前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇桥梁设计论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
大跨度桥梁结构的非线性可分为材料非线性(又可称为物理非线性或弹塑性)和几何非线性两种,一般情况下结构的几何非线性可通过考虑所谓的P-效应来进行在结构非线性地震反应分析的计算理论研究方面,备受关注的是结构的弹塑性分析,这不仅是因为相对于几何非线性而言,结构的弹塑性性能对于结构的抗震性能影响较大,而且更由于问题的复杂性。所以国内外众多学者针对后者开展了大量的研究工作。在大跨度公路桥梁弹塑性地震反应分析的力学模型中,根据各种构件的工作状态,将结构简化为杆系结构是合理的,同时对计算而言也是非常经济的。若按构件所处的空间位置可把力学模型分为平面模型和空间模型两种。若按模型中所采用的单元应力水平的种类来分,又可分为微观模型(采用应力空间)和宏观模型(采用内力空间)两种。由于微观模型要求将结构划分为足够小的单元,尽管很有效但所需的计算量较大,只适用较小规模的结构或构件的非线性分析,因此在实际工作中应用的范围比较有限,所以这里仅按前一种分类方法来加以讨论。
在结构弹塑性地震反应分析中,构件恢复力模型的确定是基本的步骤而构件的恢复力关系又集中反映在滞回特性曲线上,基本指标有曲线形状、骨架曲线及其特征参数、强度、刚度及其退化规律、滞回耗能机制、延性和等效滞回阻尼系数等。国内外在这方面已进行了大量的试验研究并取得了相应的研究成果。在平面模型中,根据所采用的塑性铰类型可把它分为集中塑性铰模型和分布塑性铰模型两大类。在集中塑性铰模型中,有代表性的一种是Clough等于1965年提出的双分量单元模型,该单元模型采用两根平行杆来模拟构件,其中一根用来表示具有屈服特性的弹塑性杆,另一根用来表示完全弹性杆,非弹性变形集中于杆件两端的集中塑性铰处,该模型的最大不足是不能考虑构件刚度退化。另一种有代表性的是1969年Giber-son提出的单分量模型,它克服了Clough双分量模型的不足,同时只用两个杆端塑性转角来刻划杆件的弹塑性性能,而杆件两端的弹塑性参数又是相互独立的,因此应用起来较为简便。其缺点是基本假设中有地震过程中反弯点不能移动的限制,所以对一些与基本假设不甚相符的特殊情况其使用的合理性就受到了限制。
二、多点激振效应
通常桥梁结构的地震反应分析是假定所有桥墩墩底的地震运动是一致的。而实际上,由于地震机制、地震渡的传播特征、地形地质构造的不同,使得入射地震在空间和时间上均是变化的。即使其他条件完全相同,由于地面上的各点到震源的距离不同,它们接收到的地震波必然存在着时间差(相位差),由此导致地表的非同步振动。这一点已被地震观测结果所证实。因此,多点地震输入是更合理的地震输入模式。特别是大跨度桥梁结构,当地震波的波长小于相邻桥墩的跨度时,入射到各墩的地震波的相位是不同的,由于在桥长范围内各墩下的基础类型和周围的场地条件可能有很大的差别,因此入射到各墩的地震波的波形也可能是不同的。有关实际震害表明,入射地震波的相位差可增大桥跨落梁的危险性。所以就地震波传播过程中的多点激振效应进行研究是有很大的实际意义的。
从概念上看,仅考虑入射地震波的相位变化情况属于行波效应分析问题。若再考虑地震波的波形变化就属于地震波的多点输入问题。从计算方法上看,由于多点地震输入算法与同步激振的计算方法不同,因此必须重新推导结构体系的动力平衡方程。美国学者Penzien和Clough于1975年推导了多自由度体系考虑地震波多点输入时的动力平衡微分方程及求解方法,通过所谓的影响矩阵,实现了地震波的多点输入算法。这种方法后来被广泛应用,目前所有考虑地震波多点输入的结构地震反应时程分析算法均以此为基本出发点。
综上所述,大跨度公路桥梁的多点激振效应分析是一个比较复杂的计算问题,其复杂性一方面在于计算方法上面,更重要的是对于不同类型的桥梁结构体系可能有着截然不同的计算结果。因此实际计算时只能针对具体的桥梁结构进行具体的分析,不能一概而论。从计算方法上看,目前有关研究基本上仍局限于线弹性体系的多点激振效应分析,而非线性多点激振效应与结构体系非线性地震反应分析的力学模型是密切相关的.
