前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇线路设计论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
(1)设计依据
在工作开展之处,必须对参考依据进行仔细研究,如上级部门下发的任务书、指导性文件、设计规范文件、设计合同等。
(2)对设计工作中的细节有一个初步的了解
及线路输送电力的容量、电压等级、导线截面、线路总长度、中间落点、连接方式等,同时对设计范围有一个初步的规划,如工程的预算、工程需要应用的设备等。
(3)根据下发施工任务的要求
对设计的各部门进行安排,同时让各个设计部门明确好各项工作开始的时间和完成的时间。
(4)主要经济和材料耗用指标
主要包括全线的本体造价及综合造价,每公里的本体造价及综合造价。除此之外,还应当说明每公里耗用的避雷线、导线,以及其与避雷线
2电力线路设计问题的研究
(1)优化电力线路设计工作
首先,应该明确电力线路设计的依据,也就是设计的原则,需要根据不同作业施工地区的实际情况来有针对性地进行设计,严格依照各种文件条款的规定展开线路设计。其次,优选电力线路路径。在明确了设计思路与设计依据后,就要做好路径方案的选择,要从线路路径长短、能够被开发利用的各种交通线路以及交通线路周围的地形、地质状况,河流布局以及常年的气候特点等方面出发进行优化布局和选择,其中要重点避开工业污染严重、地形复杂、地表障碍物繁多等地理空间环境,同时要结合线路转角、曲折系数等方面来选择最优路径。将一切因素进行综合考虑、集中处理后,再选择最优电力施工线路。
(2)线路机电部分的设计
线路机电部分的设计在整个电力线路设计中也占据着十分关键而重要的地位,这其中要顾及气象条件、导线架设等因素。要求我们在设计中注意以下几点,第一,注重优选气象条件。当电力线路的长度过长,遇到气象环境较为复杂的地区时,需要对这些气象区进行分段处理,具体需要重点参考的因素有:当地的年平均温度、最高温与最低温、风力最大值、电线覆冰值、雷雨时间、电线内外电压等等。第二,导线的技术标准。要根据电力线路与系统的设计需要等来科学选择导线,其中包括截面、型号、规格、价格、质量等因素的考虑,其中要明确导线的主体机械与电气特征。第三,科学组装。因为电力系统的杆塔结构、绝缘子类型、导线等都各有差异,因此,需要采用各类组装模式。通常来说,单串绝缘子串就能够达到标准、满足要求,当遇到一些特殊的地理环境,例如:交通线路、复杂地形区、高寒区等时,则可以用双串绝缘子串来达到标准。第四,导线的防震。为了增强导线的防震抗震功能,要从以下因素出发来优选导线,例如:安全系数、使用应力最大值、平均运行应力等等,同时也要顾及电力线路所经由地方的环境特点,例如:地形状况、气候条件等等,对应提供抗震方法。其中要重点考虑施工地区的风力状况、线路架设高度、地形等因素,因为这些因素会严重影响导线震动规模。
(3)科学选择杆塔类型
电力线路的杆塔类型大致包括:直线型、转角型、耐张型等等,具体的线路设计作业中,可以着重选择那些能够经得住施工考验的成熟杆塔,而且要明确选择一种杆塔类型的原因,这就需要明确不同类型杆塔的特点,以及这种杆塔的适宜条件,所需的钢材、混凝土数量等等,也要将线路所经由路径的环境因素纳入考虑范围,经过多重比较分析与鉴别之后,再决定选择哪一种类型的杆塔。
3结语
1.1设计目标
公交线路规划设计目标可以从两个方面来进行总结:一方面是规划设计要努力吸引乘客,确保公交运行效率,降低营运成本,从而较少公交体统耗费,提升公交公司效益。另一方面是优化城市人们出行,在规划设计过程中实现人们出行、交通布局和城市主体运行的统一,进而实现社会效益。
1.2设计原则
在规划设计大城市公交线路时,需要考虑的因素较多,再加上城市公交线路网整体构成复杂,因此要保证线路规划设计达到最优效果具有一定难度。尽管如此,在进行公交线路规划设计时,仍要遵循以下原则以保证公交线路开创目的。
①线路规划设计要尽可能与城市居民流动走向相统一。
