前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇智能化控制系统范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
摘要
现如今,人们的生活越来越强调智能化以及低碳化,无论是智能化还是低碳化,生活在人们都希望自己的电器越来越智能,即能按照人们的意愿,低功耗的实现功能。水温控制作为人们生活以及工业的重要组成部分,能否实现智能化以及低功耗化十分重要。水温控制系统以STC89C51作为核心的温度控制系统,将DS18B20作为温度感应器,可直接反馈数字量的温度信息并可以调节精度;以继电器以及螺旋加热管作为加热模块;以发光二级管以及蜂鸣器作为声光告警装置;以数码管作为温度显示模块。程序上利用PID调节算法,多次调节其中参数,使得温度控制更加精确。该系统具有简单、成本低、质量安全可靠的特点。相信无论是在生活还是生产中都会有不错的应用前景。
关键词 智能化 温度控制 STC89C51 DS18B20 PID调节算法
一.任务以及要求
设计并制作一个水温自动控制系统,水温可以在一定范围内由人工设定,可以实现自动报警功能。
1.基本内容如下:
(1)温度设定范围为:40~90℃,最小区分度为 1℃,标定温度≤1℃。
(2)环境温度降低时温度控制的静态误差≤1℃。
(3)用10进制数码管显示水的实际温度。
2.发挥要求:
(1)温度控制范围扩大,最小区分度减小。
(2)温度控制的静态误差≤0.2℃。
(3)特色与创新。
二.方案设计及其论证
水温的控制,必须先精确地获取温度,所以温度传感器的选择就非常重要。通常,温度所测量的是模拟量,模拟量的转换涉及到A/D的转换。温度传感器把温度传送给处理器核心,处理器核心经过分析,判断是否满足处理的条件,进行相关的处理。可实现的动作包括以下几项:达到设定温度,进行声光报警;温度低,进行加热处理。其中温度的设定就要利用到键盘。声光报警就需要用到发光二级管以及蜂鸣器。经以上分析,可以将温度控制系统分为以下几个模块:
1.温度传感器
温度传感器应具有精度足够高、处理速度足够快、体积小等特点。采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 更重要的是采用该温度传感器后不用采用A/D转换。节省了大量的工作量。
2.键盘显示
按键主要涉及到温度的调节以及模式的转换。显示部分主要涉及到水温的实时显示,以及功能模式的显示。按任务功能需求采用独立键盘,并且利用MCU对键盘进行扫描。这种方案既能很好的控制键盘及显示,又为MCU大大的减少了程序的复杂性,而且具有体积小,简单易做的特点。显示部分按照任务要求采用4位数码管设计,来显示水温以及工作模式等。也具有简单、可靠的特点。
3.CPU核心
CPU主要控制水温以及其他模块的协调工作。是该水温控制系统的核心。根据对方案的分析,采用简单易用的STC89C52单片机,其内部有4KB单元的程序存储器,不需外部扩展程序存储器,而且它的I/O口也足够本次设计的要求。具有简单方便、成本低以及可靠的特点。
经以上分析,只要合理设计电路以及正确编写程序,以上几个模块在MCU以及程序的调节下能协调工作,共同完成水温的控制,从而达到任务要求。
三.理论分析与计算
各个模块要在MCU的调节下合理有序的工作,那么系统必须采用合理高效的控制系统。这就要涉及到过程控制,过程控制指对生产过程的某一或某些物理参数进行的自动控制。过程控制可分为:模拟控制系统、微机过程控制系统以及数字控制系统DDC。模拟控制系统中被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。微机过程控制系统以微型计算机作为控制器。控制规律的实现,是通过软件来完成的。改变控制规律,只要改变相应的程序即可。
现如今在生产以及实践中运用最多的是DDC(Direct Digital Congtrol)系统:
图3-1 DDC系统构成框图
DDC(Direct Digital Congtrol)系统是计算机用于过程控制的最典型的一种系统。微型计算机通过过程输入通道对一个或多个物理量进行检测,并根据确定的控制规律(算法)进行计算,通过输出通道直接去控制执行机构,使各被控量达到预定的要求。由于计算机的决策直接作用于过程,故称为直接数字控制。
其中控制规律即为PID调节,本系统中为软件实现。涉及到的理论计算如下:
1.模拟PID控制规律的离散化
表一.模拟PID控制规律的数字化公式
模拟形式
离散化形式
2.数字PID控制器的差分方程
式中 为比例项
为积分项
为微分项
四.系统设计方案
1.工作模式
本着智能化以及按照题目要求,将系统设计有以下两个个工作模式:A.测定水温以及显示水温;B.设定水温并保温;其中A为默认工作状态,即开机工作状态,工作内容为实时测量水温并在数码管上显示。B为设定温度并保温。由用户设定一定的温度,系统自动工作,加热到设定温度后声光报警,声光报警装置可独立开关,如果不切断电源或切换模式,系统将自动竟然保温模式。其中温度的设定有键盘控制。不管在那种工作模式,一旦复位键按下,将回到默认工作模式。在B工作模式下并且显示实际水温时,按下加键可以显示用户设定温度。根据以上的分析总结如下:
2.电路设计
根据以上的分析,可以将整个系统分为以下几个部分:单片机最小系统,测温电路,功率电路,交流过零检测电路,显示电路,系统框图如下:
(1)89C52最小系统
最小系统采用将C52MCU以及独立键盘、数码管集成在一块板上的工作方式。 其中P0口接数码管。其他包括复位电路、独立键盘、晶振电路。其电路如下图5-1所示:
图5-1 最小系统
(2)18B20测温电路
测温电路是使用DS18b20数字式温度传感器,它无需其他的外加电路,直接输出数字量,可直接与单片机通信,读取测温数据,电路十分简单。它能够达到0.5℃的固有分辨率,使用读取温度的暂存寄存器的方法还能达到0.2℃以上的精度。DS18B20温度传感器只有三根外引线:单线数据传输总线端口DQ ,外供电源线VDD,共用地线GND。外部供电方式(VDD接+5V,且数据传输总线接4.7k的上拉电阻,其接口电路如图5-2所示:
图5-2 控制电路
(3)功率电路
功率电路主要是继电器模块,包括三极管以及电阻组成控制部分,与MCU进行通信。PNP管的导通控制着继电器的常闭触点的接通与否。继电器常闭触点连接着外部加热电路。其中继电器的电感部分连接着二极管,起着引流保护PNP管的作用。其电路如下图6-1:
图6-1 功率电路
(4)声光报警电路
声光报警电路采用蜂鸣器以及二极管串联的形式,通过PNP三极管控制电路通断。利用P3.7来与MCU通信。如下图6-2:
图6-2 声光报警电路
(5)红外接收装置
