觉图像显示在平视显示器上,同时将仪表数据、指引信息叠加在图像上,构成人工合成图像。当在低能见度时,飞行员根据人工合成图像分辨出跑道,知道肉眼直接看见风挡外的景象和跑道时,人工合成图像才逐渐淡化。这种合成视景视见着陆系统打破了几十年来无线电波束引导的垄断局面,开辟了一种新的低能见度下进近着陆的途径。
3小结
以INS为基础导航源、GNSS为主导航源的导航新模式将成为未来一段时间的民航主要导航系统,但备份系统仍将在一段时间内采用陆基导航设施。但在较长时间内,考虑到陆基导航系统的维护成本和技术性能,这种局面将会改变。备份系统将有可能采用类似现在的罗兰-C系统作为航路导航的冗余配置,而终端区和进近着陆阶段,多点定位引导技术成熟后,可考虑作为备份使用。这样配置的优点非常显著,一方面冗余配置系统的多功能和多用途,将是整个系统成本大幅降低,提高经济性能;另一方面相关技术的发展也将为它们在民航中成熟应用提供保障。
【参考文献】
[1]中国民用航空局.基于性能的导航实施路线图[S].2009.
[2]以光衡.惯性导航原理[M].北京:航空工业出版社.1987
[3]周世勤.新型惯性技术的发展[J].飞航导航,2001,6:70-77
[4]AhnIS,SennottJ.Multi-antennaGPSreceptionwithvehicleflexure[J].ProceedingsofIONGPS-2002.TheInstituteofNavigation,2002:19–55
[5]周其焕,陈惠萍.ICAO定义的第一代GNSS概貌[J].导航,1993,2
[6]徐桢,刘强.卫星导航区域增强系统的应用与发展[A].2007第三届中国智能交通年会论文集[C],2007
[7]FAA.Stand-AloneAirborneNavigationEquipmentUsingTheGlobalpositioningSystem(GPS)AugmentedByTheWideAreaAugmentationSystem(WAAS)[R].FAA/TSO-C146
关键词 GPS;RTK;地籍测量;应用;分析;简述
中图分类号P21 文献标识码A 文章编号 1674-6708(2012)65-0129-02
在我国第二次的部分的土地调查中,地籍测量主要是将土地权属和利用的状况进行摸清,将各个宗地位置、地类、面积以及权属等等情况核查清楚,并且将各类土地综合利用的情况摸清楚,这样就能够为土地使用制度改革提供一个基础的资料,更加为我国国民经济的可持续发展提供了一定的保证。下面,笔者就地籍测量中RTK技术的应用进行分析。
1 关于GPS-RTK技术
伴随着我国人造地球卫星技术、计算机技术和光电技术的不断发展这三者在测绘过程中得到了普及和应用,测绘作业的方式以及应用的领域也已经发生了十分重大的变化,过去传统作业的方式已经不能够完全的适应当前测绘工作的需求,所以,将GPS技术应用到测绘工作中为我们测绘工作带来了过去从来没有过的重大变革,这样不仅仅将我们工作的效率大大提高,更加将我们成果精度大大提高了。所谓的GPS-RTK技术也被我们称为载波相位差分技术,GPS-RTK技术主要是将WGS84的坐标作为一个基础全球范围内通用一种动态测量的技术,是将基准站和流动站这两个测站载波的相对位观测值进行实时处理的差分的方法。GPS-RTK技术主要包括差分法以及修正法这两个主要方法,其中,所谓的差分法就是指把基准站所采集到的那些载波相位发送到流动站中,再进行求差解算坐标,也就是真正的一个RTK。而修正法就是指把基准站载波相位修正值发送到流动站中,将流动站所接收到的那些载波的相位进行改正,再继续求坐标,这也被称为准RTK。RTK关键的技术就在于数据传输技术以及数据处理技术这两个技术,RTK定位就要求基准站的接收机所观测到的载波相位观测值以及基准站的坐标等等都通过数据通信链来实时的传送到流动站的接收机中,流动站不仅通过自身的数据链将来自于基准站的各项数据进行接收,还必须要进行GPS观测数据的采集工作,并且要在系统里面组成差分观测值来进行实时的处理,这样也就能够得到高精度定位那样的结果。GPS-RTK技术的系统配置主要包括数据链、移动站接收机以及基准站的接收机这三个部分。
2 在地籍测量中RTK技术应用分析
将RTK技术在某一个地籍测量工程中应用作为例子,对这一项技术在地籍测量过程中应用的方法和精度进行说明,测区位于某一个城区,城市建构筑物十分密集,交通十分繁忙,无线电信号比较复杂,街道两边的树木茂密,这一次需要测量宗地的地块遍布了整个城区,权属的关系相对来说比较复杂,用地的种类比较多,宗地的数目也比较多,权属界址点的数量很多,如果我们采用一个常规的测量手段进行测量比较困难,也很难能够在较短的时间里面将所有宗地权属界址点的测量工作完成,采用RTK测量技术能够满足该项地籍测量工作要求。
2.1基准站的确定和选取