②线路规划设计要主要考虑沿线居民日常出行需求,如上班、上学等,同时兼顾其它。
③进行新开线路规划设计时尽量避免调整原有公交线路,避免发生串联影响。
④线路设计应尽量让公交线路网络上的点、线分局均匀,防止空白区出现。
⑤注重与其它公交线路的衔接。
2公交线路规划设计方法
在进行公交线路规划时除从公交系统收益目标之外还需要考虑社会整体效益目标。公交线路规划设计合理一方面能减少城市拥堵,另一方面也有利于降低乘客出行疲劳,促进社会财富创造。
2.1公交换乘枢纽选址
公交换乘枢纽是紧密联系城市各区域的重要一环,同时也是决定乘客出行方便与否的关键因素。具体选址方法如下:
①按区域将城市划分,划分手段主要依据城区联系度。
②在每个划分区域边界选择一些可以当作换乘枢纽的地点,将这些地点设为Φf1,看成可行性地址集。
③分配公交OD量。这一环节中的分配工作主要作用在不同区域内的小区之间,可以采用短路径分配法来进行分配。同时在分配过程中,划出各区域边界上人数流动大地址集,将其设为Φf2。
④令Φ=Φf1Φf2,则Φ就是设计中公交换乘枢纽所选定可以用来建址的集合。
⑤将上述OD分布量应用到其它枢纽上,尽量选择离建址地区近的地段。例如:两个区域间中有换乘枢纽γ,两个小区A和B分别在这两个区域内,则AB间的公交OD量就转到了A与γ和B与γ之间。
2.2公交路线规划
城市公交路线构成公交线网,目前对城市公交线网的规划主要采用逐条布线和全网最优两种方法,这两种规划方法其目的都在于保证公交客流量最大,缩短乘客出行时间,主要体现在直达乘客量最多。其中,逐条布线法是根据一些指标在多个可供选择的规划线路中逐条选择出最适合的线路的一种方法,采用这种方法进行线路设计并在此基础之上将多条路线进行叠加,最终构成公交线网是一种简单、可行的线路规划方式。实际规划过程中,我们可以以此为基础,寻找一种全新的优化方法。在确定好公交换乘枢纽之后,大量乘客会在这些换乘枢纽集中,这使得城市中区域内部换乘失色不少。基于此,在进行公交线路规划的目标应定在让整体公交线路网效率最高,即直达乘客总数最多。受线长约束,公交线路运行效率可以说在意义上同直达乘客数所表达的是相统一的。
3BRT线路规划设计
3.1基本原则
BRT线路即快速公交线路,它的建设同城市发展关系密切,因为城市繁荣会促进城市人口出行,这在很大程度上推进了城市BRT路线建设。在城市中规划BRT线路需遵循以下几点:
①整体性原则。在进行BRT线路规划设计时,要明确BRT线路同专属车辆、车道间的关系,它们是共同有机体下的多个密切联系的环节,因此在进行规划设计时,除了应用规划理论、方法外还应考虑这些因素。
②协调合理原则。这一点主要是指规划设计BRT路线时需要考虑它同常规公交线路间的联系性,在考虑线路独立的同时还应在大范围内考虑到乘客换乘等其它因素。
③可持续性原则。规划设计BRT线路需要注意环境保护,重视可持续发展尽量避开生态区,同时降低线路给居民带来的干扰。
3.2规划设计流程
进行BRT线路规划设计时首先需要掌握其理论基础及遵循的基本原则,在此基础之上对城市中现有的BRT路线规划设计进行分析和学习,从中则优戏曲。
3.3BRT线路规划设计方法
BRT线路规划是一项比较复杂工作,涉及到许多方面的优化和组合,具有非线性。此外,由于线路设计同乘客数量间是一种制衡关系,当新的交通路线投入运行后,自然便会有部分乘客使用这条交通线路,而这种客流变化又会对公交线路产生影响,面对这种情况,可以采用划模型来进行BRT线路规划设计。规划设计BRT线路的出发点是在运营单位获利的基础之上保证出行者方便,从而优化城市交通系统。因此规划设计要在尽量降低乘客花费、公交公司成本的同时尽最大可能增加客流,从而增加收益。其中乘客花费主要包括两点:车费及出行时间,乘客会根据车票价格及出行时间来选择自己的出行方式。此外,公交公司获益量同客流量关系程正相关。依据上述这些,我们便可以得出一个双层规划模型。其中上层规划函数与实际相结合,一方面能减少乘客出行费用,一方面还能降低营运成本,使公交系统获益。
