首页 > 文章中心 > 扩频技术论文

扩频技术论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇扩频技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

扩频技术论文

扩频技术论文范文第1篇

关键词:扩频通信原理特点发展应用

一、扩频通信的工作原理

在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。

二、扩频通信技术的特点

扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。

1.抗干扰性强

扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。

2.低截获性

扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。

3.抗多路径干扰性能好

多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。

4.保密性好

在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。

5.易于实现码分多址

在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。

三、扩频技术的发展与应用

在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显着的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用。扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。

四、结语

扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。

参考文献:

曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.

扩频技术论文范文第2篇

论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。

一、扩频通信的工作原理

在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。

二、扩频通信技术的特点

扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。

1.抗干扰性强

扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。

2.低截获性

扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。

3.抗多路径干扰性能好

多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。

4.保密性好

在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。

5.易于实现码分多址

在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。三、扩频技术的发展与应用

在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.

扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。

四、结语

扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。

参考文献:

[1]曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.

扩频技术论文范文第3篇

关键词: 实现方案;超宽带通信系统;应用场景;功率密度约束

0 引言

在当前,超宽带通信技术已成为各科研机构以及公司的研发重点,新的技术以及实现方案不断出现,成千上万的超宽带通信芯片以及演示系统不断问世。在IEEE802.16.2a、ECMA369

/368、IEEE802.15.5a等标准也已出台。它们有一个共同的缺点就是对功率谱密度的严格约束并不能确保超宽带通信在电磁兼容方面具有良好的性能,同时超宽带通信的速率与距离主要受三大因素约束:1)信号信道的容量大小;2)通信信息处理过程中的能量耗散;3)频率衰减等。同时,高速通信实现难度大以及通信过程中,功率耗散严重等因素同样制约着超宽带技术的发展与应用。从而使得超宽带通信技术在许多应用场景的优势并没有得到充分的体现。

本文就超宽带通信系统的实现模型,探讨其6种满足功率谱密度约束与6种不满足功率谱密度约束的应用场景,为后面改技术的应用以及优化提供借鉴。

1 方案实现原理

现在,可以通过多种路径实现超宽带通信。本节建立了超宽带通信实现方案的构架,从而可以对实现方案进行有效的分类以及效率评估。其实现方案的构架如图1。实现方案由各个功能相对独立的功能模块构成。以应用场景实际现场的需要,对各子功能块进行分类重组。同时,可合理调整模块顺序以及选择性地对模块进行配置,从而构成具有不同功能的应用场景实现方案[1]。

由图1可知,四大模块:1)基带调制;2)抗多路径处理;3)扩频;4)载波变频共同决定着超宽带通信系统的猪妖特征。而对于基带调制模块主要包括:PPM、BOK、PSK、PAM、OOK、QAM、FSK等7种工作形式;抗多路径的功能块的实现形式有4种:1)时域均衡(TDE);2)RAKE;3)OFDM;4)频域均衡(FDE)。扩频功能块的实现形式主要包括4种:1)直接序列扩频(DSSS);2)跳频扩频(FHSS);3)跳时扩频(THSS);4)线性调频扩频(CSS)。载波功能块的实现形式主要有3种:1)无载波(CF);2)多载波(MC);3)单载波(SC)。

2 应用场景

由于超宽带通信系统具有有限的发射功率,因而其难易实现远距离通信,同时其通信速率也被严重约束[2]。在超宽带通信系统的发射功率恒定时,虽然其通信链路预算是决定超宽带通信距离与速率的主要因素,但针对具体的应用场景,其特征又不尽相同。因系统的抗多径处理性能,扩频增益以及硬件芯片电路等可使系统的通信速率与距离在局部范围实现通信性能、实现难度以及功率损耗的最优配置,从而实现在实际的应用场景中具有一定的优势。采取该策略,在满足功率谱密度的小于-42.3dBm/MHz的约束的同时,6种应用场景如表1所示。对于功率谱密度处于8.8dBm/MHz的发射信号,不满足功率谱密度约束的应用场景,本文提出了6种实现方案如表2所示。值得注意的是,表中的通信距离与速率仅是点对点的全天线情况,对于多天线与定天线情形不予考虑。