三、结构设计
上部构造形式的选择,应结合桥梁具体情况,综合考虑其受力特点、施工技术难度和经济性。简支空心板结构的桥型,施工方便,施工技术成熟;但跨径小,梁高大;由于桥梁跨径受限制,往往造成跨深沟桥梁高跨比不协调,美观性差;上部构造难以与路线小半径、大超高线形符合,且高墩数量增加;桥面伸缩缝多,行驶条件差。因而,在山区大跨度中,该类桥型一般用于地形相对平缓、填土不高的中、小桥上。预制拼装多梁式T梁在中等跨径桥中具有造价省、施工方便的特点,其造价低于整体式箱梁,是中等跨径直梁桥的常用桥型。但对于曲线梁来说,T梁为开口断面,抗扭及梁体平衡受力能力均较箱梁差,曲梁的弯矩作用对下部产生的不平衡力大。但当曲线桥的弯曲程度较小时,曲线T梁桥采用直梁设计,以翼缘板宽度调整平面线形,可减少曲梁的弯扭作用,在一定程度上可弥补曲线T梁桥受力和施工上的不足。虽然直线设置的曲线桥仍有部分恒载及活载不平衡影响及曲线变位存在,但较曲线梁小。此外,可以采取加强横向联系的措施,提高结构的整体性。对于大跨径桥梁,最好采用悬臂浇筑箱梁。但是对于中等跨径的桥梁,箱梁桥不论采取何种施工方式,费用都较高,与预制拼装多梁式T梁相比,处于弱势。
下部结构应能满足上部结构对支撑力的要求,同时在外形上要做到与上部结构相互协调、布置均匀。桥墩视上部构造形式及桥墩高度采用柱式墩、空心薄壁墩或双薄壁墩等多种形式。柱式墩是目前公路桥梁中广泛采用的桥墩形式,其自重轻,结构稳定性好,施工方便、快捷,外观轻颖美观。对于连续刚构桥,要注意把握上下部结构的刚度比,减小下部结构的刚度比,减小下部结构的刚度,可减小刚结点处的负弯矩,同时减小桥墩的弯矩,也可减小温度变化所产生的内力。但是桥墩也不可以太柔,否则会使结构产生过大变形,影响正常使用,并不利于结构的整体稳定性。对于高墩,除了要进行承载能力与正常使用极限状态验算外,还要着重进行稳定分析。对于连续梁结构或连续刚构桥,各墩的稳定性受相邻桥墩的制约影响,应取全桥或至少一梁作为分析对象。稳定分析的中心问题就是确定构件在各种可能的荷载作用和边界条件约束下的临界荷载,下面以连续梁为例进行说明。介于梁、墩之间的板式橡胶支座,梁体上的水平力H(车辆制动力和温度影响力等)是通过支座与梁、墩接触面上摩阻力而传递给桥墩的,它不但使墩顶产生水平位移,而且板式橡胶支座也要产生剪切变形。当梁体完成水平力的传递以后,梁体暂时处于一种固定状态,但由于轴力及墩身自重的影响,墩顶还会继续产生附加变形,这就使得板式支座由原来传递水平力的功能转变为抵抗墩顶继续变形的功能,支座原来的剪切变形先恢复到零,逐渐达到反向的状态。
四、结语
山区大跨度作为公路工程的一部分,很多方面需要探讨。山区大跨度方案的确定应遵循“安全、舒适、经济、美观”的原则,只有把握好规律,抓住侧重点,山区高速桥梁的布置和设计才能准确无误。
参考文献
[1]李伟,朱慈勉,胡晓依.考虑P-Δ效应压杆几何非线性问题的解析法[J].同济大学学报(自然科学版),2006,(10).