安置基准站是使得RTK测量能够顺利进行的关键,要求我们要避免选择那些无线电干扰十分强烈地区,数据链电台发射天线以及基准站站址必须要具有高度,为了要防止数据链发生丢失和多路径效应产生的影响,周围应该没有GPS信号的反射物,在试验和试用的阶段中,针对已经选用了的GPS的仪器,我们得出了这一个城区流动站在其作用距离五千米范围里面,能够清晰并且高质量的进行基准站所发出数据的接收,将此作为参考选择了那些分布在这一个城区城市的D级GPS控制网点的七点,组成了这一次地籍测量工作基准的框架网并且利用七个控制点坐标系和1954年北京坐标系成果计算出该项用在GPS-RTK技术的七个坐标转换参数。
2.2 RTK定位精度的试验
均匀的实施了这一个城市、D、E级的GPS控制点等共计19个点的进行了测量,最后把这些测量的结果和已知的成果相互比较。
3 测量界址点的坐标
采取RTK测量技术来实施测量界址点坐标,在检测试验已经取得了成功这一个基础之上,将RTK基准框架网点作为一个基础,分别进行GPS基准站的架设,使用一加二的工作模式,采用两套RTK接收机作为流动站来进行测量,因为所用的RTK系统发射电台仅仅有4W,十分节省电能,并且在中途的时候并不需要进行电池的更换就能够足足使用一整天,在开机以后就能够实现无人值守,相对来说是十分方便的。在每天第一次进行流动站测量的时候,至少在一个已知点上面进行RTK测量,这一个测量的结果和已知点相互比较,以便将RTK系统到底有没有正常工作进行检查,还要检查基准站的坐标输入到底是否正确,最后,我们再把GPS所获取数据进行处理以后直接输入到计算机中,这样就能够及时并且精确的获取界址点图形的信息,准确的进行地籍图和宗地图的制作,计算出宗地的面积。
4结论
本文中,笔者首先介绍了RTK测量技术,接着又从基准站的确定和选取、RTK定位精度的试验以及测量界址点的坐标从三个方面对地籍测量中应用GPS-RTK技术进行了分析,笔者认为,理论只有应用到实际操作之中去才能够真正发挥自身的作用,所以,笔者主张将这一个理论知识应用到地籍测量中去指导地籍测量工作,再通过地籍测量工作的实施情况对这一个理论知识存在的不足进行很好的更改和完善。
参考文献
关键词:GPS; 基线解算; 精度
Accuracy analysis on high-precision baseline resolution algorithm of GPS / COMPASS combination
LIU Yang1, WANG Yanguo2
(1. Jilin Normal University, School of Science and Technology of Computer, Siping 136000, China;
2. CCCC Fourth Harbor Engineering Institute Co., Ltd, Guangzhou 510000, China)
Abstract: This paper first analyzes the nature of the the Beidou carrier phase observation data,solve the program of Beidou-data cycle slip detecting and repairing,using classic ionospheric residuals method and M-W combination algorithm.A set of high-precision baseline resolution algorithm suitable for this model is developed through using LAMBDA algorithm to accurately fix ambiguity. Further , the accuracy of single and double datas can be analysed.
Keywords: Global Positioning System, baseline solution, accuracy
1 引言
随着卫星定位技术的日益普及,GPS、GLONASS、GALILEO系统和我国的第二代北斗卫星导航系统(Compass)是目前全球四大导航定位系统。由于各卫星系统使用权限及观测条件的限制,定位精度、安全性、 可靠性及可用性难以得到保证[1],而多星座组合定位可以解决这一问题,组合定位可以增加观测卫星数目,降低精度稀释因子,并且有更好的几何分布,为高精度定位提供可能。本文的研究成果―GPS/北斗组合的高精度基线解算技术将能广泛应用于测量工作的各个领域。
2 数据预处理
卫星数据的预处理的目的是:对数据进行平滑滤波的检验、剔除粗差;统一数据文件的格式,并将数据文件加工成标准文件;周跳的探测与修复;对各观测值进行模型改正。在软件的具体实现中,为快速获得卫星信息和载波相位观测值等相关信息,在数据预处理后生成共视卫星文件(.coms),该格式文件由基线两端观测站观测文件及星历文件生成,不仅包含了观测站的观测信息,还融合了参与解算的卫星高度角、空间信息等解算基线所需信息,能够提高软件的解算效率。
共视卫星文件由文件头和各历元卫星的有关数据组成。在文件头中,解释了两测站的一些必要的基本信息,如基线长度、起止历元、卫星截止高度角、方位角、电离层延迟、参考卫星编号、共视卫星的编号、卫星的坐标、载波相位观测值等组成[2]。