该部分为创新部分,采用红外接收装置来接受红外遥控器的信号,这样就可以通过无线方式进行信息的传递。通过遥控器可以设定温度,切换工作模式等。工作原理为红外遥控器产生红外信号,红外接收头接收到红外信号后,其内部电路把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。最终将数字信号传输到MCU,MCU做出相应的反应。其电路如下图7-1:
图7-1 红外接收装置
五.软件设计说明
(1)总流程
本系统是采用查询方式来显示和控制温度的。其中加入了红外以及键盘等的其他控制器件语句。总流程图如下图7-2:
图 7-2 总流程图
(2)工作时序
工作时序由初始化模块、测温、显示等模块组成。具体工作时序如下图8-1:
图 8-1 工作时序
(3)主要程序
1.主函数如下:
#include
#include
unsigned char choice;
unsigned char key_down;
#include"DS18B20.H"
#include"PID.H"
#include"XIANSHI.H"
#include"KEYSCAN.H"
#include"INFRARED.H"
void main()
{
unsigned int tmp;
unsigned char counter=0;
P2 |= 0x07; //初始化按键
PIDBEGIN(); //初始化PID
init_infrared(); //初始化红外
ReadTemperature(); //预读一次温度
hello(); //显示HELLO,屏蔽85°C
while(1)//检测红外线
{
if(IrOK==1&&Im[0]==0x00)
proc_infrared();
if(counter-- == 0)
{
tmp = ReadTemperature();
counter = 20;
}
key_scan();//扫描键盘
proc_key();//刷新显示缓存
if(choice==0)
update_disbuf(tmp);
else
update_disbuf(set_tmpbuf);
if(pid_on)
compare_temper();
else
{
high_time=0;
low_time=100;
}
}
}
2. PID算法温度控制程序
#ifndef _PID_H__
#define _PID_H__
#include
#include
#include
struct PID {
unsigned int SetPoint; // 设定目标 Desired Value
unsigned int Proportion; // 比例常数 Proportional Const
unsigned int Integral; // 积分常数 Integral Const
unsigned int Derivative; // 微分常数 Derivative Const
unsigned int LastError; // Error[-1]
unsigned int PrevError; // Error[-2]
unsigned int SumError; // Sums of Errors
}
struct PID spid; // PID Control Structure
unsigned int rout; // PID Response (Output)
unsigned int rin; // PID Feedback (Input)
sbit output=P3^4;
unsigned char high_time,low_time,count=0;//占空比调节参数
unsigned char set_temper=33;
void PIDInit (struct PID *pp)
{
memset ( pp,0,sizeof(struct PID));
}
unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )
{
unsigned int dError,Error;
Error = pp->SetPoint - NextPoint; // 偏差
pp->SumError += Error; // 积分
dError = pp->LastError - pp->PrevError; // 当前微分
pp->PrevError = pp->LastError;
pp->LastError = Error;
return (pp->Proportion * Error//比例
+ pp->Integral * pp->SumError //积分项
+ pp->Derivative * dError); // 微分项
}
/***********************************************************
温度比较处理子程序
***********************************************************/
compare_temper()
{
unsigned char i; //EA=0;
if(set_temper>temper)
{
if(set_temper-temper>2)
{
high_time=100;
low_time=0;
}
else
{
for(i=0;i<10;i++)
{ get_temper();
rin = s; // Read Input
rout = PIDCalc ( &spid,rin ); // Perform PID Interation }
if (high_time<=100)
high_time=(unsigned char)(rout/1600);
else
high_time=100;
low_time= (100-high_time);
} }
else if(set_temper<=temper)
{
if(temper-set_temper>0)
{
high_time=0;
low_time=100;
}
else
{
for(i=0;i<10;i++)
{ get_temper();
rin = s; // Read Input
rout = PIDCalc ( &spid,rin ); // Perform PID Interation }
if (high_time<100)
high_time=(unsigned char)(rout/20000);
else
high_time=0;
low_time= (100-high_time);
//EA=1;
} } }
/*****************************************************
T0中断服务子程序,用于控制电平的翻转 ,40us*100=4ms周期
