前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇钢筋混凝土论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:现浇钢筋混凝土楼板裂缝建筑设计结构设计
前言
自2001年起,苏州市从预制多孔板体系转化为商品混凝土现浇板体系。现浇钢筋混凝土楼板在结构安全和使用功能方面比预制板优越得多,但是楼板裂缝不断增加。大多数消费者对楼板裂缝缺乏必要常识,统视裂缝为有害,担心楼板裂缝会引起建筑物倒塌,反应极为敏感,近年来成为投诉热点,开发商和承包商为此的花费亦逐年增长。
1楼板裂缝种类
1.1温差裂缝
由于温度变化,混凝土热胀冷缩而形成的裂缝,此类裂缝一般集中在东西单元的房间、屋面层和上部楼层的楼板。
1.2结构裂缝
虽然现浇楼板承载力均能满足设计要求,但由于预制多孔板改为现浇板后,墙体刚度相对增大,楼板刚度相对减弱。因此在一些薄弱部位和截面突变处。往往容易产生一些结构性裂缝。例如:墙角应力集中处的45°斜裂缝,板端负弯矩较大处的板面裂缝等。
1.3构造裂缝
PVC管处混凝土厚度减薄,容易出现裂缝。
1.4收缩裂缝
混凝土在塑性收缩、硬化收缩、碳化收缩、失水收缩过程中易形成各种收缩裂缝。
2楼板裂缝形式
2.145°斜裂缝
该裂缝常出现在墙角,特别是房屋东西两端房间,呈45°状。
2.2纵横向裂缝
该裂缝一般出现在跨中、负弯距钢筋端部、PVC电线暗管敷埋处。
2.3长裂缝
一部分房间预埋PVC电线管的板面上出现裂缝,裂缝宽度达0.2mm~0.3mm左右。这种裂缝仅在楼板表面出现,板底无裂缝。
2.4不规则裂缝
裂缝出现部位形状无规则,或散状或龟裂状。一般发生在房屋东西两单元、阁楼顶层部位。
3从设计方面分析裂缝及控制方法
造成现浇钢筋混凝土楼板开裂有设计原因、施工原因、材料原因,本文仅从设计方面进行探讨。随着苏州市经济的快速发展、建设任务增加迅猛,勘察设计队伍亦在迅速扩大,苏州市住宅工程相当一部分是由乙级和丙级设计单位承担。住宅设计单位低资质,或由于设计市场管理的不到位,造成低资格设计人员挂靠设计,而挂靠单位收取一定比例管理费后,就盲目盖章、签字,根本不对图纸的结构安全、合理性、完整性等认真审核。结果是一部分住宅工程勘察设计质量低下,问题较多。另一个原因是,一些住宅开发商任意压价,片面降低勘察设计费,以收费最低为主要条件选择勘察设计单位,同时又不讲合理设计时间,限期开工,逼迫提前出图,造成施工图设计深度不够,问题必然较多。
3.1建筑设计方面原因
3.1.1斜屋面、露台、外墙节能保温措施不够
苏州市一年之内气温变化较大,夏季最高温度可达40℃以上,冬季温度最低可达-4℃~-7℃,由于夏天室外墙体温度高于室内温度,结构外墙面在高温下发生受热膨胀,如果未采取保温措施,在纵横两外墙面的变形对楼板产生牵拉作用下,东西单元的卧室楼板被外墙向外拉伸就容易引起裂缝。同样,屋面如果未设保温层,顶层楼板会因热胀冷缩而引起开裂。
目前与温度有关的裂缝计算公式有:
连续式约束条件下楼板、长板、剪力墙、大底板等最大约束应力计算公式:
σ*xmax=-EaT1-1chβL2H(t,τ)(1)
或按时间增量的计算公式:
σ*xmax=∑ni=1Δσi=-a1-u∑ni=11-1chβiL2ΔTiεi(t)H(t,τ)(2)
当应力超过混凝土的抗拉强度时,可求出裂缝间距:
Lmax=2EHCxarcchaTaT-εp(3)
L=1.5EHCxarcchaTaT-εp(4)
Lmin=12Lmax(5)
式中,T-包含水化热、气温差及收缩当量温差。同号叠加,异号取差,由此可见,夏天炎热季节浇筑混凝土到秋冬冷缩都是叠加的,拉应力较大;
H(t,τ)-松弛系数。在保温保湿养护条件下(缓慢降温即缓慢收缩),松弛系数取0.3或0.5,当寒潮袭击或激烈干燥时,松弛系数取0.8,应力接近弹性应力,容易开裂;
T=T1+T2+T3(T1为水化热温差、T2为气温差、T3为收缩当量差,取代数和);
