前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇化学史论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
1990年初的欧洲光化污染非常严重,臭氧超标形势严峻。1993年欧洲环境委员会(EEA)成立,同时成立了欧洲环境信息和观测网络(Eionet),目前有32个成员国和6个合作国建立了586个地面臭氧监测站开展30多项针对光化污染的研究监测。在加强地面臭氧污染监测的同时,欧盟还加强了对形成臭氧前体物质排放量的统计和监测。目前,欧盟各成员国必须每年向欧盟环保局报告臭氧前体物质如挥发性有机物(VOC)、NOx、CO、NH3等的排放量,并确保上述污染物的排放量不超过欧盟确定的目标值。1990年美国国会通过清洁空气法修订案,美国EPA要求各州或地方在臭氧污染问题严重地区必须开始建立光化学评估监测站(PAMS),全面监测臭氧、臭氧前体物及部分含氧挥发性有机物(VOCs)以了解臭氧高污染发生的原因。除了光化学评估监测站(PAMS)外,美国有州和地方空气监测网(SLAMS)以及国家空气监测网(NAMS)承担臭氧污染监测。目前美国建有约1200个臭氧监测站形成了光化污染常规监测网,用以光化污染状况监测评估、污染预警、前体物状况和区域输送分析。2000年左右,我国部分城市如北京、上海、广州、重庆等开始开展臭氧监测,并在该领域做了一些探索。2008年国家正式开展臭氧监测试点工作,北京、天津、沈阳、青岛、上海、重庆和广东省参与试点,监测的参数有臭氧、臭氧前体物(SO2、NO2、CO),部分站配有VOCS、NMHC监测设备和气象仪。2013年京津冀、长三角、珠三角等重点区域以及直辖市和省会城市均开展GB3095—2012《环境空气质量标准》新增指标(PM2.5、CO、O3等)监测。2013年初,全国范围内74个重点城市建成的496个国控站点均已开展O3自动监测,形成国家监测网络。此外,如北京、上海、重庆、广州、南京、武汉等地根据需要建设有针对大气复合污染监测的综合监测实验室(超级站),除常规臭氧及其前体物外,还有光化烟雾污染的重要监测因子:细粒子颗粒物、NOy、VOCS、NMHC、大气稳定度、紫外辐射以及气象参数等。
2光化污染自动监测技术
开展大气光化学污染监测主要是开展臭氧以及对生成臭氧(光化烟雾)的主要前体物质和光化污染生成物的监测(NOx、NOy、CO、SO2、甲烷/非甲烷总烃、高沸点/低沸点臭氧前体物、有机气溶胶等),同时对太阳辐射强度以及城市的气象(风速、风向、温度、相对湿度等)、空气扩散条件等进行同步观测。本文根据自动监测技术的发展,对光化污染较为前沿的自动监测新技术进行介绍。
2.1O3、NOX、SO2和CO监测
O3是光化反应产生的最直接、最重要的污染物,常常作为光化烟雾污染强弱的指标,NOx=NO+NO2,NO2的存在是产生光化反应的必要条件,而SO2和CO是光化污染反应的重要前体物。以上4种参数监测技术从20世纪80年代开始发展至今,目前已非常成熟,本文就不再赘述。
2.2臭氧柱浓度的监测
柱浓度是指污染气体在空间上的垂直分布浓度,长期监测污染物的柱状浓度可以反映其在空间中的浓度变化趋势,对开展城市空气质量监测,研究区域空气污染分布以及污染通量传输具有重要作用。目前监测污染物柱状浓度主要使用的是被动DOAS监测技术,利用污染物的吸收光谱不同,采用光谱拟合技术得到污染气体的斜柱浓度,即污染气体沿光路的积分浓度,结合辐射传输模型计算出大气质量因子以及污染物的垂直柱浓度。