******************************************************/
void serve_T0() interrupt 1 using 1
{
if(++count<=(high_time))
output=1;
else if(count<=100)
{
output=0;
}
else
count=0;
TH0=0x2f;
TL0=0xe0;
}
void PIDBEGIN()
{
TMOD=0x01;
TH0=0x2f;
TL0=0x40;
EA=1;
ET0=1;
TR0=1;
high_time=50;
low_time=50;
PIDInit ( &spid ); // Initialize Structure
spid.Proportion = 10; // Set PID Coefficients
spid.Integral = 8;
spid.Derivative =6;
spid.SetPoint = 100; // Set PID Setpoint
}
#endif
3.DS18B20子程序
#ifndef __DS18B20_H__
#define __DS18B20_H__
sbit DQ = P3^5; //定义通信端口
unsigned int s;
unsigned char temper;
//晶振22MHz
void delay_18B20(unsigned int i)
{
while(i--);
}
//初始化函数
Init_DS18B20(void)
{
unsigned char x=0;
DQ = 1; //DQ复位
delay_18B20(4); //稍做延时
DQ = 0; //单片机将DQ拉低
delay_18B20(100); //精确延时 大于 480us
DQ = 1; //拉高总线
delay_18B20(40);
}
//读一个字节
ReadOneChar(void)
{
unsigned char i=0;
unsigned char dat = 0;
for (i=8;i>0;i--)
{
DQ = 0; // 给脉冲信号
dat>>=1;
DQ = 1; // 给脉冲信号
if(DQ)
dat|=0x80;
delay_18B20(10);
}
return(dat);
}
WriteOneChar(unsigned char dat)//写一个字节
{
unsigned char i=0;
for (i=8; i>0; i--)
{
DQ = 0;
DQ = dat&0x01;
delay_18B20(10);
DQ = 1;
dat>>=1;
}
}
ReadTemperature(void)//读取温度
{
unsigned char a=0;
unsigned char b=0;
unsigned int t=0;
//EA = 0;
Init_DS18B20();
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器) 前两个就是温度
a=ReadOneChar();
b=ReadOneChar();
Init_DS18B20();//启动下一次温度转换
WriteOneChar(0xCC); // 跳过读序号列号的操作
WriteOneChar(0x44); // 启动温度转换
t=(b*256+a)*25;
b=(b<<4)&0x7f;
s=(unsigned int)(a&0x1f);
s=(s*100)/16;
a=a>>4;
temper=a|b;
return(t>>2);
}
#endif
六.测试方法与数据
测量方式:接上系统的加热装置,装入25.06摄氏度室温的水,通过键盘或者红外遥控器设定控温温度。记录调节时间、超调温度、稳态温度波动幅度等。
测量条件:环境温度26.5℃(附:加热电炉功率600W)。
测量结果:如表二所示。在此仅以数值的方式给出测量结果。调节时间按温度进入设定温度±0.5℃范围时计算。
表二 测量结果数据
设定温度/℃
35
45
65
75
调节时间/min
1.15
1.12
1.58
1.06
超调温度/℃
35.06
45.12
64.87
74.87
稳态误差/℃
0.06
0.12
0.13
0.13
六.测试结果分析
由测试结果和上表数据得出:
(1)温度设定范围为30~95℃(在40~90范围内),最小区分度达到0. 01℃(小于1℃)以上,标定温度值也符合设计要求。
(2)由于采用了PID控制,在环境温度降低时温度控制的静态误差小于0.5℃(精度高于设计要求)。
(3)用数码管来显示水的实际温度和设定温度值,显示很稳定。
(4 )采用了PID控制,当设定温度突变(由40℃提高到60℃)时,经过多次调试知道,当P=10;I=8;D=6时系统具有最小的调节时间和超调量。
(5)当温度稳定时,温度控制的静态误差≤0.5℃。
(6)创新部分为添加了红外遥控装置。可代替键盘部分功能,且能更方便的调节温度等。
(7)经过多次测试和改进,该系统各方面参数都达到和超过设计参数,完成了既定目标。
参考文献:
关键词:选矿自动化 磨矿电气控制 分级过程控制 智能化
中图分类号:TP309 文献标识码:A 文章编号:1672-3791(2017)04(b)-0031-03
x矿自动化的发展是从20世纪中期开始发展起来的技术,相比传统的人工选矿它具有以下优势:(1)降低人工成本;(2)简化操作流程;(3)提高生产效率;(4)降低损耗;(5)提高选矿产品的稳定性以及质量。选矿自动化的工艺主要分为3个部分:(1)原料矿物破碎过程;(2)磨矿过程;(3)浮选过程。其中磨矿环节是矿石破碎的继续部分,主要目标为将矿石经过处理后形成细粒度级的颗粒用于浮选环节,所以磨矿的效果直接影响磨矿产品的质量(包括:磨矿粒度特性、磨矿产品浓度、磨矿单体的解离度)和后续其他工艺处理能力,这样就会影响整个选矿自动化工艺的经济性、技术性、高品质性[1]。磨矿分级自动化能够有效减少球磨机能耗的同时还能提高磨矿分级效率以及能源利用率。其发展经历了3个阶段[2]:(1)初始发展阶段。开始没有用于检测控制的仪表,主要由人来主观操作,这样导致生产指标不稳定;(2)稳定发展阶段。由于这个时期自动检测仪表使用和推广,如,矿浆pH计、X焚光分析仪和线矿装粒度仪等,使得在磨矿过程给矿量及溢流浓度能得到精确控制;(3)最优化生产发展阶段。这个阶段主要特点是控制理论的不断发展,先进的控制技术不断优化控制效果,如,PID串级控制、模糊控制与PID控制结合等。不过,由于磨矿本身的非线性以及时变性特点,其本身的建模以及回路控制相对复杂,国内很少企业研究出较好的成果。近年来,由于人工智能技术、过程模型以及仿真技术得到很好推广,这样使得国内外出现了许多以磨矿过程控制模型为基础,将智能控制算法与传统的控制理念结合的潮流。该文分析传统的选矿厂磨矿分级控制系统,研究近年来国内外的智能化控制算法与磨矿分级控制相结合情况。