εp-混凝土的极限拉伸。级配不良,养护不佳,取0.5×10-4~0.8×10-4;正常级配,一般养护,取1.0×10-4~1.5×10-4;级配良好,养护优良,取2×10-4;配筋合理(细一些,密一些),可提高极限拉伸20%~40%。构造配筋宜为0.3%~0.5%;
H-均拉层厚度(强约束区);
E-混凝土弹性模量;
Cx-水平约束系数;
ch、arcch-双曲余弦及双曲余弦反函数;
a-线膨胀系数,一般情况εp≤|aT|,当εp≥|aT|时取εp=|aT|,[L]∞。
裂缝开展宽度:
δf=2ψEHCxaTthβL2(6)
δfmax=2ψEHCxaTthβLmax2(7)
δf=2ψEHCxaTthβLmin2(8)
β=CxEH(9)
式中,ψ-裂缝宽度经验系数;
Cx-约束系数。
3.1.2住宅长度超长
住宅平面超长,由于温差和材料变形,会造成墙体和楼板横向开裂。仅就长度而言,结构长度与应力呈非线性关系,如结构长度小于规范要求,结构内力影响很小。
3.1.3平面形状
当住宅卧室沿长度、宽度方向尺寸变化,由于楼板刚度不一致,会产生不相同变形,引起薄弱部位开裂。
3.2结构设计方面原因
3.2.1近代国际上结构的设计原则是,整个建筑结构的功能必须满足两种状态的要求:①承载力极限状态,以保证结构不产生破坏,不失去平衡,不产生破坏时过大变形,不失去稳定。②正常使用极限状态,以确保结构不产生超过正常使用状态的变形、裂缝及耐久性、振动及其它影响使用的极限状态。目前人们对第一极限状态已给于足够重视并严格执行,而对第二种极限状态却经常被忽视。
3.2.2从钢筋混凝土现浇楼板各种受力体系分析,无论是按单向板设计还是按双向板设计,是单跨还是多跨连续板设计;无论是板端支承在砖墙上还是支承在过梁或剪力墙内,受力状态考虑都是局限于楼板平面的应力变化(按弯矩配置抵抗正、负弯矩的受力钢筋)、板平面的受剪变形。即使是考虑板端嵌固端节点产生弯矩,也只是考虑板平面弯曲或屈曲所产生的应力。在楼板受力体系分析时,对于现浇结构构件之间在三维空间中如何分配内力、协调变形,根本没有考虑。
3.2.3目前不少设计人员只按单向板计算方法来设计配置楼板钢筋,支座处仅设置分离式负弯矩钢筋。由于计算受力与实际受力情况不符,单向高强钢筋或粗钢筋使混凝土楼面抗拉能力不均,局部较弱处易产生裂缝。部分设计人员对构造配筋,放射筋设置不重视或不合理,薄弱环节无加强筋。
3.2.4结构设计对板内布线引起裂缝的构造考虑不够。住宅电器、电信快速发展的今日,现浇楼板内暗敷PVC电线管越来越多,甚至有些部位三根交错叠放,两根管交错叠放更为普遍。PVC管错叠处板的抗弯高度大大降低,从而减弱了板的抗弯性能。
3.2.5对开口楼板,特别是开洞口比较大的双向板,设计时往往只考虑楼板在竖向荷载作用下的洞口四周加强配筋。由于纵向的受力钢筋被切断,而忽视了板与墙体或板与梁的变形协调问题。这时如墙或梁的刚度较大,板的孔边凹角处未必出现应力集中现象,开洞板易发生翘曲。
3.3建筑设计控制措施
3.3.1屋面与外墙采取保温措施按照国外建筑设计常规的做法,屋面设保温隔热层,使屋面的传热系数≤1.0W/m2·K;外墙外表面或内表面相应设置保温隔热层,同时外墙面宜采用浅色装饰材料,增强热反射,减少对日照热量吸收。根据苏州的具体情况,屋面和外墙的保温设计应通过热工计算,在不同季节均应能达到《夏热冬冷地区居住建筑节能设计标准》和《江苏省民用建筑热环境与节能设计标准》要求,彻底解决温度应力对屋面和墙体的破坏。
3.3.2适当控制建筑物长度根据《混凝土结构设计规范》(GB50010-2002)和《砌体结构设计规范》(GB50003-2001),为避免结构由于温度收缩应力引起的开裂,宜采取设置伸缩缝,伸缩缝间距为30m~50m。多层住宅建筑控制长度建议不大于50m,高层应控制在45m以内。如果超过此长度,应设置伸缩缝。超长量不大时,可采用设置后浇带的方法,以减少混凝土楼板收缩开裂。