4结束语
关键词:输电线路;路径;杆塔
随着国民经济快速增长,各地电网建设迅猛发展,从过去的“几年建一条线路”到现在的“一年建几条线路”实现了跨越式发展,供电可靠性进一步提高,电网输送能力大大增强,但输电线路建设的内部环境和外部空间却越来越小。各地进行土地开发线路路径选择困难,施工占地的民事工作难以协调,线路改造停电时间短,工程建设资金短缺等是电网建设中遇到的新问题。如何应对新形势,最大限度地满足电网建设需要已成为技术部门不断研究的课题。本文从设计角度围绕方便施工、降低造价、利于运行等方面,对输电线路设计中应注意的问题进行了探讨。
1设计中应注意的问题
1.1路径选择
路径选择和勘测是整个线路设计中的关键,方案的合理性对线路的经济、技术指标和施工、运行条件起着重要作用。为了做到既合理的缩短路径长度、降低线路投资又保证线路安全可靠、运行方便,一条线路有时需要徒步往返3~5趟才能确定出最佳方案,所以线路勘测工作是对设计人员业务水平、耐心和责任心的综合考验。
在工程选线阶段,设计人员要根据每项工程的实际情况,对线路沿线地上、地下、在建、拟建的工程设施进行充分搜资和调研,进行多路径方案比选,尽可能选择长度短、转角少、交叉跨越少,地形条件较好的方案。综合考虑清赔费用和民事工作,尽可能避开树木、房屋和经济作物种植区。
在勘测工作中做到兼顾杆位的经济合理性和关键杆位设立的可能性(如转角点、交跨点和必须设立杆塔的特殊地点等),个别特殊地段更要反复测量比较,使杆塔位置尽量避开交通困难地区,为组立杆塔和紧线创造较好的施工条件。
1.2杆塔选型
不同的杆塔型式在造价、占地、施工、运输和运行安全等方面均不相同,杆塔工程的费用约占整个工程的30%~40%,合理选择杆塔型式是关键。
对于新建工程若投资允许一般只选用1~2种直线水泥杆,跨越、耐张和转角尽量选用角钢塔,材料准备简单明了、施工作业方便且提高了线路的安全水平。对于同塔多回且沿规划路建设的线路,杆塔一般采用占地少的钢管塔,但大的转角塔若采用钢管塔由于结构上的原因极易造成杆顶挠度变形,基础施工费用也会比角钢塔增加一倍,直线塔采用钢管塔,转角塔采用角钢塔的方案比较合理,能够满足环境、投资和安全要求。
针对多条老线路运行十几年后出现对地距离不够造成隐患的情况,在新建线路设计中适当选用较高的杆塔并缩小水平档距可提高导线对地距离。在线路加高工程中设计采用占地小、安装方便的酒杯型(Y型)钢管塔,施工工期可由传统杆塔的3~5天缩短为1天,能够减少施工停电时间。
1.3基础设计
杆塔基础作为输电线路结构的重要组成部分,它的造价、工期和劳动消耗量在整个线路工程中占很大比重。其施工工期约占整个工期一半时间,运输量约占整个工程的60%,费用约占整个工程的20%~35%,基础选型、设计及施工的优劣直接影响着线路工程的建设。
滨州市位于山东省北部,属于黄河冲积平原,土质大部分为粉质粘土,而且地下水位高,一般为±0.0~1.0m,地基承载力又低,一般为70~90kN/m2。通俗讲基础越深受力越好、体积越小,但由于受地下水的影响,基础深埋后泥水、流砂现象出现的几率就会加大,给施工带来极大困难,既影响工期又增加投资。
由于地质的特殊性和埋深的局限性,当前的基础型式只有采取浅埋式,通过适当加大基础地板尺寸,增加基础自重来满足上拔稳定才是比较安全经济的。直线塔埋深控制在2m左右,承力塔埋深控制在3~4m左右可减少地下水对施工的影响。
根据工程实际地质情况每基塔的受力情况逐地段逐基进行优化设计比较重要,特别对于影响造价较大的承力塔,由四腿等大细化为两拉两压或三拉一压才是经济合理的。
2结束语
纵观近年来的输电建设工程,每项工程都有各自特点,设计中脱离工程实际,一味生搬硬套是无法保证设计质量与满足电网发展需要的。只有结合实际,因地制宜,通过优化方案,科技攻关,不断探索与创新,才能满足建设坚强电网的要求,才能开创工程设计“技术先进、安全合理”的全新局面。
参考文献
[1]110~500kV架空送电线路设计技术规定.国家经贸委,1999,10.