2.3总反应性氮氧化物NOy
总反应性氮氧化物NOy=NOx+NOz=NOx+NO3+2N2O5+HNO3+HNO4+HONO+PAN+MPAN+硝酸盐+烷基硝酸盐。对环境空气中总反应性氮氧化物NOy进行监测可以帮助了解大气中总反应性氮氧化物的组成特征以及形成光化学烟雾的机理。在监测方法上NOy与NOX相同,均为化学发光法,监测方法的区别在于:NOy的钼转化炉在样品气采样入口处,所有的含氮氧化物在采集入口处根据电磁阀的切换,一路通过钼转化炉全部转化为NO,参与化学发学反应得到NOy值,一路不通过钼转化炉直接参与化学发光反应得到NO值;而NOX的钼转化炉在仪器内部,样品气通过采样管进入仪器后,大部分非NO2的含氮氧化物已经挥发或反应成其它物质而不能被捕获。
2.4非甲烷总烃(NMHC)和挥发性有机物(VOCs)
(1)非甲烷总烃(NMHC)监测非甲烷总烃(NMHC)通常是指除甲烷以外的所有可挥发的碳氢化合物(其中主要是C2~C8),是形成光化学烟雾污染的重要前体物,长期观测NMHC,通过光化烟雾反应动力学模型和轨迹模式绘制EKMA曲线,如图1所示,以了解当地光化污染是受NHMC控制还是受NOX控制,以便做相应的污染防治工作。非甲烷总烃自动监测方法主要是采用气相色谱法,气相色谱的分离原理实质上是利用样品中各组分在色谱柱中的气相和固定相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组分就在其中的两相间进行反复多次的分配(吸附-脱附-放出),由于固定相对各种组分的吸附能力不同(即保存作用不同),因此各组分在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,顺序离开色谱柱进入检测器,产生的离子流信号经放大后,在记录器上描绘出各组分的色谱峰。非甲烷总烃常常和甲烷一起检测,检测器一般采用氢火焰离子检测器(FID)。氢焰检测器(FID)是以氢气和空气燃烧的火焰作为能源,利用含碳氢化合物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。(2)挥发性有机物(VOCs)监测挥发性有机物(VOCs)是指沸点在50~260℃、室温下饱和蒸气压超过133.32Pa的易挥发性有机化合物。大多数VOCs化合物(如低碳数的烯烃、烷烃)具有大气化学反应活泼性,是形成光化学烟雾污染的重要前体物,VOCs日益成为表征城市大气污染的重要指标。VOCs自动监测方法主要也是采用气相色谱法,使用在线气相色谱分析仪,一般可以检测低沸点(C2~C5)项目:乙烷,乙烯,丙烷,丙烯,异丁烷,正丁烷,反式-2-丁烯,顺式-2-丁烯,1-丁烯,异戊烷,正戊烷,1,3-丁二烯,反式-2-戊烯,1-戊烯,异戊二烯。可检测高沸点(C6~C12)项目:苯,甲苯,乙苯,间、对二甲苯,邻二甲苯,1,3,5-三甲苯,1,2,4-三甲苯,1,2,3-三甲苯,2,2,4-三甲基戊烷,正己烷,正庚烷,2-甲基庚烷,辛烷等,检测器分别采用的是氢焰检测器(FID)和离子化检测器(PID)。光离子化检测器(PID)原理是使用紫外灯(UV)光源,将有机物“击碎”成可被检测器检测到的正负离子(离子化),所形成的分子碎片和电子由于分别带有正负电荷,从而在2个电极之间产生电流,根据电流信号的强度检测该组分的浓度。在被检测后,离子重新复合成原来的气体,因此PID检测器是一种非破坏性检测器。
2.5PAN/PPN在线监测