3.3.3住宅平面形状控制住宅平面宜规则,避免平面形状突变。当楼板平面形状不规则时,宜设置梁使之形成较规则平面。当平面有凹口时,凹口周边楼板的配筋宜适当加强。
3.4结构设计控制措施
3.4.1工程裂缝产生的主要原因是混凝土的变形。如温度变形、收缩变形、基础不均匀沉降变形等,此类因变形引起的裂缝几乎占到全部裂缝的80%以上。在变形作用下,结构抗力取决于混凝土的抗拉性能,当抗拉应力超过设计强度时,应验算裂缝间距,再根据裂缝间距验算裂缝宽度。
3.4.2现浇板板厚宜控制在跨度的1/30,最小板厚不宜小于110mm(厨房、浴厕、阳台板最小厚度不小于90mm)。有交叉管线时板厚不宜小于120mm。
3.4.3楼板宜采用热轧带肋钢筋以增加其握裹力,不宜采用光圆钢筋。分布钢筋与构造钢筋宜采用变形钢筋来增加与现浇混凝土的握裹力,对控制楼板裂缝的效果较好。
3.4.4设计时注意构造钢筋的布置十分重要,它对构造抗裂影响很大。对连续板不宜采用分离式配筋,应采用上、下两层连续式配筋;洞口处配加强筋;对混凝土梁的腰部增配构造筋,其直径为8mm~14mm,间距约200mm。
3.4.5屋面层阳角处、东西单元房间和跨度≥3.9m时,应设置双层双向钢筋,阳角处钢筋间距不宜大于100mm,跨度≥3.9m的楼板钢筋间距不宜大于150mm。跨度<3.9m的现浇楼板上面负弯矩钢筋应一隔一拉通。外墙转角处应设置放射钢筋,配筋范围应大于板跨的1/3,且长度不小于2.0m,每一转角处放射钢筋数量不少于7根,钢筋间距不宜大于100mm。
3.4.6现浇楼板的混凝土强度等级不宜大于C30,特殊情况须采用高强度等级混凝土或高强度等级水泥时,要考虑采用低水化热的水泥和加强浇水养护,便于混凝土凝固时的水化热释放。
3.4.7在预埋PVC电线管时,必须有一定的措施,PVC管要有支架固定,严禁两根管线交叉叠放,确须交叉时应采用专门设计的塑料接线盒,以防止塑料管在管线交叉对混凝土厚度削弱过多。在预埋电线管上部应配置钢筋网片,(4@100mm宽度600mm)。若用铁管作为预埋管时,宜采用内壁涂塑黑铁管,一方面既能保证黑铁管(不镀锌钢管)与混凝土的粘结力,同时也有利于穿线和不影响混凝土的计算高度。
3.4.8后浇带处理
(1)后浇带应设置在对结构受力影响较小部位,一般应从梁、板的1/3跨部位通过或从纵横相交部位或门洞口的连梁处通过。后浇带间距不宜超过30m。
(2)后浇带宽度为700mm~1000mm,板和墙钢筋搭接长度应不低于45d,且同一截面受力筋搭接不超过50%。梁、板主筋不宜断开,使其保持一定联系性。
(3)后浇带浇筑时间不宜过早,以能将混凝土总降温及收缩变形完成一半以上时间为佳。从目前混凝土的收缩量来看,估计3~6月方能取得明显效果,最短不少于45天。在苏州这样软土地区,后浇带浇筑时间应在主体封顶以后,方可有效地释放沉降的应力。
(4)后浇带中垃圾应清理干净,接缝应密实,新老混凝土界面用1:1水泥砂浆接浆。后浇带混凝土强度等级比原混凝土强度等级提高一级,且采用微膨胀混凝土,以防止新老混凝土界面产生裂缝。
(5)后浇带混凝土接缝宜设置企口缝,混凝土浇筑温度尽量与原老混凝土浇筑时温度一致。
1)建筑抗震设防分类:抗震设防类别为丙类。2)本工程建筑结构的安全等级为二级,设计使用年限为50年。3)本地区抗震设防烈度为8度,设计基本地震加速度值为0.2g,设计地震分组为第一组。4)地基基础设计等级:丙级。5)按照《湿陷性黄土地区建筑规范》确定建筑物分类:丙类。6)防火等级为:一级。4荷载作用取值1)自然条件:基本风压:0.40kN/m2;基本雪压:0.35kN/m2.2)楼(屋)面使用荷载:教室:2.0kN/m2;活动室:4.0kN/m2;盥洗室,卫生间(有蹲坑):2.0(8.0)kN/m2;楼梯、走廊、阳台:3.5kN/m2;上人屋面:2.0kN/m2;不上人屋面:0.5kN/m2;档案室:5kN/m2;库房:5kN/m2。
2地基处理