[2]阎兴华,苏志宏,朱清峰.钢—混凝土混合结构弹塑性动力分析综述[J].北京建筑工程学院学报,2006,(9).
[3]肖汝诚,郭文复.结构关心截面内力、位移混合调整计算的影响矩阵法[J].计算力学学报,1992,(1).
[4]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].西南交通大学,2003
桥梁造型的关键在于桥行,也就是桥梁的外形。桥形的作用在于桥梁与周围环境是协调统一的纽带。为了保持桥形与周围环境的统一,在设计上过程中要注意以下几点:
1.1协调与统一
所谓的“协调统一”,是指桥梁与周围环境的协调统一、桥梁本体构件之间的多样统一。具体的要做到两个方面:
(1)从多样中寻求统一。其为差异的统一和对立的统一两个方面。前者是不同量的因素之间存在统一,比如在桥梁结构中,支承传力结构、承载跨越的主体结构以及附属结构三者功能不同,但是将它们组合到桥梁建筑中就要达到协调统一,才能保证桥梁建筑的实用;而后者则是指不同因素之间存在的统一,比如悬索桥的塔和索,一刚一柔,形成对比,在形态上形成强烈的感官效果,相互对立却又能达到统一。所以在桥梁造型设计中要擅于以规律的变化组合寻求整体效果的和谐统一。桥梁建筑的统一有着其基本的原则,即“结构统一,桥墩简单”,具体地说就是体现在两个方面:第一,引桥和主桥的结构体系要统一或相近;第二,桥墩造型要简单,结构形式要单一,这一点在立交桥的设计中尤为重要。对于拱式体系桥梁来说,要关注主孔和两端桥的协调;对于梁式桥来说,要关注墩台造型与上部结构的协调;对于悬索体系桥梁来说,其引桥就应用轻型结构。
(2)从统一中寻求多样。其是一种较为简单的统一形式,但是在实际桥梁设计中,过多的雷同会时的桥梁变得单调,没有特色。因此,要在统一中求多样,寻求更多富有创意的设计,以此为桥梁造型增添新颖。
1.2对称与非对称
不管是大自然,还是人类生活中,到处充满了对称的美,当然桥梁也不例外。桥梁的对称既能够表现出力学上的平衡,又能够融入艺术的原理。从古代开始,我国的桥梁就具有极好的对称均衡性,特别是多孔桥,桥孔的设计不仅可以省略桥墩的设计,还可以主从关系上也展现的很明确。桥梁造型不能一味地运用对称,也要考虑设计的环境和其他因素,不然的话会使桥梁显得呆板平庸。由于水文和地质等原因,桥梁一般会采用非对称形式,以不等距离来平衡桥梁的体重,使其在空间效果上达到均衡,桥梁也会显得生动活泼。对称的美在于稳重庄严,非对称的美在于自由灵活,只有结合地理环境、技术材料等相关因素,灵活运用这两种结构,才能设计出具有魅力的桥梁建筑。
1.3比例与尺度
桥梁建筑的结构突出,比例的协调尤为重要。一般来说,桥梁建筑的比例包括三个方面:第一,桥梁整体结构与局部本身的三维尺寸的关系;第二,桥梁整体结构与局部,亦或是局部与局部之间的三维尺寸的关系;第三,通常意义上的比例。桥梁的比例关系与地形、建筑材料以及施工技术息息相关,当这些因素按照自然规律被确定下来时,其中的尺寸比例就会成为典范。确定桥梁的比例的常用方法有几何分析法和数学分析法。
(1)几何分析法。几何分析法就是以简单的几何图形作为基准,利用几何图形相互之间的制约关系,来控制建筑整体,尤其是建筑外形和局部控制点,以获得协调统一。