1优化35kV输电线路设计法分析
1.1线路设计法走向
为了优化设计35kV输电线路走向,在开展设计工作的过程中应注意以下问题。A:尽量避免将线路走向设计为之字形或大转角的路径形式,尽可能缩短线路距离,并尽量使线路走向与公路路线走向相吻合,以便能够利用交通优势。在设计时要避免输电线路跨越河流或通信线路,如通信线路与输电线路距离较小,则应控制好交叉角度:如通信线路为I级,则交叉角度应≥45°,如通信线路为II级,则应≥30°。如在35kV输电线路中设计有防雷保护措施,则通信线路与输电线路之间的距离应≥3m,在没有设计防雷保护措施的情况下,两种线路之间的距离应≥5m。B:在设计线路走向时还应注意避免穿越以下区域,即迷信或风水地带(庙宇、龙脉等)、高危险及高污染区域、自然灾害多发区、建筑物、风景区、开发区及林区等,同时还应避开铁路电线。C:在设计线路走向时应做好相应的测量工作,标记线路测量点时应采用木桩,同时利用红油漆将转角桩、桩号高程标示出来。桩位与公路的距离应>15m,与通信线的距离应>20m,与建筑物的距离应>10m,同时避免在风景区、开发区及林区等高赔偿区域设置桩位。
1.2杆型选择与杆塔设计
在杆型选择与杆塔设计方面,可以采用以下优化措施:A:在选择输电线路中的杆型时,应根据施工图纸要求、交桩及定桩等情况,尽量选择成熟杆型,如需要使用新式杆型,则应进行科学试验及论证。在35kV输电线路中使用的直线杆通常为15m,在特殊的情况下可采用18m的直线杆,输电线路中的铁塔高度通常设计为9m、15m或18m。B:目前输电线路中常见的杆型包括双杆及单杆,在选择杆型时主要依据导线情况;设计线杆高度时可借鉴35kV输电线路运行经验。对于加拉线直线杆的设计,应在了解地质条件后合理选择浅埋式或深埋式,以保证线杆的稳定性。确定直线杆尺寸与杆型后,便可以依据直线杆设计方案设计终端杆及转角杆,如输电线路中存在立杆困难的地段或特殊跨越地段,则在该地段设计铁塔,完成以上设计工作后,便可以计算档距。C:在设计杆塔时应控制好数量,以降低土地的占有率及建设支出,在控制杆塔数量的同时要采取有效的措施提高杆塔所具有的柔度、强度,以保证35kV输电线路运行的安全性及可靠性。
1.3排杆及基础设计
选择好输电线路中的杆型后,应在综合考虑经济因素及技术因素的基础上优化排杆设计。第一,优先排定转角杆型,并同时使转角耐张段的长度<2000m,如耐张段的长度>2000m,则将部分直线型耐张杆排定到转角耐张段当中。如直线杆段线路中存在吊档现象,则可将耐张杆布设到吊档地段中。第二,如发现在测量阶段设定的直线桩位不能有效满足设计及施工需要,则可以在不改变原线路走向的前提下适当迁移部分直线杆,注意尽量保留转角桩。第三,尽量避免将转角杆安排在大档距位置,如需要在耕地中排直线杆,则避免使用拉线。如条件允许,则尽量减少线路中的耐张杆、三连杆或双杆,多排直线杆或单杆,以节省开支。对于一档跨过地段,可适当放大塔杆的档距,无须将线杆布设在跨中位置。如35kV输电线路需要跨越同等级输电线路或低电压输电线路,则应将线杆布设为水平排列形式。在设计35kV输电线路的基础时应综合考虑多种条件,如基础受力情况、水文情况及地质地形情况等,对于线杆,可以选择倾覆类、下压类及上拔类基础;对于铁塔,则可以选择混凝土灌注桩或装配预制基础。
2设计35kV输电线路时应注意的问题