表中标注:“R”为射频(Radio Frequency)电路;“P”为物理层(PHF)基带处理;“RP”为“R”+”P”的组合;“A”为通信芯片的有效面积,mm2。

3 结论

目前,超宽带通信技术已日趋成熟,但对于其应用场景的综合性能方面的分析还比较欠缺。本文以现有的研究为基础,对其实现方案的模型进行了详细的分析,同时以是否满足功率谱密度约束为条件,采用超宽带通信、速率以及功率损耗等作为主要的分析指标,提出了6种满足约束条件的该系统的实现方案的应用场景,对超宽带通信技术的应用提供了有力的参考依据。

参考文献:

扩频技术论文范文第4篇

 

目前,随着对无线通信技术的不断研究,各式各样的无线通信业务和方式层出不尽,其中超短波通信技术的发展情况较为突出,超短波的频率在30MHz-300MHz范围之内,它以频带宽、不受电离层干扰影响、安全性高、天线小以及抗干扰性强的优势而被广泛使用,同时促进了通信技术的发展。

 

一、 超短波通信技术发展的现状

 

超短波电台在开始发展的时候体积较大,主要应用于机载、车载、舰载或固定通信台站。在现代,超短波电台一般使用的是电子管,只有VHF频段,通过电容或电感调谐放大,激励器通过转接多个倍频和滤波,促进多波道的实现。在器件和技术的限制下,超短波电台在使用过程中存在的问题比较多,例如可靠性差、维护检修困难等问题。

 

随着电子元器件技术的发展,超短波电台具有以下几点更加显著的优势:一是采用频率合成器和电子存储等先进设备,从而提高了稳定性;二是采用合成射频功率,发射功率可以提高;三是采用自动增益、自动电压等控制电路可以使整机的可靠性得以提高。目前随着大量通信新技术的发展,超短波的应用也越来越广泛,并在应用中不断完善,逐步实现了全频段和模块化结构以及大规模集成,并可以进行传输保密性信息。现在已经研制出新一代的电台,具有体积更小、集成化更高以及重量轻的优势,并且使频段得到了扩展,促进了通信技术的进一步发展。

 

二、 超短波通信新技术的概述

 

无线通信技术已经在我国的各个领域得到了越来越广泛的应用,其电磁信号的密度大量增加,导致电磁环境变得复杂,这需要超短波具有更强的抗干扰性功能。以下介绍了几种超短波通信新技术:

 

1、 扩频通信技术

 

扩频通信技术就是将频谱通信进行扩展,它是通过扩展函数将传输信息的频谱扩展为宽频信号,接收端接收到信号之后把频谱进行还原,以此来获得信息的一种通信方式。这种通信方式可以把相关信息隐藏在噪声电平中,这样很难使敌方发现信号,实现了抗干扰性的目的。在扩频通信中需要对扩频方式进行合理的选择,一般采用的是混合扩频方式与混沌直接序列扩频方式。混合扩频方式的优点是可以不受宽带、单频和中继转发干扰;混沌直接序列扩频方式的优点是,可以有效控制系统的误差,在保持其误差不变的前提下,可以抵抗对二进制混沌直接序列扩频信号进行检测的解扩方式,确保信息传输的安全性。

 

2、 跳频通信技术

 

为了使通信的抗干扰性功能进一步提高,研发了跳频通信技术,并被广泛使用。跳频通信技术就是通信双方的载波频率与伪随机码同步变化[1]。使用这种技术可以发挥抗干扰的作用,同时还可以使信息被截获的概率有效降低。如果采用的是稳定性较强的视距传播方式的超短波技术,可以实现宽频段或全频段跳频。另外,为了在通信中获得有效的对抗效果,可以选择折中方式,可以有效获取最好的系统性能。例如为了使反应速度更快,可以增大发射功率,为了加强跳频对抗性能,可以增加信号宽带。跳频通信技术还有跳速高频段集全等优势,它是抗干扰性通信中主要采用的技术。

 

3、 通信反对抗技术

 

随着微电子技术的不断发展,微处理器在通信系统中的应用也越来越广泛。由于目前的病毒程序逐渐猖獗,给通信系统带来了很大干扰,并可以通过无保护通信进入指挥控制中心,所以一些发达国家正在研制潜伏式进攻装备。为了阻止病毒入侵,超短波电台采取了辅助天线对抗的对策,即零位天线调整器,它可以对传输信号与干扰信号进行自动识别,从而使其抗干扰性能得到了有效提高。