(2)数学分析法。在数学分析法中最有名的是黄金分割比例和动态匀称比例。在我国古代,三孔桥和五孔桥的跨径布置的比例关系符合黄金分割比例。虽然在进行桥梁整体或是局部规模尺寸时可以用以上比例关系,但是还是要注意以下两个问题:①桥梁的比例要同时符合结构和力学的前提下进行艺术构思;②比例不是一成不变的,可以根据技术条件、功能要求以及思想主题等进行调整。而尺度,是建筑的整体或局部在视觉上的感受与真实大小之间的关系,主要有三种,分别是与真实尺寸一致的自然尺度、建筑空间看起来比实际尺寸小的亲切尺度和建筑的视觉尺寸大于实际尺寸的雄伟尺度。
1.4稳定与动势
稳定是桥梁建筑安全的基本要求,其中包括结构稳定和视觉稳定两个方面。而动势是传统上的稳定随着技术和结构不断发展之后衍生出来的一种视觉稳定,不仅可以给人视觉上的稳定,还可以让人们感觉桥体的力量感。
2对桥梁造型景观设计的分析
桥梁景观设计是为了使桥梁的建筑造型和结构形式更加美观。
2.1与区域环境相互协调
首先要收集基础资料,比如桥位平面图、城市规划等,其次是了解城市内涵,其中包含城市文化、居民的生活习性等,桥梁设计要与城市定位相符合,以确定设计主题和桥梁景观。比如:
(1)回应当地的社会条件和自然条件;
(2)充分利用当地特色的材料和能源;
(3)借鉴当地其他优秀建筑文化理念;
(4)突出地域经济性。
2.2细部构件与结构的相互协调
细节部分包括路灯、标志标线、夜景灯饰等,细节部分可以表现出设计师的意图,并且还可以使桥梁更具细节艺术美感。
(1)栏杆。对于栏杆的要求不仅是富有细节美感,还要与桥梁整体协调统一,所以其造型要与桥形相配,这样才能发挥栏杆的帮衬和加强作用,不会喧宾夺主。比如斜拉桥,斜向拉索为伞状,栏杆就可以用相同斜度和方向的造型。
(2)照明设计。夜景照明设备只需满足人们步行和行车的灯光需求,如果过亮,会使桥梁的光环境变得平淡,所以照明要素要能够展现出主要对象。悬索桥的照明要素有主缆、钢箱梁等,斜拉桥的照明要素有索塔、斜拉索等,照明要素之间要主次分明。
(3)铺装景观。铺装景观要符合环境艺术,满足城市建设需要和人们休闲生活需要。既要满足通车和行人的要求,又要具有色彩、图案和质感,另外还要考虑到后期维修工作的难易程度。
(4)桥头建筑。桥头建筑一般是具有艺术性或是纪念性的雕塑小品,形景点,还用于衬托桥梁主体。这些雕塑小品要能够体现当地的风土人情、历史文化,给人启迪。
(5)视觉效果。要重视桥侧的视觉效果和桥梁的附属结构设计,同时也要对过桥管线进行美化等。美化这些细节部分可提高桥梁景观的整体艺术价值。
3结语
方案构思原则
从现场实际条件出发,提出满足工程功能性、耐久性、经济性的解决方案,并根据“环保和可持续发展”的新的设计理念,在造价允许的范围内,对设计方案进行评估,最终确定一个可行的,且功能、造价、景观、环保等各方面相对比较均衡的设计方案。方案优化设计吉林大道设计线路为沿着黑水河东侧的山体通过。对于依河傍山的道路设计,路线中线的具置定于何处,无论是偏向山还是偏向河,中线一点点的变化都会引起很大的工程量的变化。