1 矿厂磨矿电气分级控制系统分析
传统的磨矿电气控制系统结构由图1所示,由图可以看出核心是磨棒机,分级作业主要是在原来磨棒机的基础上加入分级机,目前主要是有水力旋流分级机和螺旋分级机两种。其余包括不同的子系统[3]:(1)磨矿电机油部分。主要采用高、低压油系统,磨主体分三段,前两段采用球形磨,第三段采用棒形磨;(2)电气控制联锁和继电保护部分。不同设备的打开与关掉是有先后且持续时间也是不同的,要实现这些就需要电气联锁,继电保护主要有气压、气温、油温、油压保护,还包括过电流、电压、励磁保护等两部分组成;(3)同步电机励磁装置部分。由两部分组成:一部分是系统组成的回路部分;另一部分就是这个回路的控制部分,整个电路采用三相全桥整流,去磁部分采用具有高、低电压的双级双路去磁;(4)自动喷油机械装置部分。为了保证大齿轮运行摩擦小,喷油装置就会每过一段时间就喷油一下;(5)气动离合器部分。要就是通过气压压力推动同步电机带动磨机转动的过程,目前主流的供气结构是两层供气:一层是用来控制气罐泄压的压力;另一层是确保控制气罐工作压力;(6)慢速转动设备部分。添加慢速转动结构,带动磨机运动,使其可以实现电动“盘车”。
磨矿分级流程:矿石经传送带送入球磨机中,在棒磨机内加入矿水,然后在钢球冲击和研磨下逐渐粉碎,最后排入分级机中,分级机通过矿粒大小不同运动特点不一样的原理,小颗粒矿石下沉速度较慢,就会随分级机溢流进入浮选环节,较大的则会返回棒磨机中重新再磨。
2 传统电气分级控制系统存在的问题
存在以下几点主要问题:(1)磨矿分级过程中,许多检测量存在多变性以及随机性的特点,不能很好地做出适应性强的控制策略;(2)检测无法实现真正的实时控制。在时间上就无法避免地存在滞后的问题,且测量的结果也不准确;(3)需要较多的继电器(时间继电器和中间继电器),这样接线复杂的同时容易出现故障,且维修较为困难。
3 磨矿分级智能控制研究
3.1 磨矿分级机建模
为了实现磨矿分级的智能化控制,数学建模的准确性就十分重要。针对不同的分级机采用不同的建模。螺旋分级机粒度分级数学模型通过质量守恒定律,将分级前后的第次结果满足(1)(2)等式;旋流器粒度分级数学模型国内外有很多,目前使用广泛的是采用阿提本分离粒度模型,可以以公式(3)(4)表示:
式中:、、分别为初始矿石总量、分级后流入浮选的矿石总量以及分级后进入沉砂的矿石总量;、、分别为初始第i 粒级矿石质量分数、分级后流入浮选的第i 粒级矿石质量分数以及分级后进入沉砂的第i 粒级矿石质量分数;为分级效率;、、分别为旋流器给矿石入口压力、矿石密度以及给水密度;、 分别为分离粒度和分级粒度;为旋流器直径;为给矿的固体体积溶度。
3.2 磨矿分级控制算法
有了准确的控制模型,再加上近年来分级过程检测(如,给矿量检测、矿浆浓度检测、矿浆粒子检测等)仪表的快速发展,给磨矿分级控制的发展提供了很好的前提条件。传统的磨矿控制策略存在以下问题:(1)闭环PID控制不能很好地适用于时间滞后较多的控制对象,但磨矿本身存在很大的时间滞后,期间参数随机性变化的情况较多,不能很好地应用于磨矿分级过程;(2)Simth预估控制模型能够在一定程度减小由于磨矿分级带来的时间滞后的影响,但补偿效果不明显,且对系统稳定性的控制能力不强;(3)解耦控制算法则只能处理对应的被控变量,在一定程度上存在局限性。
3.2.1 磨矿分级现代控制算法
现代控制算法是从20世纪中期发展起来的,主要有:(1)自适应控制。可以通过控制变量的输入输出参数,提取模型的一些信息,然后调整系统控制参数,使自身处于一个满意的工作状态,这样就算一些控制变量在变化,也能通过自适应算法自我调整逐渐适应;(2)预测控制。与传统的Simth预估控制不同,是建立在传统预测算法、滚动优化算法、反馈矫正算法基础上的滚动时域模型。如动态矩阵控制,能够实时地进行反馈自动调节,且具有很强的鲁棒性。
3.2.2 磨矿分级智能控制算法
随着人工智能的发展,智能控制算法在磨矿工艺里得到了较好的应用。目前用于磨矿分级的智能控制算法主要有模糊PID控制、专家控制、神经网络控制以及混沌控制。
(1)模糊PID控制[4]。在磨矿分级工艺中,常常采用两个二维的模糊控制器并联连接设计。这两个模糊控制器一个是用于给料控制,一个用于主电机电流控制。前者输入变量是粒度偏差、粒度偏差变化率,输出为控制量、、,其语言值为,对应的论域值为。隶属度函数采用三角形隶属度函数,规则为合成算法,输出量采用重心法解模糊运算,生成相应的给料模糊控制规则。另外一个主电机电流控制的输入参数是主电机工作电流偏差以及主电机工作电流偏差变化率,其输出控制量的论域和语言值与给料控制一样,对应的隶属度函数以及控制规则也相同。其结构可参考图2。
(2)专家控制[5]。主要依靠的是模拟熟练员工或者专家对磨矿工艺思维的一套智能推理算法。如图3所示,其中:Pa为粒度实际化验值;Pd为粒度期望设定值;Ip为工况条件集;Id为边界条件集。这样通过磨机的动态特点,结合知识库,采用人工智能自动寻优算法来修正磨矿分级环节的相关参数,使得控制更加具有适应性。
(3)神经网络控制[6]。目前有很多算法与神经网络结合,如模糊神经网络。建立一个N1层输入M1层输出的W1层神经网络来实现对磨矿分级磨机装载量的控制,另外,再建立一个N2层输入M2层输出的W2层神经网络磨矿浓度的控制,即将给矿量、补加水量、返砂量等作为输入,磨机功率的最优值作为输出然后就是对神经网络进行模拟训练,常采用RBFN训练方式,也有RLS和LMS等。最后得到合适的参数,用于磨矿分级控制。神经网络算法在近年来发展较快,特别是人工智能的发展,该方法能够很好地避免磨矿延时特性以及参数波动所引起的一些扰动,具有很好的鲁棒性。
4 结语
随着社会对选矿的需求不断升高,选矿自动化发展在近几年得到广泛关注。磨矿控制环节在选矿工艺中占有重要地位,在实际应用中容易受到干扰以及其他影响,且磨矿分级控制本身存在的非线性时变的特点,加大了对磨矿控制的难度。通过研究分析磨矿分级系统的原理,找出实际应用的问题,分析现有控制算法的特点,研究如何将先进的智能控制算法(模糊PID控制、专家控制、神经网络控制)引入到磨矿分级控制环节,能够有效地优化整个磨矿分级控制工艺,提高生产效率。
参考文献
[1] 赵大勇,岳恒,周平,等.基于智能优化控制的磨矿过程综合自动化系统[J].山东大学学报:工学版,2005,35(3):119-124.
[2] 胡博.磨V自动控制系统在广东大顶矿业的应用[J].南方金属,2012(4):27-30.
[3] 刘晓青,杨静,吴定允,等.磨矿过程的综合自动化技术[J].河南理工大学学报:自然科学版,2016,35(5):666-671.
[4] 程恒.模糊PID控制技术在磨矿系统中的应用[J].矿山机械,2010(3):76-79.