根据参考地质报告,本场地属于非自重湿陷性场地,地基湿陷等级为Ⅱ类,采用强夯法,消除湿陷提高承载力。计算分析选用中国建筑科学研究院编制的《基础工程计算机辅助设计软件》JCCAD2010版。基础采用钢筋混凝土筏板基础或条形基础及独立柱基。
3上部结构设计
1)A,B,C区采用钢筋混凝土框架剪力墙结构,D,E,F区采用钢筋混凝土框架结构。2)结构设计。地震作用按8度0.2g进行计算,抗震措施按8度0.2g进行设计,A,B,C建筑框架的抗震等级为三级,剪力墙抗震等级为二级;D,E,F区框架等级为二级。抗震计算采用振型分解反应谱法,结构整体分析选用中国建筑科学研究院编制的《多层及高层建筑结构空间有限元分析软件》SATWE2010版。采用总刚分析方法,计算结果如下:A区:周期,地震力与振型分析见表1~表3。结构位移:地震力作用下的X方向最大值层间位移角:1/1033;地震力作用下的Y方向最大值层间位移角:1/1213。B区:结构位移:地震力作用下的X方向最大值层间位移角:1/1030;地震力作用下的Y方向最大值层间位移角:1/1212。C区:周期,地震力与振型分析见表7~表9。结构位移:地震力作用下的X方向最大值层间位移角:1/1044;地震力作用下的Y方向最大值层间位移角:1/1045。D区:振动周期见表10。结构位移:地震力作用下的X方向最大值层间位移角:1/710;地震力作用下的Y方向最大值层间位移角:1/605。E区:振动周期见表11。结构位移:地震力作用下的X方向最大值层间位移角:1/551;地震力作用下的Y方向最大值层间位移角:1/601。F区:振动周期见表12。结构位移:地震力作用下的X方向最大值层间位移角:1/628;地震力作用下的Y方向最大值层间位移角:1/623。各项指标均满足规范相应要求。3)最外层钢筋的混凝土保护层(mm):a.基础梁及地下室底板:下部钢筋:有垫层40;无垫层70,上部钢筋40;b.地下室外墙:外侧50,内侧20;c.柱:地下与土壤接触面:防水混凝土50,其余部位25;且不小于纵筋直径;d.梁:室外露天环境35,室内潮湿环境25,其余部位20;且不小于纵筋直径;e.在一类环境下各层楼板、楼梯板为15,梁为20;在二a类环境下各层楼板、楼梯板为20,梁为25;在二b类环境下各层楼板、楼梯板为25,梁为35;f.梁板中预埋管的混凝土保护层厚度应大于30。4)本工程各部分之间设置抗震缝,主体长度超过规范要求时相应部位设置后浇带,减少混凝土收缩影响。5)材料。混凝土:A,B,C区柱、墙:1层~2层顶为C40;3层~4层顶为C35;5层~6层顶为C30;D,E,F区柱:C30。梁、板:C30。基础:C30。楼梯、女儿墙、雨篷、挑檐、构架等露天构件:C30。圈梁、构造柱:C25。填充墙:±0.000以下采用MU10页岩烧结砖,M10水泥砂浆砌筑,±0.000及以上采用A3.5加气混凝土砌块(容重不大于6kN/m3),M5混合砂浆砌筑。钢筋:采用HPB300级,HRB335级和HRB400级钢筋。
4结语
关键词:分荷结构框架结构结构托换整体平移
1.工程概况
1.1建筑概况
天津众美制衣综合楼原为津东农工商营业楼,建于1992年。为6层钢筋混凝土框架结构(见图一),北侧后门正中有运货电梯一座,东西两侧各有一道人行楼梯。建筑物东西长43.08m,南北长27.65m。除一楼层高为5.4米,6楼层高3.9米外,其余各层的层高均为4.5米,大楼总高27.9米,建筑总面积约5200平方米。根据规划需要,大楼整体向北平移35m,迁移总重量约为10346吨。(图二)
图一房屋原貌图二平移示意图
1.2基础概况
原大楼A轴为一层裙房,A轴柱下为条形基础,采用倒T形断面,梁高0.8m,板厚0.3m,梁宽0.5m,板宽1.5m。
B~F轴采用C30钢筋混凝土梁板式筏板基础,主梁断面高1.4m,宽0.8m,梁底相对标高-2.100m。次梁断面高1.3m,宽0.7m,梁底相对标高-2.100m,筏板厚0.4m,板底相对标高-1.700m,筏板在基础周边还伸出轴线外2.5m。基础梁板下均设0.1m厚的C10素混凝土垫层。(图三)