在这种条件下,目前国内最为常见的设计方案为沿山修建道路,切割坡脚,开挖路堑,并对开挖面进行边坡人工处理,这是依河傍山线路的惯常做法。一方面,路堑开挖这种工程活动会改变山体斜坡内的初始应力状态,使坡脚剪应力更趋于集中,开挖的人工边坡切断斜坡岩体的各种结构面,破坏了边坡的稳定性,一部分山体会向河流滑动,会留下滑坡的隐患;此处崖壁由中分化的板岩或砂岩构成,由于岩体的差异风化,斜坡本来已是凹凸不平,如果加之裂隙水的作用,开挖后斜坡表层岩石会发生经常性的岩屑、岩石顺坡滚落现象,特别严重时会诱发大规模的崩塌现象。另一方面,此处山势陡峭耸立,如果要开挖路堑,那么刷坡面积非常大。该地段山体绿化覆盖率非常高,这些高原生长的自然植被生长期较长,成活困难,高原脆弱的生态系统一旦破坏则不可再恢复,不仅视觉非常丑陋,而且会对生态环境留下永久的遗憾。另一种可行的方案是将线路外移,顺山势、顺河流建桥。桥梁紧贴山崖,环绕而建。这种方案能够避免对原有山体的破坏,不仅在视觉上和谐美观,同时也可达到保护生态的目的,但是桥梁方案每平方米的工程造价要比路堑开挖的方案高出2倍多。在同样满足功能性的情况下,对比两种设计,如果仅仅以建设时的经济性为出发点,桥梁方案的资金投入确实是高于路堑方案,路堑方案无疑是最应当选择的,但是建成后的弊端也是显而易见的。通过以上的分析,路堑开挖后,一旦诱发次生灾害,危害行车安全,带来的损失是无法估量的。如果对次生灾害进行二次处理,那么投入也是巨大的,反而得不偿失。本着体现“环保和可持续发展”的设计新理念,设计时选择了顺山建桥、以桥代路的设计方案。这样一来不仅可以最大限度地把工程环境的影响减到最低,而且可以得到较好的景观效果。
桥梁方案的技术设计
因为线路要绕山而行,所以在此段线路形成两处平曲线,分别为R=500m的圆曲线和R=180m、缓和曲线Ls=25m的平面曲线。为了缩短设计周期,简化施工程序,最大程度地降低工程造价,桥梁布孔采用“弯桥直做”的方式,上部采用20m简支桥面连续的预应力空心板,该跨径的空心板在吉林大道其他桥梁也同时应用,可以方便地进行模块化预制(图略)。全桥共11孔,分3联布置,全长226.54m,横桥向布置9片空心板梁,桥面总宽12m。下部采用桩柱式墩台,墩柱直径1.4m,墩高6~12m不等,基础为钻孔灌注桩,桩基直径1.5m。以上的布孔方式,使得该桥的第1~3跨处于R=500m的圆曲线内,第5~7跨位于半径R=180m、缓和曲线Ls=25m的平曲线内。共需“弯桥直做”6跨。“弯桥直做”是指在曲线桥梁的设计中,用中小跨径的预制直梁代替弯梁,平面以曲线的弦线形成折线形布置,墩台径向于曲线布置,然后通过调整边板的悬臂板长度、护栏和人行道的平面位置,来形成平面曲线线形。因为墩台是径向布置,所以每片预制板梁的长度是不相等的,则有:(式略)其中,L为每片板梁外侧边缘的长度(不含悬臂部分,悬臂用来形成圆曲线);R为圆曲线半径;d为圆曲线至每片板梁外缘的垂直距离。计算最外侧板梁时,d的值即为梁体悬臂板的宽度,计算第二片板梁时,d的值即为外侧板梁(含悬臂)的宽度,以此类推可计算出任一板梁的长度。缓和曲线段的计算思路与此类似,兹不赘述。