(秦皇岛消防支队,河北 秦皇岛 066000)
【摘要】重点对消防自动报警系统和智能化系统联动控制系统分析,探讨系统的总体结构设计、通信模块设计、软件设计、硬件结构设计,为消防自动报警系统和智能化系统联动控制系统设计,提供参考资料。
关键词 消防自动报警系统;智能化系统;联动控制
本文设计的消防自动报警系统处理器选用的是三星ARM9处理器,芯片为S3C2440,操作系统选用的是Linux。这一系统具有嵌入式Web接口,这样在Internet访问管理系统中移动终端也就能够是实现关于设备的远程监控。在室内实施了GPRS通信模块及Zigbee模块设计,以能够实现传感器和ARM9处理器之间的信号传递,强化室内环境的有效监控。本文把基于ARM的无线嵌入式消防自动报警系统的各方面设计实施分析研究。
1消防自动报警系统与智能化系统联动控制系统的总体结构设计
消防自动报警系统由多种子部件组成,在这些子部件的支撑下,该系统才能实现内部和外部智能化系统的通信,并强化内部设备管理和控制。
2消防自动报警系统与智能化系统联动控制系统的通信模块设计
关于系统通信模块的设计可以分成两部分,其中分别是其内部通信模块及外部通信模块。其中在内部通信模块设计中,最主要的就是设备控制器以及信号传输设备,但是在实际设计过程中为了对环保和美化需求满足,本次设计所选取的是Zigbee作为无线传输设备,这样可以消除布线的麻烦。外部通信模块主要包括互联网、GPRS模块以及终端设备,其中通过互联网可以实现终端设备对IP地址的访问,这样也就可以成功实现远程控制和管理设备[1]。
3消防自动报警系统与智能化系统联动控制系统的软件设计
3.1嵌入式系统运行环境的裁剪移植
Linux系统设计工作可以分成两个部分,首先需要实施控制系统初始化,同时将其内核各项参数实施调用,实施开发板U-boot移植,另外也要对系统中的内核启动各项参数实施优化设置;其次要对系统中的不必要部分进行移除。
3.2Web服务器的设计
关于Web服务器理由的选择范围包括:Apache,mini-Httpd,Thttpd,Goahead等等。关于Web服务器核心处理器的应用,则不但要确保其能够实现Web服务程序运行,并且还要确保支持TCP/IP协议,这样用户在实施Web服务器访问的时候通过APP或浏览器即可,采用相关操作也就可以实现家庭设备的相应监控。
3.3Main软件功能的设计
Main软件功能设计主要是要实现其与摄像头、红外传感器、温控以及烟感等的有关连接,如果在房间内的烟雾和温度已经达到之间设置的值时候,Main软件也就会作出报警,在终端设备上出现相应的显示;如果屋内出现明火,也就会把被红外传感器成功监控到,该软件会自行命令相关设备进行喷淋,或者根据用户通过终端设备下发的指令进行其他的处理[2]。
4消防自动报警系统与智能化系统联动控制系统的硬件结构设计
4.1系统的所有硬件结构
本文设计的消防自动报警系统的硬件结构主要有:LED显示设备、Zigbee调节器、电源模块、、GPRS模块、消防设备门禁传感器等外围设备、数据通信设备等
4.2嵌入式处理器
三星公司的ARM9处理器是本文设计的消防自动报警系统的处理器,其核心芯片是S3C2440,除了ARM9处理器本身具备的外设模块外,其芯片也集成了JATG、通信、存储器等模块,使得系统变得更加稳定、可靠[3]。
4.3Zigbee模块
这一模块在家庭网关中的重要作用是网络协管器,经常应用的型号是网峰牌CC2530,主要是针对烟雾、红外线传感器、温度、湿度以及门禁感应器,终端处理模块可以成功将数据无线传输和信号无线通信实现,不但能够作为是通信的起点,同时也能够作为是终点,并且可以针对内部设定的应用软件,采用相应的应急措施,有效的确保组网安全[4]。
4.4GPRS通信模块
这一模块主要被用来进行数据采集,并且将采集来的图像成功转化为电信号之后,将其传输给嵌入式系统,成功连接智能消防设备和网络。在本次设计中所选用的GPRS通信模块信号为M35,为四频GSM/GPRS,这一模块在应用中具有抗干扰性能强、工作温度范围宽、尺寸小,同时功能消耗量比较小等,另外还可以同时支持多个IP地址以及Socket[5]。GPRS通信模块在将信息成功处理之后,可以将其发送给运动终端,让用户可以及时有效的对相关情况有所了解,提高设备监控和管理的实时性和有效性。
5结语
本文设计的ARM的无线嵌入式消防自动报警系统,由于能与智能化系统进行联动联动控制,比传统的消防系统更加的节省材料,也更加简洁、环保,也更加的方便、快捷、智能,具有较高的应用价值。
参考文献
[1]梁国威.消防自动报警系统与智能化系统的联动[J].民营科技,2008,07:185.
[2]周萍.火灾自动报警系统设计中消防水泵及防烟排烟风机的联动控制接口及配线方案解析[J].硅谷,2014,08:74-76.
[3]黄佳丽.自动报警系统与联动控制系统的维护技术探析[J].电子技术与软件工程,2014,16:178-179.
[4]邹勇,李鑫.消防自动报警系统与智能化系统联动的探讨[J].才智,2010,09:60.