图三基础平面示意图基础断面示意图
1.3地质情况
根据地勘报告,地质情况如下:层底标高0.1~1.89m为人工填土层;0.47~1.33m由坑底淤泥组成;-1.40~-2.12m由粘土和亚粘土组成,可做建筑物的持力层;-11.01~-11.82m主要由灰色亚粘土、轻亚粘土组成。
本场区地基土的容许承载力[R]值,在标高-1.63m以上天然土(不包括坑底淤泥)[R]=120KPa;在标高-1.63~-7.13m,[R]=100KPa;在标高-7.13~-11.82m,[R]=120KPa;在标高-11.82~-13.72m,[R]=140Kpa。
2.分荷结构
要使房屋移动,必须将其由原基础托换到可移动的上轨道结构体系上。在上轨道结构体系设计中,将框架柱的集中荷载转换为上轨道梁对下轨道梁的分布荷载,这对于柱荷载较大、地基承载力较低、移动距离较远的下轨道结构体系及其基础的设计是经济的、合理的。若仅依靠上轨道梁自身进行此荷载的转换,不但需加大上轨道梁的截面,而且还因梁的变形使荷载分布不均,柱下荷载偏大,跨中荷载偏小,荷载转换的效果不甚理想。因此合理的选择是采用分荷结构,将柱荷载经分荷结构传至上轨道梁,然后近似转换为均布荷载,通过移动装置作用于下轨道梁上。
天津津东农工商营业楼平移工程中,由于柱荷载较大,个别荷载达到4500KN,φ73mm滚轴需按20cm的间距密布,而上轨道梁受室内地坪至主梁顶的高差限制,梁高只有500mm,
必须设置分荷系统,才能满足承载要求。经过多方案的比选,放弃了传统的钢结构分荷形式,开发应用了“钢筋混凝土分荷结构”。(见图四)
“钢筋混凝土分荷结构”是由框架柱前后侧对称设置的钢筋混凝土分荷斜柱和斜柱上部的钢筋混凝土抱柱箍组成,并与框架柱及上轨道梁连成完整的一体,提高了分荷结构的节点刚度和传力的可靠性。斜柱底部将上轨道梁三等分,缩短了上轨道梁的跨度,有效减少了上轨道梁的内力。斜柱顶部不像传统的分荷方法支于一层楼板框架梁的底部,而是通过抱柱箍作用于框架柱的中下部,减少斜柱长度,既提高斜柱受压稳定的性能,同时也增加了上轨道梁的侧向刚度和抗扭刚度。由于整个结构高度较低,方便了施工和平移过程中的监测。
3.方案设计
3.1新址基础设计
新址地质勘察报告所揭示的地层,与原大楼地基地质勘察报告所揭示的基本相似,新址报告中所示该场地地基土基本值与原报告中地基土的容许承载力基本一致,原大楼采用片筏基础,故在新址仍采用片筏基础应能满足建筑物的承载要求。
新址片筏基础主次梁的布置仍与原址基础一致。XB~XE轴的主梁断面尺寸和配筋与原址基础B~E轴的主梁完全一致。新址柱间次梁及筏板的断面尺寸和配筋与原址的柱间次梁及筏板相同,而新址柱下次梁按原址柱下次梁的承载能力并结合下轨道梁的构造和承载要求重新设计。
3.2下轨道梁的设计
下轨道梁采用钢筋混凝土结构,下轨道梁一方面作为整个房屋平移及托换体系的基础,同时顶推时为千斤顶提供反力。在①至⑧轴上共设8条下轨道梁,下轨道梁从新址基础延伸至反力后背处。原址片筏基础的轨道梁,贴在片筏基础次梁两侧。新址下轨道梁兼作新址片筏基础次梁,新址每条下轨道梁也由两片轨道梁组成。在新旧基础上采用同一类型的下轨道梁对平移的安全性是有好处的。
3.3上轨道结构体系设计
上轨道结构体系为钢筋混凝土结构,由上轨道梁、抱柱梁、夹墙梁、分荷结构及连系梁等组成。上轨道结构体系用于承受移动部分的全部荷载,因此它应具有足够的强度、刚度及稳定性。
3.3.1上轨道梁设计
上轨道梁采用双侧抱柱梁,采用槽钢与混凝土组合梁结构。与下轨道梁对应,共设8条上轨道梁。上轨道梁兼作一个方向的抱柱梁,按最不利荷载组合、多跨连续梁设计,同时考虑分荷斜梁的水平分力和平移推力引起的轴向力,每条上轨道梁为由双肢组成,梁底设[25槽钢部分代替梁底部钢筋兼作平移滑动面,箍筋与槽钢焊接。上轨道梁断面尺寸为250×500mm,顶面标高为-0.011m。
3.3.2抱柱梁设计