PAN(过氧乙酰硝酸酯)和PPN(过氧丙酰硝酸酯)是大气光化烟雾的特征污染物,对人体健康、植物及生态环境有极大的危害。PAN和PPN可以作为光化学反应的指示物,其浓度的获得对于正确估算光化学臭氧产生率十分重要。PAN/PPN在线气相色谱1992年开始研发,经过多次升级后于近几年从德国传入我国。其原理是样品气在低于室温的毛细管柱进行气相色谱分离后,由电子捕获器(ECD)检测。其动态的校准单元是基于NO校准气流的光化学合成PAN或PPN。
2.6OH•(羟基自由基)监测
OH•是大气中最重要的氧化剂,它控制了绝大多数大气痕量组分的氧化去除,尤其是在光化学烟雾的产生、城市大气中二次气溶胶的生成等过程中起着重要作用。虽然我国对城市大气中的常规气相污染物和颗粒物已有一些测量和研究,但对于城市大气污染产生的机制了解得并不十分清楚,而对城市大气OH•的系统测量基本上属于空白。对OH•的测量应用较广泛的技术是激光诱导荧光LIF法。LIF方法是基于OH•在308nm附近存在尖锐吸收光谱的物理特性,使用窄带激光器在此波段内照射含OH•的气体样品使得OH•产生共振荧光,在入射激光的正交方向上对307~311nm波段内荧光光子进行计数,结合标定实验导出的灵敏度,从而定量测定大气中OH•的浓度。
2.7PM10、PM2.5、PM1(颗粒物)监测
伴随光化烟雾还会有大量细粒子即二次细颗粒物(secondaryfineparticulatematters,SFPM)产生,如硫酸盐、硝酸盐、铵盐、黑炭(BC)以及有机碳(OC)等,因此对光化污染监测需对颗粒物PM10、PM2.5、PM1进行长期监测。颗粒物自动监测方法主要有β射线法、微量振荡天平法、光散射法以及β射线法联用光散射法等。β射线法、微量振荡天平法经过30多年的发展已经比较成熟,光散射法是近几年发展起来较新的技术。其原理如下:半导体激光源以高频率产生绿色激光照射样气室,其频率足够快,保证在样气中的颗粒物质量浓度在一定范围(0.1~1500μg/m3)内,不会错过穿过气室的任何颗粒物。如有颗粒物存在,激光照在上面会发生散射,在同一平面上与激光照射方向成90°角的检测器会收到被对面的反射镜聚焦的散射光,其强弱与颗粒物的直径大小有关系。光散射法单独使用不但可以测量颗粒物质量浓度,还可以测量不同粒径大小颗粒物(如直径从0.25~32μm)的数量浓度。光散射法也可以和β射线法联用,可以使颗粒物监测仪在短时间内的分辨率、准确度和精确度有很大提高。
2.8太阳辐射观测
光化烟雾反应与太阳辐射直接相关,一般太阳辐射越强,大气光化反应就越厉害,臭氧浓度会更高,因此对太阳辐射进行长期观测是很有必要的。目前测量太阳辐射光谱特性的仪器是太阳辐射计,它可用于同时测量不同波长的太阳直接辐射、天空散射辐射、地面反射辐射或太阳总辐射等辐射量,可以计算出大气中水气、臭氧以及氮氧化物等污染气体分子在整个大气层中的总含量,反演出气溶胶粒子谱和光学特性等参数。
2.9大气稳定度
大气稳定度是指叠加在大气背景场上的扰动能否随时间增强的量度。大气稳定度是影响污染物在大气中扩散的极重要因素。当大气层不稳定,热力湍流发展旺盛,对流强烈,污染物易扩散,但是全层不稳定时,湍流受到抑制,污染物不易扩散稀释,特别当逆温层出现时,通常风力弱或无风,低空像蒙上一个“盖子”,使烟尘聚集地表,造成严重污染。目前使用普遍的大气稳定度自动仪主要是基于β射线测量方法的24h自动采样和PM10颗粒物质量浓度在线监测仪器。同时,仪器在设定的每个采样分析周期中,通过盖革计数器测量所收集颗粒物样品中氡元素之放射性大小,获得大气稳定度值(与样品中氡元素之放射性大小正相关)及相关参数。