(一)支座破坏,是指上部结构所产生的地震惯性力通过支座构件传递到下部结构,当传递的荷载强度超出支座构件的设计强度值时,支座发生破坏的现象。对于桥梁的下部结构,支座的破坏消解了大部分的地震力,避免了地震力传递至墩台结构,避免了桥梁下部主体结构的损害程度,但同时支座的破坏可能会引起落梁等进一步的桥梁震害,
(二)落梁破坏,是指桥梁的梁板构件在地震时发生的水平位移超出梁板端部的支撑长度时发生梁体掉落的现象。落梁现象发生地震时在桥墩之间相对位移过大、支座丧失约束能力、梁的有效支撑长度不足、梁间碰撞剧烈等情况下。
二、桥梁抗震设计的基本原则
要达到合理抗震的设计目标要求,桥梁设计工程师需要深入的了解影响结构对地震反应的基本因素,并拥有丰富的工程经验,在符合现行规范的前提之下充分发挥主观的创造能力。基于目前的工程理论知识和历次桥梁地震灾害的经验教训,桥梁工程的抗震设计要遵循一些基本的设计原则。
(一)工程建设场地的选择桥梁工程的建设场地尽量选择地质情况稳定的地方,尽量选择土质坚硬的区域,避免地震时可能发生的松软场地的地基失效现象。
(二)结构体系的整体性和规则性桥梁结构较好整体性可以有效的防止桥梁构件在地震发生时的掉落,并能是结构发挥良好的空间作用,因此尽量采用连续的桥梁上部结构以保证桥梁的整体性。除此之外,桥梁结构的布置还要做到尺寸、刚度和质量的均匀、规整及对称,避免突然的变化引起地震力的集中。
(三)结构及构件的强度和延性的提高地震时桥梁结构的破坏源自于地震引起的桥梁结构的震动,在桥梁抗震的设计中除了要尽量减少地震力从地基传递至桥梁结构,还要使桥梁结构本身具备足够的强度和延性,来抵抗非预期破坏的发生。在现有技术条件下,在尽量不增加结构自身重力和不改变结构刚度的前提之下,提高桥梁结构的强度与延性两种方式是提高桥梁结构抗震能力的有效途径。结构的刚度、强度与延性是保证结构整体抗震能力的三个主要参数要素,刚度可以有效的控制结构变形,而延性可以有效的控制强度与刚度在反复地震力作用下的衰退现象。
(四)能力设计的原则能力设计思想强调强度安全度差异,即在不同构件,如延性构件和能力保护构件,和不同破坏模式,如延性破坏和脆性破坏模式之间建立各自不同的强度和安全度。通过强度与安全度的差异化,确保桥梁结构在地震的作用下以延性形式进行反应,避免发生脆性的破坏模式。类似于建筑抗震设计中的强柱弱梁,强剪弱弯和强节点弱构件的抗震设计思想
(五)设置多道抗震防线采用冗余设计的思想,尽量使桥梁结构具备多道抵抗地震力的防护体系,以便在第一道抗震防线发生破坏后,有备用的第二道防线用于支撑桥梁结构的抗震需求,避免发生严重的桥梁损坏。例如在同时设置抗震锚栓与抗震挡块,可以有效的防止地震时落梁的发生。
三、桥梁抗震设计的几个方法
(一)桥梁抗震的概念设计抗震概念设计是指根据以往地震灾害和工程抗震的经验等获得的基本抗震设计原则和设计思想,用以提出正确地桥梁结构总体方案、材料的选择和细部的构造等,从而达到合理抗震的设计目的。合理抗震设计即要求设计出来的结构,在强度、刚度和延性等指标上拥有最佳的指标组合,使结构实现经济性和抗震设防的双重目标。桥梁抗震概念设计的主要任务是选择合适的抗震结构体系,一般是根据桥梁结构抗震设计的规范要求进行。对于采用延性抗震概念设计的桥梁,还包括延性类型选择和塑性耗能机制选择。桥梁抗震的概念设计十分重要,其为抗震设计的数值计算创造了有利条件,使计算分析结果能更好的反映地震时结构反应的真实情况。