设计时考虑正截面的的受弯承载力,局部抗压强度及周边的抗剪切强度。直接或通过连系梁与上轨道梁浇筑成整体。经过大量实践及实验证明,采用钢筋砼抱柱梁是进行柱托换的一种较为可靠、安全的形式。
3.3.3夹墙梁设计
夹墙梁布置在墙两侧,相互之间通过小系梁连接,确保墙体切断之后承托墙体重量。
3.3.4分荷结构设计
在本工程中开发应用“钢筋混凝土分荷结构”来解决柱荷载集中的问题。这种结构相比钢结构更能确保支点的受力可靠性,而且有很好的经济性与施工的便捷性。分荷结构的上部抱柱箍与上轨道梁的抱柱梁同时受力,对柱进行托换,抱柱箍按抱柱梁设计考虑。斜柱按45°设置进行分荷(见图五),按受压杆件考虑,钢筋按构造配筋设计。两侧斜柱间在上轨道梁处通过系梁连结,以增强整体性。“钢筋混凝土分荷结构”的工程成本较钢结构大大减少,但分荷效果较好。
3.4滑动面设计
本工程采用滚动摩擦,滑动面为滚轴对钢板。滚轴采用φ73钢管,管内灌高标号细石膨胀性混凝土,两端钢板焊接封盖。采用钢管砼的优点是受压后有微小的变形,可部分消除因施工精度不足造成的上下轨道梁不平整,保证上滑梁受力较均匀,减少对房屋结构产生不利影响。
3.5顶推设计
要使房屋移动,目前有牵引法和顶推法两种。本工程采用顶推法,利用液压千斤顶作为顶推设备,采用目前我公司先进的PLC同步控制系统,使各千斤顶的同步顶推精度控制在2mm以内。因本工程平移距离较远,而千斤顶行程较小,仅为1.2m。所以顶推反力支座采用钢筋混凝土固定支座和钢结构活动反力支座两种形式。平移6.6米距离内采用更换顶铁的方法,每平移6.6米后倒用钢结构活动反力支座。
房屋移动启动时的滚动摩擦系数按0.1考虑,根据各轴线的荷载计算,本工程共采用100t千斤顶6台,320t千斤顶2台。
4.平移效果
1.1模板材料的选择
为了确保模板项目的建筑品质,我们必须要选取刚度强、稳定性高的模板物料,防止在灌筑砼的程序中存在渗漏泥浆的状况,提升其稳定性。在选取模板物料的程序中,我们要和砼原物料选取的准则相符合,假如构造面积大,那么建筑者就要选取大模板开展建筑,其物料尽可能选取钢质物料,这样才可以确保模板项目在建筑中的品质以及稳定性。
1.2模板工程安装过程中的质量控制
根据上面所讲述的,模板项目主要划分为模板以及撑持两方面,其中模板要选取具有高强度、大刚度、稳定等优势的物料,而撑持就要撑持大面积,确保项目的稳定性。如在地基土上装置模板项目,第一,我们要先确保地基的稳定性以及密实性,之后在其外层架设一层撑持板;第二,要确保模板间的连接是紧密的没有缝隙的,防止在灌筑程序中存在渗漏状况;假如在建筑中遇到预埋件的位置,那么建筑者要完成解析后对模板装置稳固,并且还要确保位置的精准性。
1.3模板的拆除
模板的拆除过程要和模板的装置过程相反,在拆除程序中,建筑者必须要确保模板外表以及边角的完整。普遍状况下,浇筑完砼之后的一到两天就能够拆掉模板了。在拆掉模板后,模板物料和支撑架要分开放置,同时立即将其运送到建筑现场之外。建筑者在拆除模板时要特别留意,要适宜的对其开展锚固,防止成片的模板向下滑落而致使砼工程存在各类品质毛病。在拆除完模板后,建筑者要把全部的模板清理干净,留备下次循环运用。
2钢筋混凝土施工方面的钢筋工程施工技术
2.1钢筋的质量控制
运入建筑现场的钢筋一定要拥有实验报告单、出厂品质证明文件、标志等,标志要包含钢筋型号、厂家标志、商品批号、大小、型号。钢筋最好存放在室内,假如条件达不到,放置在室外必须要比地面高出二十厘米,并且进行遮盖,防止钢筋被污染抑或侵蚀。
2.2钢筋的加工
项目建筑之前,钢筋外表存在生锈抑或油渍一定要清理干净,还有钢筋一定是直的,这里钢筋中心轴的差异一定要比钢筋全长的百分之一小。钢筋制造差异和制造处置后的差异要被掌控在规定的数据以内。
2.3钢筋的接头
钢筋的连接方式通常采用手工电弧焊或闪光对焊方式。钢筋应用到工程前,必须对所有焊接接头进行外观检查及自检与抽检试验,其中外观检查要求焊接表面平顺无缺陷。钢筋接头布置的间距、各部分钢筋及保护层的规格必须与设计图纸完全一致,其中保护层的厚度应控制到40~50mm。