2.10气象综合观测
有利于光化反应的的气象条件除了太阳辐射强、大气稳定外,还有低湿度、低风速和高压,因此气象综合观测是必不可少的。气象监测参数包括风向、风速、温度、湿度、压力、雨量等。比较常用的机械式的气象传感器使用时间长活动部位会有结垢和腐蚀等问题,影响数据准确性,且故障率比较高。目前有一种采用超声风新技术的一体式气象仪,其风向、风速使用超声风原理,雨量传感器使用雨鼓声学振动压力感应式或多普勒方式,压力、温度和湿度传感器集成在内部(电容传感器),这类一体式传感器集成化好、维护量极低、数据较为准确和稳定。超声风工作原理:风传感器有3个等间距的超声波变换器位于同一水平面上,它们组成一个变换器阵列。通过测量超声波从1个变换器传播到另外2个变换器所用的时间来确定风速和风向。风传感器测量沿变换器阵列所形成的3条路径的传送时间(双向),此传送时间取决于沿超声波路径的风速。如果风速为零,则正向和反向传送时间相同。当风向与声音路径的方向相同时,上风向传送时间将变长,而下风向传送时间将变短。雨鼓声学振动压力感应式的原理是:其传感器上部为不锈钢鼓面,内部为空腔,空腔内部设置了高精确性的微震动传感器。在监测雨量的时候,可以将每个微弱的雨滴到鼓面的震动转变为电信号,通过仪器内部计算模块进行准确计算得出实时降雨强度。多普勒方式测雨量是根据雷达气象学原理,降水强度与降水粒子的反射因子有关,也与降水粒子的含水量有关,而反射因子与回波强度有关,回波强度与基本反射率和回波厚度有关,因此多普勒方式依据降水粒子的基本反射率、回波厚度和降水含量来定量估算降水强度。
2.11遥感监测
遥感监测技术也是这几年迅速发展起来的新技术,它是以卫星、飞机、地面基站等方式,将工作平台从地面上升到高空,因此可以得到大面积的动态信息,具有整体性和宏观性的特点,被用来弥补地面环境监测的不足。遥感监测技术主要是通过物体对大气中各种频率电磁波的辐射或反射,不与物体进行直接接触,远距离辨识及测量目标对象的一种监测技术。大气环境遥感主要监测对象是大气中的O3、C02、S02、CH4等与大气环境质量和全球环境变化密切相关的大气可变组分以及气溶胶、有害气体、沙尘暴等大气杂质。在对臭氧遥感监测中,使用较广泛的传感器有TOVS、TOMS等。其中,TOVS探测器选用9.6!m作为探测通道,通过测量地面发射的电磁辐射在臭氧9.6!m吸收带处被大气中臭氧吸收的强度来探测大气中臭氧的含量。TOMS是通过测量后向太阳紫外辐射中的4个光谱通道的辐射值(其波长分别为312、317、331和339nm),其中臭氧的最强吸收(312nm)辐射和最弱吸收(331nm)辐射的比值就可以反演出大气中臭氧的总量。
2.12其它监测
除以上监测项目外,可以根据当地实际情况,对气溶胶化学组分进行监测,如在线测量可溶性阴阳离子浓度,有助于对细颗粒物的成分进行来源解析。另外还可以对OC/EC(有机碳/元素碳)进行监测(热化学法),其中EC直接来源于化石燃料的不完全燃烧,是一次人为大气污染的很好的指标。OC则包括污染源直接排放的一次有机碳POC和碳氢化合物通过光化学反应等途径生成的二次有机碳SOC,常常用OC/EC的值来判断二次污染程度,因此准确测量OC、EC的值,对于追溯大气气溶胶污染来源及气溶胶的形成与变化过程有很重要的意义。
3结语
当代社会的竞争日益加剧,更加突出地强调着未来人才的心理素质要求,高学历并不代表高素质,真正的人才不仅要有真才实学,还要有过硬的心理素质和良好的社会适应能力。所以,对小学生及时有效地进行心理健康教育是现代社会发展的必然要求,也是现代基础教育培养全面发展人才的一项重要内容。