为了提高35kV输电线路的运行质量,在开展设计工作的过程中还应注意处理好以下问题。第一,确保架空线路中的终端引线与变电站中35kV进出线实现相互配合,以便为架设进出线的施工工作提供有利条件;确保架空线路的防雷保护措施、保护范围能够与所在区域电气防雷保护措施、范围实现有效衔接。线路设计人员应亲自参与放线测量工作,以便能够了解工程实际情况,并在进行线路设计法的过程中做到实践与理论有效结合,从而保证杆型设计及杆位选择的合理性。第二,如需要设计T接输电线路,则应将T接点线杆布设方法明确标示出来,同时注明杆型。应在设计方案中清楚说明线路的具体路径,并保证设计方案的严谨性、简明性及准确性。此外,在设计线路前应做好相应的勘察工作,设计工作完成后才能开始施工。
3结语
如今配电系统存在的接地方式主要有三种:TT、TN-C-S、TN-S。TN:这种方式是将变压器的中性点接地,设备外露部分和中性线接地;TT:把变压器的中性点先接地,电气设备外壳接地。TN-S这种方法是用工作零线同时当做接地的保护线,这样省钱又方便设计布局。TN-C-S一般用在工地当中,前提条件是上一部分采用的是TN-C的方式供电,但是施工要求必须采用TN-S用于施工中,这样就可以把配电箱里面分出PE线路用于漏电保护。TT一般应用于公共电网中,而后面两种一般再小区配电中更加常见。
1.1TT系统
将配电站中性点直接接地,用电设备金属部分接地,如下图1所示。在TT系统中,由于用电设备采用单独的接地线与地面连接,正常工作时电位为地电位,漏电发生时电压是很低的,所以相对比较的安全。但是如果接地发生故障的时候,电流要经过地面电阻和电源的接地电阻,此时电阻抗性较大,电流通过率不高,因此过电流保护就没有作用,必须采用剩余电流保护器来对漏电进行保护,剩余电流保护器简称RCD。TT系统利用RCD保护时应该注意下面几点:如果想在供电的火线前面部分装RCD,那么后面的线路当中就不能重复接地了;如果供电主线前部分不装RCD,那么零线部分可以重复多次的进行接地处理,但是N线上不能安装开关;TT系统所要安装的RCD必须是四极和两极产品,切断相线同时还要把零线切断。
1.2TN-C-S与TN-S系统
TN-S这种方法是用工作零线同时当做接地的保护线,这样省钱又方便设计布局。TN-C-S一般用在工地当中,前提条件是上一部分采用的是TN-C的方式供电,但是施工要求必须采用TN-S用于施工中,这样就可以把配电箱里面分出PE线路用于漏电保护。1.2.1TN-S系统TN-S系统要求中性线和保护线必须分离,然后各自和中性点相连在接地。这个方法中,如果发生了相线漏电,会直接产生短路现象,电流因此会变得很大,可以利用电流保护切断故障线路的方法。但是如果保护的线路线程太长了,阻抗也会相应变大,那么电流保护也可能因此失效,所以要在线路前端装上RCD进行二次保护。此系统中RCD要求如下:如果防火需求较高时,要把RCD作为保护目的是在故障发生第一时间切断故障,防止火灾的发生;中性线不能重复接地,不然中性线断线后保护设施作用不大。尤其是干线前部装配了RCD的情况下,更是要注意这一点。但是PE线例外,它就可以重复接地。
1.2.2TN-C-S系统