关键词:建筑设备监控系统 消防自动报警 智能照明 综合布线
本工程为五星级酒店建筑,建筑等级为一级。地下1层,地上22层,地上1~3层为裙房,4~22层为酒店客房。总建筑面积约为49683平方米。
一.建筑设备监控系统(BAS)
该系统充分体现酒店的舒适和豪华性,依据暖通空调、给排水、电气等专业要求,对酒店内的机电设备进行集中监视、控制和管理,使机电设备安全、可靠、高效地运行,同时节约能源、减少维护人员、提高工作效率。
中控室位于一层消防控制中心,建筑设备监控系统(BAS)控制中心设置于消防控制中心, BAS可对下列子系统进行设备运行和建筑节能的监测与控制:-1.冷冻水及冷却水系统;-2.热交换系统;-3.采暖通风及空气调节系统;-4.给水与排水系统;-5.供配电系统;-6.公共照明系统;-7.电梯和自动扶梯系统。
2.设计建筑设备监控系统时,应根据监控功能需求设置监控点。监控系统的服务功能应与管理模式相适应。
3. 建筑设备监控系统,应具备系统自诊断和故障报警功能。
4.当工程有智能建筑集成要求,且主管部门允许时,BAS应提供与火灾自动报警系统(FAS)及安全防范系统(SAS)的通信接口,构成建筑设备管理系统(BMS)。
二.智能照明控制系统
酒店设计为五星级的休闲渡假酒店,因此一般灯光营造的环境和单调的灯光效果已经远远不能满足要求,需能体现酒店的高品味及自身形象。通常酒店类建筑具有以下特点:照明灯具除了开关控制外,还要求具备大量的调光设备;控制的区域相对集中,多是建筑的共用部位(如大堂、餐厅、会议室、酒吧等);要求系统的维护和管理简单;照明光源多以热辐射光源为主,兼有少量的气体放电光源。
智能照明控制系统正是一个集多种照明控制方式、现代化数字技术和网络技术于一身的控制系统。其目标是更能体现人性化;智能化。它的出现和发展,不仅为建筑照明提供多种的艺术效果,而且使灯具控制和维护变得更为简单。
(1)大堂:整个大堂的灯光由控制系统自动管理,系统根据大堂运行时间自动调整灯光效果。大堂接待区安装了可编程控制面板,根据接待区域各种功能特点和不同的时间段,预设了多种灯光场景;同时工作人员可在现场进行手动编程,非常方便的设定或修改。
(2)宴会厅:该厅是酒店的重要礼仪场所。厅中通过可调光控制器,预设了多种灯光场景,用来适应不同场合的灯光效果需要。工作人员通过可编程控制面板,调用所需的某一灯光场景。
(3)娱乐中心:中心设有独立的灯光控制系统,该系统能够调节和控制由五彩缤纷的霓虹灯、电脑效果灯等组成的娱乐厅灯光,通过切换可编程控制面板内设置的各个场景,使娱乐室内的灯光或恬静柔和、或激烈奔放,景象各异,另外还有供小型演出的功能。
(4)酒吧:通过智能调光系统,按不同的时间和气氛,预设了多种灯光场景,营造出不同的氛围和情调,保持酒吧里柔和、优雅的灯光环境,使客人心情舒畅。
(5)会议室:这是酒店一个重要组成部分,采用智能照明控制系统,对各照明回路进行调光控制,达到在进行不同的会议时都能有适合的灯光效果,还可以和投影仪设备相连。
(6)客房:首先设置节电控制箱。客人进入房间后插取电卡,房内廊灯(门厅等)自动点亮,卧室床头壁灯由灭逐渐变亮到30%亮度,所有空调风机由强制低速转为由墙上三速开关直接控制,此后客房内灯光才可以通过其就近墙上开关进行操作。客人拔卡离开房间后,延时l0s,系统关闭所有受控设备(包括全部室内、卫生间照明、衣柜灯、电视、床头台灯、咖啡壶、阳台灯等),风机强制转低速,但不影响冰箱、计算机、传真机、卫生间剃须插座的电源,另外门外“服务”指示的状态保持不变,“勿扰”指示状态自动取消。
三.火灾自动报警系统
该酒店为一级火灾自动报警系统保护对象,采用控制中心报警系统。在一层设置消防控制中心,设置有火灾报警控制器、消防联动控制柜、消防广播主机、消防电话主机及消防专用电话总机,在消防泵房、变电所、冷冻机房等值班机房设置固定式消防通信分机,在各层每段设有手动报警按钮、消火栓按钮和消防电话插孔。
系统采用总线制方式,依消防规范在建筑内各层的不同位置安装了感烟(温)探测器,在客房内设置的智能感烟探测器,在厨房的灶间设置可燃气体报警器。各层的走道、大厅、餐厅、会议室等公共场所内设置广播扬声器,每个扬声器的额定功率大于3W,平时利用消防广播作为播放重要通知和背景音乐,在火灾状态下,由消防控制室强切作为事故广播。
消防联动控制系统包括以下控制装置:火灾报警、自动灭火、消火栓、防、排烟系统及空调通风、防火卷帘、电梯回降、火灾应急广播、火灾警报装置、火灾应急照明与疏散指示标志等。消防控制设备的控制电源及信号回路电压采用直流24V。
四.安全防范系统
酒店的安全防范系统为客人提供了安全、放心的休闲娱乐环境。监控中心设在一层消防控制中心。主要设备有监视器、矩阵切换、控制主机、长延时录像机等。
(1)在主要出入口、首层大堂、电梯轿厢、客房走廊等处设置摄像机。视频线采用SYWV-75-5电缆,电源线采用BV-500-2x2.5mm2线。控制线采用RVVP-4x1.5mm2线。系统采用的设备和部件的输入、输出阻抗以及电缆阻抗均为75欧姆。
(2)图像水平清晰度:黑白电视系统不低于400线,彩色电视系统不低于270线。图像画面的灰度不低于8级。各部分信噪比指标分配应符合:摄像机部分40dB,传输部分50dB,显示部分45dB。各路视频信号,在监视器输人端的电平值为1Vp-p+_3dB VBS。
五.综合布线系统
电讯机房和网络主机房设在酒店的地下一层。综合布线系统为开放式结构,采用分级星型拓扑结构,并具备必要的冗余量和扩充性。该系统充分考虑到了多媒体技术、综合数字业务等高速数据通信的需求,它既可以传输数据、语音、图象及其它各种控制信号,又可以与建筑物外部的信息通信网络互连。满足酒店的前台、后台的管理、经营业务,电话通信、电视会议、Internet网、电子邮件等业务。