(二)地震响应分析方法的改变随着人们对地震动力和结构动力不断了解,抗震设计的理论和地震响应的分析设计方法也发展出多种方法。从地震动的振幅、频谱和持时三要素来看,抗震设计的动力理论不但考虑了地震动的持时,而且还考虑了地震动中反应谱不能概括的其他特性,较之静力理论和反应谱理论有着更全面的优点。
(三)多阶段设计方法伴随着地震产生机理、地震的动特性及地震作用下各类结构破坏机理、动力特性和构件能力研究的不断深入,加上不同的结构在不同概率的地震作用预期下的性能目标的各不相同,促使着结构设计在设计原则、设防水准等多个方面进行着不断的改变和进步。桥梁工程的抗震设计也由原来的单一设防水准的一阶段设计,改进为双水准或三水准的两阶段和三阶段设计方式,甚至是基于结构性能的多水准设防、多性能目标准则设计方式。
四、结语
1桥梁概况
某立交桥跨越城市主干路处采用(30+51+30)m三跨变截面连续梁,桥梁上部结构为预应力钢筋混凝土箱梁,下部采用覫1.2m钻孔灌注桩群桩基础,中墩由2根1.5m×1.4m的矩形墩柱组成,墩高6.8m,墩底外到外全宽为6m。为提高主梁的横向稳定性及主墩自身的景观效果,在顶部3m范围内两墩分别向外倾斜,顶部全宽为7.3m。中墩为固定墩,墩顶设置固定支座,其余墩顶设置活动支座。桥梁横断面及基础平面图见图1。
2计算比较
2.1设计加速度反应谱比较根据《中国地震动参数区划图》,查得桥梁所在场地的设计基本地震动峰值加速度为0.1g,地震基本烈度为7度,区划图上的特征周期为0.35s(第1组),场地类别为Ⅳ类,反应谱特征周期为0.65s。按照《公规》及《城规》,分别计算水平向加速度反应谱Smax值,见表1。根据表1计算的水平向加速度反应谱Smax值,分别绘制水平向加速度反应谱,见图2。由图2可知,就水平向加速度反应谱而言,《公规》与《城规》的不同之处为:1)反应谱周期不同,《公规》为10s,《城规》为6s;2)反应谱平台宽度相同,高度《公规》比《城规》稍大,但在反应谱下降段,《城规》又比《公规》稍大。
2.2E1地震作用下墩柱抗弯能力验算比较在E1地震作用下,构件还处在弹性阶段,因此主要验算墩柱的抗压及抗弯强度。表3是依据《公规》和《城规》的计算结果,按偏心受压构件进行验算的结果。
2.3E2地震作用下墩柱变形能力验算比较在E2地震作用下,首先应判断墩柱的抗弯能力是否进入塑性状态。当进入塑性状态时,对墩柱截面的抗弯能力验算转变为对墩顶位移能力的验算。该桥在E2地震作用下墩底均进入塑性状态。对于横桥向,桥墩属于多个潜在塑性铰结构,《公规》和《城规》中都推荐采用非线性静力分析方法(Push-over)进行分析,因此墩顶容许位移计算结果是一样的。对于纵桥向,两规范的验算公式基本相同,但计算参数取值有所不同。其中,《公规》中计算等效塑性铰长度Lp的计算公式为Lp=minLp=0.08H+0.022fyds≥0.044fyds;(1)Lp=23b。(2≥≥≥≥≥≥≥≥≥)计算结果取两式的较小值;《城规》仅取前者的计算值。