3 周跳的探测与修复
1、电离层残差法
从图1中明显看出红色线所示卫星产生周跳,运用电离层残差法将该卫星踢除后,周跳修复后:
经数据测试可以得出,运用电离层残差法能有效探测出周跳并可对卫星进行适当提出[3]。但由于电离层残差法具有以下缺点:1.不能判别出周跳出现在哪个频率上;2.只用到观测数据而无卫星、测站坐标等信息;3.仅适用于双频数据,而对单频机不适用。基于以上方法的不足,本论文提出再进行M-W组合观测值计算宽巷模糊度。
分析:
a、采样间隔大小对于电离层残差法探测影响较大,若观测数据的采样间隔是1s,周跳误差比较敏感;若数据的采样间隔较大,那么相近历元的电离层变化很大,这种情况下探测结果很可能出现错误;若周跳组合能够形成一定的组合关系,此方案将会失效。因此用此种方法探测周跳,较为有效,联合M-W方法再进行修复周跳,两种方法结合效果更好。
b、M-W的核心是利用宽巷模糊度探测周跳与修复周跳,在进行模型分析处理时要用到伪距的观测值,因此这会影响到周跳偏差的估值,如果周跳发生在两频段上,且大小相同,这种方法便无意义。
c、联合利用M-W组合及电力层残差法进行处理周跳,弥补了各自方法的不足,可以得到高精度结果,为下一步高精度基线解算提供保障。
4 数据处理及精度评定
基线解算时由GPS_COMPASS软件对处理GPS/COMPASS数据进行解算,探测并修复周跳,求算参数的浮点解、固定解(基线向量坐标分量、基线向量长度、整周模糊度)及其方差协方差、中误差,用来评定基线解算质量优劣。
论文中算例由双频接收机测得,尽量减小接收机钟差、电离层延迟、对流层延迟的影响,首先探讨单基线数据。此次测试观测条件良好,采样间隔1s,选取1h的数据进行解算比对。本论文采用如下指标进行精度评定:
1、基线分量及精度
2、单历元载波双差定位基线分量改正分析,对窄巷组合方案进行分析,见下图
由以上各图归纳如下表:
表4 精度评定
从以上各图及统计表分析及目前COMPASS卫星的发射状况来看,对于短基线的载波双差定位解算数据,观测条件良好的情况下,无论采用何等组合方案, GPS/COMPASS组合基线解算的精度与单系统基线解算相比,解算精度有了小幅提高,但基本都维持在毫米级精度水平,精度差距并不明显。
3、RATIO
数据处理完毕后,查看静态基线,我们要检查RATIO是否大于3,若比3大,证明基线的固定双差解解算合格,若小于3,说明此基线解算的固定双差解不够合格
双系统RATIO值见下表
表5 RATIO值对照表
由表中RITIO值我们可以得出,GPS/COMPASS组合后基线解算的RATIO值,用L1、窄波组合时,明显优于单GPS系统,单COMPASS系统基线解算质量最差。
4、系统稳定性分析
选用了一段18km的基线,选用测站名为LIXI,JLHU,采样率5s,同步接收数据5小时,数据下载后经过卫星状况分析,分成5个观测时段进行分析,每个时段时间约为1小时,在整个观测过程中前4个间段双系统卫星质量较好,单系统数据可以单独进行基线解算,求出固定解。第5时段GPS卫星数量不足3课,无法固定卫星,这时将COMPASS数据引入进行双星组合解算基线,便可以对基线进行解算处理。
在第3时段,GPS卫星质量较差,但可以求出固定解,但接收机接收各系统卫星的数目都大于4课,以第3时段基线解算为例,探讨18km基线解算精度。
分析:在第3时段,对于18km基线进行解算,由于观测条件及电离层改正等因素的限制,GPS卫星的观测质量不佳,由上述表看出,单GPS卫星系统的基线分量的误差最大,但是经过GPS/COMPASS卫星组合解算基线[8],精度有了显著提高,基线分量的误差在4cm以下,维持在厘米级水平。在第5时段,GPS卫星质量更差,观测的卫星数据不足4颗,不能求出固定解,COMPASS卫星质量稍好。
测试数据分析:在本数据测试中,GPS卫星仅为三颗:‘G04',‘G10',‘G17',而COMPASS卫星则有多颗:‘C01',‘C03',‘C04',‘C06',‘C08',‘C09'。此时段GPS卫星数目不足,无法进行基线的固定解算,而加入COMPASS卫星后共同参与解算,便能能准确固定,定位误差大幅度减小,精度明显优于单COMPASS卫星数据解算结果,说明在GPS卫星较少时,COMPASS卫星可以起到补充作用,能大幅提升卫星定位精度,使基线解算更为稳定。■
参考文献
[1]党亚民,秘金钟,成英燕.全球导航卫星系统原理与应用[M].北京:测绘出版社,2007
[2]刘基余等.GPS卫星导航定位原理与方法 [M].北京: 科学出版社,2008
[3]中国卫星导航系统管理办公室.北斗卫星系统发展报告(2.1版)[S]. 2012
[4]刘智敏.改进的遗传算法在GPS基线解算上的研究[J],测绘科学,2008(9)
[5]杨润书.GPS基线解算的优化技术[J].测绘通报,2005(5):36-39
[6] Alfred Leick, Jacques Beser and Paul Rosenboom. Assesing GLON ASS Observation. ION GPS-98, The Institute of Navigation, 1998, pp.1605-1612