作为小学生在校时间呆得最长的地方——教室,无疑又是所有校园文化环境中最为重要的组成部分,小学生的学习、生活都离不开群体,离不开学校环境,也离不开教室环境,从某种意义上说,与教室环境关系更为密切。教室文化,是小学校园中独特的风景,是时尚、社会心态和时代精神的体现和反映,是小学生文明的窗口。因此,笔者认为教室文化对小学生心理素质的影响尤为重要。
小学阶段正是学生心理断乳期和自我意识萌发阶段,小学生正处于生理和心理快速发育和发展的时期,可能会产生各种心理问题。在此阶段,外界的引导和影响对其心理素质的形成来说具有十分重要的作用。教室作为学生最主要的学习场所,其文化环境是以学生为主体创造出来的,又反过来决定和影响学生的成长。
1. 教室文化有助于小学生道德情操的陶冶
第一,提高审美水平。 教室文化体现的是教室这>:请记住我站域名/
第二,培养创造力和创新意识。小学生是一群朝气蓬勃、充满活力的群体。教室作为一群生龙活虎的小学生的聚集地,必然呈现出一派活跃、生动、朝气蓬勃、充满活力的氛围。围绕教室文化建设,学生课余生活色彩斑斓,文体活动和各项知识竞赛丰富多彩。诸如教室联谊制度的建立,“教室杯”各类球赛,文娱比赛,知识竞赛,科技成果展等等,使学生精神饱满,热情洋溢,处处显示青春气息。生动活泼的氛围使学生不墨守成规,勇于创新,激励小学生奋发进取,有助于培养小学生的创新精神和创造热情。
第三,激励学生奋发进取。学生是以学习为主的人,教室文化在发挥以上功能的同时,也发挥着熏陶、感染和鞭策学生求学上进的作用。笔者在调查问卷中设计了这样一道题,“看到教室里张贴的‘比比谁最棒’的公示栏,你得到的星星最少,你会怎么办?”,有67.14%的学生选择“努力表现,认真学习,争取得到更多星星”,这表明教室文化有助于培养小学生追求学问、争取进步的意识。
2. 教室文化有助于小学生协作、竞争意识的培养
教室成员朝夕相处,除了要受共同遵守的校纪校规、教室管理制度等的约束外,相互之间也形成一系列约定俗成不成文的互动规则,如语言习惯、消费结构、作息时间、教室及其成员的外观形象,也即教室成员的行为趋于一致的成分。既然是约定俗成,就具有相当大的制约力。如果违反规则,就会被同学排斥,视为异端。这有助于形成一种和谐一致的教室氛围,这种氛围有助于培养小学生与人协作、合作精神。同一教室学生在相互协作、共同进步的同时,相互之间也存在着竞争。由于小学生之间的竞争最集中地表现在学习技能的竞争上,带有功利色彩的因素较少,因此他们之间的竞争是一种良性竞争,表现为积极向上,争取优异成绩,获得三好学生、优秀少先队员等荣誉称号。这种竞争是主流,往往成为推动全体成员追求进步的巨大动力,有利于小学生发挥自己的潜能,奋发成才,是值得提倡和肯定的。
1督促学生做好实验预习
物理化学实验大多实验步骤较多,仪器操作比较繁琐或者数据处理过程比较复杂,学生没有预习的结果就是实验操作及数据处理过程中不断出错,甚至损坏仪器,造成时间精力的浪费和实验室财产的损失[5]。因此我们在上实验课之前要求学生认真预习实验并写好实验报告,在上课之前要上交预习报告,教师要批阅预习报告,掌握学生对本实验的了解程度。在讲解实验内容过程中还要对学生进行提问,以便发现学生是否只是敷衍了事,照抄书本上的实验内容。预习报告也将作为实验成绩的一部分,以这种方式敦促学生做好实验预习,这样学生便可以顺利地完成实验和更好地理解实验内容、提高实践能力。