由以上公式可知,《公规》的等效塑性铰长度LP受到截面尺寸的约束,不会随着墩柱高度的增大而增大,而《城规》会随着墩柱高度的增大而增大。因该桥墩柱不高,所以两规范计算的Lp相等,均为82.6cm。《公规》和《城规》中对墩顶位移的计算均是将延性构件的截面改为等效刚度后,采用反应谱法进行计算,然后再根据结构周期对墩顶位移进行修正。其中:1)《公规》的调整系数c按表4取值。2)《城规》调整系数Rd的计算方法为:Rd=(1-1μD)T*T+1μD≥1.0,T*T>1.0;Rd=1.0,T*T≤1.0;T*=1.25Tg。表5比较了不同周期下的位移修正系数值。由表5可知,对于短周期结构,《城规》比《公规》的位移修正系数大,且周期越短,比值越大;对于长周期结构,两者是相同的。两规范的墩顶位移计算值见表6。
2.4E2地震作用下墩柱剪力设计值比较在E2地震作用下,墩柱屈服后要按保护构件能力的大小验算墩柱的抗剪强度。《公规》的剪力设计值顺桥向与横桥向均是根据最不利轴力对应的抗弯承载力来计算;《城规》的剪力设计值,纵桥向与《公规》类似,但轴力取的是恒载作用的轴力,而横桥向两者计算方法有较大差异,《城规》采用的是迭代方法计算。对于塑性铰截面抗剪能力的计算,两规范都分别考虑了混凝土和钢筋的抗剪能力,但对混凝土的抗剪能力计算则差异较大。1)《公规》中混凝土抗剪能力的计算公式为:VC=0.0023f′c姨Ae;2)《城规》中混凝土抗剪能力的计算公式为:VC=0.1νcAe;νc=0Pc≤0λ(1+Pc1.38×Ag)fad姨≤min0.355fad姨1.47fad姨姨姨姨姨姨姨姨姨姨姨姨姨;0.03≤λ=ρcfyh10+0.38-0.1μΔ≤0.3。根据两规范的计算公式可知,《公规》对混凝土的抗剪能力计算结果是《城规》的下限值。表7分别计算了两规范的剪力设计值及塑性铰截面的抗剪能力值(塑性铰加密区箍筋直径16mm,钢筋等级HRB400,间距10cm,同一截面纵、横向均为7肢)。由表7可知,由于《公规》基本忽略了混凝土的抗剪能力,因此在相同情况下,需配置较多的箍筋才能满足抗剪需求。
2.5E2地震作用下基础验算比较对于基础,均按保护构件能力进行设计。基础顺桥向、横桥向的弯矩、剪力和轴力设计值应根据墩柱底部可能出现塑性铰处沿顺桥向、横桥向的弯矩承载力、剪力设计值和墩柱最不利轴力来计算。当墩柱进入塑性状态时,基础内力的设计值仅与截面强度有关。其不同之处在于验算基础内力容许值时,《城规》规定在地震作用下的非液化土中,单桩的抗压承载能力可以提高至原来的2倍,单桩的抗拉承载力可比非抗震设计时提高25%;在验算桩基础截面抗弯强度时,截面抗弯能力可采用材料强度标准值计算。而《公规》中,非液化地基的桩基进行抗震验算时,柱桩的地基抗震容许承载力调整系数可取1.5,摩擦桩的地基抗震容许承载力调整系数可根据地基土类别分别提高系数。在验算桩基础截面抗弯强度时,截面抗弯能力仍然采用材料强度设计值计算。在E2地震作用下,群桩基础会出现偏心受拉,表8取1组代表值就两规范的验算结果进行了比较(桩径覫1200mm,混凝土等级C30,主筋直径25mm,主筋根数30,钢筋等级HRB400)。由表8可知,由于材料强度取值及提高系数差异,同一截面《城规》抗拉强度较《公规》有大幅度提高。
3结语