综合布线系统设计包括下列部分:工作区;配线子系统;干线子系统;建筑群子系统;设备间;进线间;管理。
六.卫星及共用电视天线系统
酒店的卫星及共用电视天线系统,是由卫星接收天线、机房电视前端和放大分配网络系统组成。整个系统频宽达到860MHz。在酒店的屋顶设卫星电视机房,由卫星天线引入的馈线加装避雷保护器,以防止雷电波的侵入。
前端设备采用放大一混合式,传输系统采用分配一分支方式,以适应酒店用户终端数量多且分布不规则的特点。电视出线口电平值应满足68+-4dBuV。图像清晰度应在四级以上。所有电视系统采用的设备和部件的输入、输出标称阻抗均为75。
酒店还设置了VOD视频点播系统,客人可以通过电视点播酒店的VOD等娱乐节目。
在整个酒店的设计过程中,能够依据酒店管理模式的要求。遵照国家相关电气规范,按酒店的使用功能,充分考虑以人为本的原则,在照明与智能控制系统上下功夫,使酒店的各种功能在技术上更先进、实用,经济上投资更合理,为客人提供了便利、舒适、优雅和安全的渡假环境。
参考文献:
《民用建筑电气设计规范》JGJ 16-2008中国建筑工业出版社
关键词:綦江工业园区智能化;低压配电智能化控制系统;总线技术
中图分类号:[F287.2] 文献标识码:A 文章编号:
1引言
綦江工业园区智能化低压配电智能化控制系统由低压开关设备具有通信网关协议功能的綦江工业园区智能化元件经数字通信与计算机智能化控制系统人工神经数据连接,实现变电站低压开关设备运行管理的自动化、綦江工业园区智能化。针对低压电气智能化控制系统直接面向控制终端,设备多、分布广,而且綦江工业园区智能化低压配电智能化控制系统条件复杂,智能化控制系统本身及设备频繁操作、故障脱扣等产生的强电磁及谐波干扰等特点,綦江工业园区智能化监控智能化控制系统应能实现面向对象的操作模式,具有强抗干扰能力,主要控制功能由设备层綦江工业园区智能化元件完成,形成人工神经集成式全分布控制智能化控制系统,以满足智能化控制系统运行的实时、快速及可靠性的要求。智能化控制系统中的低压綦江工业园区智能化元件就其功能而言总体上可分为:电能质量监测、开关保护与控制及电动机控制等。由于綦江工业园区智能化低压配电智能化控制系统总线技术的应用,智能化控制系统中綦江工业园区智能化元件可不依赖计算机人工神经而独立运行,极大地提高智能化控制系统运行的实时性和可靠性,满足低压电器设备运行管理的需要及工厂生产过程控制的要求。
2基于綦江工业园区智能化低压配电智能化控制系统描述
随着通信技术与计算机应用技术应用现代工业技术的发展对低压配电智能化控制系统运行的可靠性及其綦江工业园区智能化管理提出了更高的要求,而微处理器技术的广泛应用及计算机智能化控制系统可靠性的大幅度提高,使綦江工业园区智能化低压电器元件得到快速发展,綦江工业园区智能化低压电气管理智能化控制系统应运而生。现有不少应用于低压的綦江工业园区智能化监控智能化控制系统基本上是在SCADA智能化控制系统基础上进行修改,可以满足基本的监控功能,但不能充分体现低压电气智能化控制系统的特点及要求。因此,綦江工业园区智能化低压配电智能化控制系统由低压开关设备具有通信功能的綦江工业园区智能化元件经数字通信与计算机智能化控制系统人工神经连接,实现变电站低压开关设备运行管理的自动化、綦江工业园区智能化。智能化控制系统可实现数据的实时采集、数字通信、远程操作与程序控制、保护定值管理、事件记录与告警、故障分析、各类报表及设备维护信息管理等功能。针对低压电气智能化控制系统直接面向控制终端,设备多、分布广,而且綦江工业园区智能化低压配电智能化控制系统条件复杂,智能化控制系统本身及设备频繁操作、故障脱扣等产生的强电磁及谐波干扰等特点,綦江工业园区智能化监控智能化控制系统应能实现面向对象的操作模式,具有强抗干扰能力,主要控制功能由设备层綦江工业园区智能化元件完成,形成人工神经集成式全分布控制智能化控制系统,以满足智能化控制系统运行的实时、快速及可靠性的要求。智能化控制系统中的低压綦江工业园区智能化元件就其功能而言总体上可分为:电能质量监测、开关保护与控制及电动机控制等。由于綦江工业园区智能化低压配电智能化控制系统总线技术的应用,智能化控制系统中綦江工业园区智能化元件可不依赖计算机人工神经而独立运行,极大地提高智能化控制系统运行的实时性和可靠性,满足低压电器设备运行管理的需要及工厂生产过程控制的要求。
3基于綦江工业园区智能化低压配电智能化控制系统总线技术的应用
基于綦江工业园区智能化低压配电智能化控制系统总线是应用在生产綦江工业园区智能化低压配电智能化控制系统、在微处理器测控设备之间实现双向串行多节点数字通信的智能化控制系统,也被称为开放式、数字式多点通信的底层人工智能。20世纪80年代中期,随着微处理器技术和人工神经技术的发展,DCS智能化控制系统4~20mA的模拟量传输方式逐渐被数字人工神经传输方式所取代,綦江工业园区智能化低压配电智能化控制系统总线控制智能化控制系统(FCS),迅速发展并在自动化领域得到广泛应用。
基于綦江工业园区智能化低压配电智能化控制系统大量的綦江工业园区智能化装置零散地分布在一个较大的范围内,而单个节点面向控制的信息量不大,但实时性、快速性要求较高,为减少中间环节,满足实时性要求及降低工业人工神经的成本,綦江工业园区智能化低压配电智能化控制系统总线采用的通信模型大都在OSI参考模型的基础上进行了不同程度的简化。它采用OSI模型中的3个典型层:物理层、数据链路层和应用层,省去了3~6层,具有结构简单、执行协作简单、成本低等优点,同时满足工业綦江工业园区智能化低压配电智能化控制系统应用的性能要求。綦江工业园区智能化低压配电智能化控制系统总线技术的优点主要有:
(1)节省硬件投资。綦江工业园区智能化低压配电智能化控制系统总线智能化控制系统的智能设备分散在綦江工业园区智能化低压配电智能化控制系统,能直接执行控制和计算功能,可减少大量的变送器及调节器、计算单元等,也不再需要DCS智能化控制系统的信号传输处理单元及其大量复杂的硬线连接,节省了可观的硬件投资,并可减少控制室的占地面积。