2实验药品选择不必拘泥于教材
在全国提倡绿色环保的大环境下,我们对实验药品的选择也应尽量是无毒或是低毒的。现各高校使用的物理化学教材多种多样,但都包括经典的实验项目,且实验药品也基本相同。比如燃烧热的测定,几乎所有的教材都是使用萘作为测定对象,萘容易挥发和升华,吸入萘蒸气后,可引起头痛、乏力、恶心呕吐,皮肤接触后可引起皮炎。严重者会导致溶血性贫血及肝、肾损害及白内障、视神经炎和视网膜病变等[6]。从绿色环保和对学生安全的角度考虑可采用蔗糖或葡萄糖等代替萘,同样能达到实验目的。再比如最大气泡法测定表面张力的实验,我校原来采用教材上的实验药品正丁醇,但学生普遍反应此药品气味大,长时间实验感觉眼睛不舒服,因此现改为用乙醇做实验,尽管乙醇也稍有气味但无毒,学生使用安全且环保,并且学生对该药品熟悉、接触多,还会增加学生对实验的积极性,取得更好的实验效果。
3全面考核学生的实验教学成绩
以往传统的物理化学实验成绩的评定,是学生做完实验后,将实验记录下来的有关实验数据,利用课后时间将实验报告完成,老师根据学生实验报告的好坏评定出实验成绩,这样不能全面真实反映学生实验水平,往往会造成有些同学实验时认真,动手能力强,但由于实验报告写得不好而成绩不高;有些同学做实验时敷衍了事甚至不动手,课后抄袭或综合他人数据报告写的好而得高分,出现“高分低能”、“低能高分”现象,这种随意性和偶然性,势必影响到实验总成绩[7]。因此对学生实验成绩应全面考核,实验成绩的评定可包括预习报告、操作能力、现象及数据记录、实验报告等几方面内容,每一项指标均在实验总成绩中占有比例,实验教师根据学生在各个方面的表现给出成绩,避免上述状况的出现,做到对学生的成绩评定公平合理。
4结语
明确网站的建设目的是进行网站设计和制作的开始。化工实验中心网站是化工实验中心展示、辐射、共享、对外服务、对内管理的重要平台,其建设宗旨是在“服务教学质量工程和研究型人才培养需要”的基本思想指导下,借助计算机网络和多媒体技术的优势,打造了功能齐全、教学效果突出的网络教学平台,实现网络化教学、辅导、预习、虚拟仿真以及网络选课、网络查询、网络管理等先进的实验教学系统,达到拓展教学时空,优化教学体系,教学资源共享的目的。在后续网站的设计和制作过程中要紧密围绕化工实验中心网站目的,不能偏离主题,做无用功。
2网站构架的搭建
确定了网站建设的目的后,就要根据网站目的建立网站的大构架。一般而言,网站框架包括一些标准的内容,包括首页、简介、新闻动态、产品展示、在线留言、联系我们等。在搭建前,首先浏览国家级以及各省市级实验教学示范中心的网站,调研学习。在结合其它网站优点以及本校化工实验中心的特色下,详细地列出该中心网站需要的模块,并根据模块对网站构架进行设计,页面构架完成后尽可能不要改动,避免对先前内容产生影响,甚至破坏网站。确立了大框架,网站的主体部分也就确立了。
3制作网站相关素材的准备
这是制作网站最大的准备工作,包括实验教学相关素材以及网站设计相关素材的准备。实验教学相关素材,包括师资队伍人员介绍,设备仪器相关参数以及图片的收集与整理,实验讲义、课件、题库以及视频的准备、规范,获奖证书的集中与拍照,规章制度等。该环节设计的素材多,任务量大。要先作统一安排,把大工作切分成很多小任务,具体每项任务都下达到相关老师,规定好上交时间。收集完材料要对格式进行规范、校对,不合格的要重新反馈修改,如此反复,直到所有素材都分门别类得准备好。网站设计相关素材的准备,主要是网站上显示的各种图片等,相关素材要准备几个方案,以便统一讨论选出最优方案。