 

4、 自适应通信技术

 

通信的最基本的要求就是在短时间内建立联络,自适应通信技术的实施可使超短波具备自适应的能力,可以不受环境影响而进行有效地通信。自适应通信技术主要有两个环节,就是检测预置信道(自动信道检测)与对最佳的工作效率进行自动选择(自动频率选择)。不受外界因素的干扰,并可以增强抗干扰能力,同时还可以对中断的线路进行自动接通和恢复。自适应通信技术可根据信道质量的好坏来对传输速率进行合理选择,同时还可以使误码率得到有效降低。自动调整输出功率,以此来提升通信的效率[2]。

 

三、 超短波通信新技术的发展趋势

 

随着人们对通信需求的提高,超短波通信技术也跟着进一步发展起来[3]。使其通信设备在原有基础上不断智能化、模块化、微型化和综合化的方向发展。

 

1、 智能化

 

超短波电台采用微控制器作为主控单元,使结构简单化,也提高了可靠性。在其功能中增加了智能化,使超短波电台实现地址、工作方式和频率以及密钥等通信参数的预制和静噪自动调整、故障自动检测和定位、工作方式自动调换和天线参数自动匹配以及自适应通信等。

 

2、 模块化

 

超短波电台的型号及种类有很多,这给电磁频谱管理等方面带来了一定的不便,所以需要超短波技术在发展中做好合理的规划。其中功率合成技术是目前较为成熟的技术,按照功率等级将各种功率设计成积木式模块,在通信时可按需求形成各种功率的电台,促进在不同距离中无线通信联络任务的顺利完成。

 

3、 微型化

 

近年来较为成熟的新技术主要包括表面安装技术和微带技术以及片状元件。其中微带技术中的微带线具有频带宽、器件匹配合理、体积小和成本低等优势;片状元件的体积比较小,重量比较轻;表面安装技术可对片状元件进行快速安装的一种技术,它可以通过一条自动化流水线而完成任务。根据这些超短波通信新技术的优势,可以使电台的频率提高、安装速度加快、降低成本、功能消耗减小、便于辅助设计及制造等。

 

4、 综合化

 

在通信中通过各种业务多样化的需求,也对超短波功能有了综合化的需求。随着超短波综合化的迫切需求,指出了一部超短波电台需要具备通话和电报以及图像的功能。各种通信业务,同时可以采用调频、数据、调幅、单边带以及保密话等多样化的工作形式。

 

结束语

 

随着超短波通信业务量的不断增加,也推动了超短波新技术的发展,而且其应用也越来越广泛,在无线电通信领域中的地位也跟着逐步提高。超短波通信新技术在发展中不断完善,使其新技术开始逐步走向成熟,在未来的超短波通信技术的应用中,必将在各个通信领域中发挥其越来越大的作用。

 

作者:周阳 来源:中国科技博览 2015年33期

扩频技术论文范文第5篇

论文摘要:通过Bluetooth和UWB的技术对比及多角度的分析,证实了蓝牙+UWB作为下一代高速无线通讯技术的可能。

随着因特网、多媒体和无线通信技术的发展,人们与信息网络已经密不可分。当今无线通信在人们的生活中扮演着越来越重要的角色,低功耗、微型化是用户对当前无线通信产品尤其是便携产品的强烈追求,作为无线通信技术一个重要分支的短距离无线通信技术正逐渐引起越来越广泛的观注。

1短距离无线通信技术简介

近年来,由于数据通信需求的推动,加上半导体、计算机等相关电子技术领域的快速发展,短距离无线与移动通信技术也经历了一个快速发展的阶段,WLAN技术、蓝牙技术、UWB技术,以及紫蜂(ZigBee)技术等取得了令人瞩目的成就。短距离无线通信通常指的是100m以内的通信,分为高速短距离无线通信和低速短距离无线通信两类。高速短距离无线通信最高数据速率>100Mbit/s,通信距离