(2)节省安装费用。綦江工业园区智能化低压配电智能化控制系统总线智能化控制系统的接线十分简单,一条通信总线上可挂接几个甚至上百个设备,节省安装附件,安装工作量大大减少,设计及接线校对的工作量也大大减少。资料显示,与DCS相比,綦江工业园区智能化低压配电智能化控制系统总线智能化控制系统的安装费用可节省60%以上。
(3)减少维护费用。由于綦江工业园区智能化低压配电智能化控制系统控制设备具有自诊断及一定的故障处理能力,并通过数字通信将相关信息送往控制室,用户可实时监测及查询所有设备的运行,及时了解维护信息,以便早期分析与排除故障,缩短维护停工时间。同时,由于智能化控制系统结构简化、接线简单,减少了维护工作量。
(4)智能化控制系统集成更简单、灵活。用户可选择不同制造商的产品来集成智能化控制系统,避免或减少智能化控制系统集成中因不兼容的协议和接口带来的麻烦。
(5)提高了智能化控制系统的准确性和可靠性。由于綦江工业园区智能化低压配电智能化控制系统总线设备的綦江工业园区智能化、数字化,与模拟信号相比,它从根本上提高了测量与控制的精确度,减少了传送误差。同时,由于智能化控制系统结构简化,綦江工业园区智能化低压配电智能化控制系统綦江工业园区智能化设备内部功能加强,减少了信号的往返传输,设备可不依赖人工神经而工作,提高了整个智能化控制系统工作的可靠性。
綦江工业园区智能化低压配电智能化控制系统总线智能化控制系统是自动化领域的发展热点,应用綦江工业园区智能化低压配电智能化控制系统总线技术也是綦江工业园区智能化低压电器的发展趋向。在低压电气设备中,綦江工业园区智能化低压配电智能化控制系统总线技术已在电动机控制、综合测控仪表及开关保护等綦江工业园区智能化元件上广泛应用,并正在不断发展与完善。
4基于綦江工业园区智能化低压配电智能化控制系统气解决方案分析
基于綦江工业园区智能化低压配电智能化控制系统是綦江工业园区供电局自动化产品的重要组成部分。根据低压电气成套开关设备的特点和要求,綦江工业园区供电局公司先后推出了INSUM綦江工业园区智能化电动机管理智能化控制系统和ESD2000变电站监控智能化控制系统。其中INSUM智能化控制系统采用LonWorKs綦江工业园区智能化低压配电智能化控制系统总线,主要用于生产过程控制的电动机运行管理;ESD2000则是集成变电站低压开关设备、变压器及中压开关设备的一体化分布式綦江工业园区智能化管理智能化控制系统。
ESD2000智能化控制系统主机是变电站一体化监控平台,提供智能化控制系统集中监控功能。智能化控制系统綦江工业园区智能化低压配电智能化控制系统层面配置前端机,经内部以太网与监控主机连接;前端机往下是设备层开放的綦江工业园区智能化低压配电智能化控制系统总线人工神经,连接变电站设备的綦江工业园区智能化装置。前端机为工业PC机,具有很强的通信处理功能及抗干扰能力,取消了路由器和网关,简化了人工神经结构,同时实现底层变电站设备的无缝连接。目前,大部分綦江工业园区智能化低压配电智能化控制系统綦江工业园区智能化装置虽具有数字通信功能,但不是严格经一致性和互操作性测试过的綦江工业园区智能化低压配电智能化控制系统总线设备,协议不统一,通信兼容性差。而ESD2000前端机灵活的通信处理功能很好地满足了智能化控制系统开放性的要求,即可连接标准的綦江工业园区智能化低压配电智能化控制系统总线产品,也兼容其他綦江工业园区智能化装置,扩展灵活,可充分满足用户变电站内不同设备智能化控制系统集成的要求。
低压开关设备綦江工业园区智能化装置主要包括电能质量监测、开关控制及电动机控制等。连接ESD2000智能化控制系统具有代表性的实现上述功能的綦江工业园区智能化装置有:S系列开关、PR1、F系列开关、PR212、E系列开关、PR112PR113等綦江工业园区智能化万能式断路器;INSUM及M101M102綦江工业园区智能化电动机控制单元;PMC915综合测控仪表等。綦江工业园区智能化万能式断路器经綦江工业园区智能化低压配电智能化控制系统总线与计算机智能化控制系统连接实现开关保护定值设置、电参量测量与显示、故障与维护信息管理等功能;PMC915可实现电能质量综合监测、远程控制及参数越限告警等功能;M101M102綦江工业园区智能化电动机控制装置采用綦江工业园区智能化低压配电智能化控制系统总线技术,具有强大的电动机控制和保护功能及参数测量与显示功能。控制功能包括直接起动、正反转、双速、星三角、阀门控制等;保护功能覆盖了过载保护、欠压保护、堵转保护、三相不平衡与断相保护、漏电保护、电动机热保护等;可测量与显示三相电流、三相电压、有功功率、无功功率、功率因素、电度量及报告故障类型、电动机运行维护信息等。同时M101M102提供电动机自动重起动及故障预测功能,具有双冗余通信接口,通过装置的USB接口可进行软件升级。
綦江工业园区智能化低压配电智能化控制系统正在向小型化、多功能方向发展,綦江工业园区智能化低压配电智能化控制系统总线技术的发展与应用将提高綦江工业园区智能化低压电器产品在人工神经上的兼容性和智能化控制系统运行的可靠性,并最终给用户带来实惠。
5结束语
当代科学技术发展的重要趋势就是各学科的相互渗透和交叉,綦江工业园区智能化低压配电智能化控制系统中仍然存在着很多的非线性复杂控制问题,用传统的方法,难以得到满意地解决,而綦江工业园区智能化低压配电智能化控制系统理论作为一种人工智能的方法,则能够满意的解决更多且更复杂的綦江工业园区智能化低压配电智能化控制系统非线性问题。
参考文献
[1]张慎明,刘国定.IEE61970标准系列简介.电力控制系统自动化,2002,26.4):1-6.
[2]陈树勇,李树芳,李兰欣.智能电网技术综述[J].电网技术,2009,33(8):127