4网站域名与网站挂靠问题的沟通
一、充分认识在实验教学中开发学生智力的重要意义
1、开发学生智力是全面贯彻党的教育方针的需要
我们教育的总目标是使学生在德、智、体、美、劳诸方面都得到发展,智育即包括化学实验知识技能的传授,又包括开发学生的智力。有人认为智育就是传授知识,这显然是把“智”当作“知”来理解了,这是不全面的。人无知识不行,但光有知识没有智慧更不行,有了知识不会用,知识就是僵死的东西。有了知识又有了智慧,才能举一反三、触类旁通、灵活运用,把实验知识、技能转化为实践工作的创造性能力,因此,实验教学中须注意开发学生的智力。
2、开发学生的智力,是培养社会主义经济建设科技人才的基本措施
近几十年来,由于科学技术的飞速发展,反映科技成果的科学知识也在不断的更新换代。由于新的知识层出不穷,学生毕业后必然会遇到他们所不熟悉的新科学应用技术、新的发现、新的成果,那时,他们必须发挥自己的智慧去弄懂、掌握、应用它们。因此,只有认真重视开发学生的智力,才能使学生面向现代化、面向世界、面向未来。
3、化学实验教学对开发学生的智力有其独特的优势
化学实验这门课程是通过教学活动使学生把学到的理论知识在实践操作中进行论证,使理性认识转化为感性认识,并在感性认识过程中,通过实验技能知识的积累和独立思考,不断丰富观察力、想象力及分析问题和解决问题的能力,使其智力得到开发。例如,在乙醇制备乙醚的实验中,学生已知副产物有乙烯生成,但副产物是怎样产生的呢?学生在实验过程中观察发现得知:反应首先是乙醇与浓硫酸作用,生成硫酸二乙酯,反应伴有放热。然后乙醇进一步与硫酸二乙酯在加热条件下作用生成乙醚,但如果反应时温度过高,则硫酸二乙酯分解生成乙烯,同时伴有碳化副反应现象发生。
这是学生在掌握乙醇加热生成乙醚的基础上,在实验中通过观察得出新的理性认识,使其智力得到锻炼。
二、在实验教学中开发学生智力的方法
1、要加强“双基”教学,为开发学生的智力奠定基础
智力和知识、两者是紧密相连的。如果一个人对客观事物一无所知,就根本谈不上有什么分析问题和解决的能力。从这个意义上来说,缺乏一定的知识,就会阻碍学生智力的开发,因此,要开发学生的智力,教师就必须加强基础知识的教学和基本技能的训练。从化学实验这门学科而言,就必须通过课堂理论课的教学,把反映客观物质本质性的知识,通过实验,使学生获得的理性知识,在实验中加以检验,并对实验中的问题加以分析解决,达到智力开发的目的。要完成这个任务,教师在教学过程中就要注意讲练结合。所谓“精讲”就是画龙点睛地把实验的重点、难点和实验成败的关键讲清楚。“练”就是根据教学目的,精心安排设计各种实验内容,培养学生运用知识的能力。
2、坚持启发式教学方法,为开发学生智力创造条件
智力的开发与学习知识虽有密切的联系,但智力的开发又不能简单的归结为对理论知识和实验技能的学习,更重要的是对理论知识和实验技能的灵活运用,使理论知识渗透于实验操作之中,实验的事实结果又能升华为理论。如果教师是注入式灌输的,学生就只会死记硬背、照方抓药、机械的模仿操作,智力就难以开发。如在实验过程中,学生常会得出一些反常的实验现象,有的甚至实验失败。对此,学生往往会向教师提出许多各种各样的问题,面对这些提问,教师应该与学生一道共同分析实验操作中每一个环节,引导学生找出问题所在,并让学生自己思考解决问题的途径与方法,这样才利于学生的智力开发。启发式教学的关键在于教师要深入细致地钻研教材,结合学生实验,采取各种有效方式,充分调动学生的学习积极性,启发学生积极思考、活跃思维,激发学生的求知欲,发展观察、思维和想象等方面的能力。