2.4钢筋接头的分散布置
钢筋接头的保护层、间距及大小尺寸皆应满足施工图纸的要求,其中工程保护层的厚度应控制到40~50mm;钢筋的弯曲长度应控制到6.25d左右;钢筋安装的偏差应控制到允许范围;同一排受力钢筋间距的局部偏差不超过±0.1倍间距;一排分布箍筋间距的偏差不超过±0.1倍间距等。
3混凝土施工技术
3.1混凝土原材料
防水材料。当前混凝土浇筑作业过程中所使用的防水材料主要是水泥基渗透结晶型防水材料。这种材料依据相应标准主要划分成为对混凝土表面进行相关操作处理时所使用的专用防水材料以及对混凝土土体进行内掺作业时所使用的防水剂。一般来讲,在对混凝土表面进行防渗漏处理作业时,需要遵循特定比例,同水搅拌成浆,然后将其涂刷在混凝土表面。水泥砂浆类材料。聚合物水泥砂浆作为现阶段防渗以及防腐材料,已经越来越多地应用到水利工程的混凝土修补作业中。这种水泥砂浆通过添加一些胶乳材料,改变了原有的砂浆特性,进而增强了混凝土其自身的抗渗性能以及抗冻性能。新型灌浆材料。通过使用环氧树脂以及一定量聚氨酯,在特定情况能够制作出具有聚合物网络特性的新型灌浆材料。应该说,这种材料集合了先前环氧树脂以及聚氨酯所特有的优点,比如材料整体强度较高、凝结时间比较灵活以及浆材粘度普遍较低,还有变形性能较好等等。而且水下施工时,对于进行的灌浆试块作业所产生的黏接抗拉强度最高可达1.05MPa。
3.2混凝土裂缝注浆技术
在以往的施工作业过程中,大都是利用人工控制的方法将所有树脂浆液都依据标准注入到裂缝内部。但当使用的环氧浆液自身黏度较大,而裂缝宽度相对较小时,该作业方法未必有效。而"壁可"技术作为一种先进的施工技术能够有效地解决这一问题。所谓"壁可"技术其实就是指通过使用橡胶管将所需材料,在特定压力之下即0.3MPa,借助于橡胶管其自身收缩压力来完成自动注浆。一般况下,这种技术可以处理小于0.003mm宽度的裂缝。而且优点就是在作业过中,通过灌浆压力,将裂缝中存留的空气排出,防止出现气阻情况,以快速完成裂缝处理作业。
3.3碳纤维补强以及钢板加固技术
这种措施经过运用粘结效果好的粘结剂把钢板和构造紧密的连接,以便增强负荷承担能力,同时加强构造本身的抗拉性、抗剪性,并且提升构造自身的韧性和强度,复原其原本的承担负荷的能力,进而增长其运用时间。除此之外,因为运用钢板粘合会对之前的砼带来产生一定的限制,从而能够防止缝隙的扩大,同时防止新缝隙的形成。
4结束语
关键词:钢筋混凝土框架结构,钢筋,混凝土强度,保护层
内容:对于钢筋混凝土框架结构的施工,有关规范虽已有详细规定,但仍有一些具体细节问题没有明确具体做法,对工程施工过程的管理造成一定影响。本文针对粱柱节点箍筋施工、钢筋混凝土强度等级、保护层厚度等方面的常见问题,对钢筋混凝土框架结构施工方法提出改进意见。
1 梁柱节点箍筋施工问题
在实际施工中,梁柱节点区钢筋密集,构造复杂,特别是处于结构中间部位的梁柱接头部位,梁柱钢筋纵横、垂直交错,梁的纵向受力钢筋要放在柱纵向钢筋内部,呈井子形交叉,这样柱子的箍筋绑扎就很不方便。在框架结构施工中,施工单位普遍采取先安装梁底模,柱子箍筋先套在主筋上,再绑扎安装梁钢筋,那么节点区箍筋如果不能及时调位和正确绑扎,致使梁柱节点区出现箍筋不放、少放、间距不符合图纸和规范要求,这样就会给节点区质量留下安全隐患。
由于意识到这个问题对工程质量的影响,具体可采取以下措施:
第一,柱子箍筋下料时做成两个U型的,肢长根据截面尺寸、搭接焊接焊缝要求统一考虑,在绑扎梁的纵向钢筋时,柱子箍筋先不绑扎,待梁的主筋正确就位后再将制作好的两个U型箍筋焊接,这样就可以保证箍筋数量、位置满足设计和规范要求。论文格式。
第二,在安装梁钢筋之前,先把梁钢筋纵向钢筋用垫块准确就位后再进行绑扎,绑扎时控制好纵向主筋与箍筋先后搁置顺序,确保接头处箍筋钢筋位置、数量、间距满足要求。
以上两种做法能有效保证箍筋的施工质量能满足规范和图纸要求,也进一步满足结构中的强结点,强锚固的要求。论文格式。
2 梁柱节点处混凝土强度等级的问题