电源干线中接地线和中性导体线共用一条接中性线点功能的导体线(PEN)。进户的地方,接地线与中性线分开作为两条各自独立的线路,接地线就直接接到设备的外壳出。在放生漏电事故的时候,它的特点和TN-S系统一样。此系统同样有几点值得注意的点:PEN部分不能安装RCD,接地线和中性线分开之后就可以安装RCD;此系统中接中性线点功能导体线应该重复接地,防止PEN断线后危险电压扩散到电设备金属外壳中。一般情况下,PEN线应该多次接地,中性线不适合重复接地。
2RCD的选择
RCD在低压电中应用广泛,它最大的作用是能够将电路中发生的漏电检测出来,如果它离电源越近,那么保护的作用就越好,但是同时对于判断故障切断也会越差。如果把RCD安装在末端,可以避免大范围的停电事故。
2.1RCD的装设方式
实际生产和生活中,由于RCD的配备位置不同,我们通常将其分为三种安装方式。第一种为支线上安装RCD:分支线上,由于用户接触家电时间较多,因此也最容易发生漏电事故。采用每条分支都安装RCD的方案,可以在第一时间稳定的切断电源,并且这样停电范围也比较小,方便找到故障出处。另外,因为RCD之后的电线距离短,一般的漏电电流也会比较小,不容易让机器发生错误判断。第二种是在主线上安装RCD,这样的方法能够帮助保护RCD之后的干线还有只路的电路。但是弊端就是停电范围比较大,容易造成误操作。第三种:主路和支路均装上RCD,具体安装原则是支路RCD为小电流,保障人身安全,主路上安装延迟RCD,防止电气火灾也进一步确保主路安全。从安全的角度上来说,这样的安装方案既保障了快速准确的切断电路,也保证了其他正常电路的运行,这种方案最为合理,但是由于成本较高,还是需要酌情考虑。
2.2RCD的选择原则
2.2.1动作灵敏性原则
漏电保护的初衷就是为了保护人身以及财产安全,理论上来说,设计切断电流应该越小安全,可以保障在线路出现故障的第一时间及时切断电流。为了防止直接触电事故的发生,RCD设定电压在干燥地方设定为50V,湿润地方应该为一半的值。而30mA要作为尾部保护最低电流值。出于火灾隐患的考虑,一般设定为1vn,在部分通风不好并且容易引发火灾的地方,应该设置为100-200mA这个范围以内。按照相关法律规定,部分规定的电流值如下所述:手握式用电设备为15mA,环境湿度大的地区最高10mA,医疗设备医疗器械规定为6mA,建筑工地规定值在20mA左右,普通家庭用电30mA,防火地区为300mA。
2.2.2供电可靠性原则
RCD是为了保护人身财产的安全,但是也不能因为防漏电设施过度灵敏反而带来负面的影响,如果RCD误操作会导致生产生活的极大不便。RCD设定不反应电流应该比正常泄露电流大。实际的应用中,一下数据可供参考:民用单相最大负荷电流最大3000安,照明线路最大负荷电流为2001A,三相动力最大负荷电流为1001安。在其运行时,为了防止误操作,既要有动作电流之间的层级配合还要有时间上的配合。
2.3分级保护RCD的配合
(1)额定剩余动作电流Ivn的确定一般情况下,末端电流为30mA,但是在干路和支路防护是,就一定还要考虑到动作电流之间的层级配合。一般去最大额定电流一般作为设定值,如果干路与支路之间电流值比较接近,则会造成多个分支的总电流大于干路电流值,从而影响支路RCD的不动作,干路上已经发生了误操作,从而丧失了选择性。(2)漏电动作时间的配合在支路的RCD应该具备迅速切断电流的能力,每当线路发生故障时应该第一时间采取动作,规定的时间在0.1秒以内。但是对于2、3级RCD,应该在上一级之前,防止多级同时行动。这个时间差可以在0.2秒左右。
3结束语