2 蓝牙(Bluetooth)技术

“蓝牙(Bluetooth)”是一个开放性的、短距离无线通信技术标准,也是目前国际上最新的一种公开的无线通信技术规范。它可以在较小的范围内,通过无线连接的方式安全、低成本、低功耗的网络互联,使得近距离内各种通信设备能够实现无缝资源共享,也可以实现在各种数字设备之间的语音和数据通信。由于蓝牙技术可以方便地嵌入到单一的CMOS芯片中,因此特别适用于小型的移动通信设备,使设备去掉了连接电缆的不便,通过无线建立通信。

蓝牙技术以低成本的近距离无线连接为基础,采用高速跳频(Frequency Hopping)和时分多址(Time Division Multi-access—TDMA)等先进技术,为固定与移动设备通信环境建立一个特别连接。蓝牙技术使得一些便于携带的移动通信设备和计算机设备不必借助电缆就能联网,并且能够实现无线连接因特网,其实际应用范围还可以拓展到各种家电产品、消费电子产品和汽车等信息家电,组成一个巨大的无线通信网络。打印机、PDA、桌上型计算机、传真机、键盘、游戏操纵杆以及所有其它的数字设备都可以成为蓝牙系统的一部分。目前蓝牙的标准是IEEE802.15,工作在2.4GHz频带,通道带宽为lMb/s,异步非对称连接最高数据速率为723.2kb/s。蓝牙速率亦拟进一步增强,新的蓝牙标准2.0版支持高达10Mb/s以上速率(4、8及12~20Mb/s),这是适应未来愈来愈多宽带多媒体业务需求的必然演进趋势。

作为一个新兴技术,蓝牙技术的应用还存在许多问题和不足之处,如成本过高、有效距离短及速度和安全性能也不令人满意等。但毫无疑问,蓝牙技术已成为近年应用最快的无线通信技术,它必将在不久的将来渗透到我们生活的各个方面。

3 超宽带(UWB)技术

超宽带(Ultra-wideband—UWB)技术起源于20世纪50年代末,此前主要作为军事技术在雷达等通信设备中使用。随着无线通信的飞速发展,人们对高速无线通信提出了更高的要求,超宽带技术又被重新提出,并倍受关注。UWB是指信号带宽大于500MHz或者是信号带宽与中心频率之比大于25%的无线通信方案。与常见的使用连续载波通信方式不同,UWB采用极短的脉冲信号来传送信息,通常每个脉冲持续的时间只有几十皮秒到几纳秒的时间。因此脉冲所占用的带宽甚至高达几GHz,因此最大数据传输速率可以达到几百分之一。在高速通信的同时,UWB设备的发射功率却很小,仅仅是现有设备的几百分之一,对于普通的非UWB接收机来说近似于噪声,因此从理论上讲,UWB可以与现有无线电设备共享带宽。UWB是一种高速而又低功耗的数据通信方式,它有望在无线通信领域得到广泛的应用。UWB的特点如下:

(1)抗干扰性能强:UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。

(2)传输速率高:UWB的数据速率可以达到几十Mbit/s到几百Mbit/s,有望高于蓝牙100倍。

(3)带宽极宽:UWB使用的带宽在1GHz以上,高达几个GHz。超宽带系统容量大,并且可以和目前的窄带通信系统同时工作而互不干扰。

(4)消耗电能少:通常情况下,无线通信系统在通信时需要连续发射载波,因此要消耗一定电能。而UWB不使用载波,只是发出瞬间脉冲电波,也就是直接按0和1发送出去,并且在需要时才发送脉冲电波,所以消耗电能少。

(5)保密性好:UWB保密性表现在两方面:一方面是采用跳时扩频,接收机只有已知发送端扩频码时才能解出发射数据;另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。

(6)发送功率非常小:UWB系统发射功率非常小,通信设备可以用小于1mW的发射功率就能实现通信。低发射功率大大延长了系统电源工作时间。

(7)成本低,适合于便携型使用:由于UWB技术使用基带传输,无需进行射频调制和解调,所以不需要混频器、过滤器、RF/TF转换器及本地振荡器等复杂元件,系统结构简化,成本大大降低,同时更容易集成到CMOS电路中。

参考文献

相关期刊更多

无线电工程

部级期刊 审核时间1-3个月

工业和信息化部

延安大学学报·自然科学版

省级期刊 审核时间1个月内

陕西省教育厅

舰船电子对抗

部级期刊 审核时间1个月内

中国船舶重工集团公司