在钢筋混凝土框架结构设计时,根据设计原则,为保证“强柱弱梁”“ 强节点,强锚固”的要求,柱的混凝土强度等级通常会比梁板高,而且随着建筑物高度的增加,两者的差距会更大。然而这样的话,就会给施工中梁板与柱子交接处截面处混凝土强度等级、构件质量的控制带来很大麻烦。论文格式。
在框架结构施工中,比较普遍的做法是柱和梁板混凝土分两批集中浇筑,即节点区采取和梁板结构混凝土相同强度等级混凝土浇筑。如果单独浇筑节点区,会存在因供应量少和与梁板分隔困难的问题,若同柱一起浇筑,会使节点区混凝土施工缝的留置很困难,如与梁板同时浇筑存在节点“夹层”,存在质量隐患。
根据规范规定,梁柱混凝土强度等级相差不宜大于5MPa,如果超过时,梁柱节点区施工时应作专门处理,使节点区混凝土强度等级与柱相同。特别强调节点核心区的混凝土强度等级要与柱相同,不能与梁板混凝土强度等级相同;而规范规定,当柱混凝土设计强度等级高于梁板的设计强度时,应该对梁柱节点核心区混凝土强度等级采取有效措施,保证节点混凝土的强度。两个观点都在保证强节点的设计原则。具体可采取以下措施:
为了方便施工,可以直接在梁端(柱边)设置垂直交界面,采用快易收口网,可避免在板内设置分界面,使施工难度降低;但为防止分界面出现施工冷缝,建议施工时梁柱节点区混凝土采用塔吊配备小口漏斗浇筑,梁板等大面积部位混凝土则采用泵送,同时浇筑,并做好养护工作。
要保证核心区混凝土构件的强度,具体做法是在节点处增加纵向钢筋,设置型钢或增加箍筋予以补强。这种方法施工方便,质量容易保证,施工单位易接受。
3 混凝土保护层厚度问题
保护层厚度的规定是为满足结构构件的耐久性要求、满足混凝土炭化深度符合规范和对受力钢筋有效锚固的要求。保护层厚度太小,无法满足上述要求,太大则会在弯矩作用下使截面边缘产生的拉应力而使构件表面易开裂(δ=M/W=My/I)。因此,《混凝土结构工程施工质量验收规》(CB50204-2002)第5.5.2条均规定:受力钢筋保护层厚度梁柱允许偏差为5mm。
施工时须严格按规范和设计要求保证混凝土保护层厚度,但实际施工时很难做到。高层建筑中。由于柱箍筋直径较大,间距较密,肢数较多,加工难度较大,上下钢筋有相互锚固,安装后箍筋有外突部分,外突箍筋使模板无法安装,为此施工单位总是有意识地将箍筋做小一点以便安装模板。但会造成柱纵筋保护层偏大,解决该问题有赖于提高现场加工施工准确度,做好钢筋工程施工样板。 其次模板的几何尺寸也是影响保护层的因素之一,几何尺寸偏小,骨架尺寸不变,则会造成保护层偏小,反之则会偏大。还有梁的起拱、保护层垫块多少也会造成保护层大小的改变。
在框架结构施工中,由于楼面结构标高是一致的。双向框架梁同时穿越柱节点时,必然造成一侧框架梁面筋保护层厚度偏大。井宇架梁节点也有同样问题,这些问题无法避免,可以通过设计采用增加构造架立钢筋解决。但需注意:一是梁箍筋的下料问题.由于一向框架梁面筋需从另一向框架梁面筋底下穿过,若该向框架梁端箍按原尺寸下料,面筋无法直接绑扎到箍筋上,对梁骨架受力不利,因此梁端箍筋下料时高度可减小2-3cm(仅一向框架梁端需要);二是施工时以哪一向为主,保护层厚度增大,混凝土截面有效高度变小,正截面抗弯承能力减小,设计时是否考虑这种影响,另一方面构件表面容易开裂(原因如上,δ=M/W=My/I),《混凝土结构设计规范》(GB50010-2002)第9.2.4条规定:当梁、柱中纵向受力钢筋的保护层厚度大于40mm时,应对保护层采取有效的防裂构造措施;对此须在设计时就明确以哪一向为大,并对保护层厚度偏大的一向梁端加铺一层钢丝网以防表面开裂,也可以通过设计采用增加构造架立钢筋解决。
[1]《混凝土结构设计规范》(GB 50010-2002)
[2]《混凝土结构施工图平面整体表示方法制图规则和构造详图》(03G101)
[3]《建筑结构抗震设计》,中国建筑工业出版社
[4] 《一级注册结构工程师必备规范汇编》中国建筑工业出版社
[5]《混凝土结构工程施工质量验收规》(CB50204-2002)