首页 > 文章中心 > 数据挖掘技术分析论文

数据挖掘技术分析论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数据挖掘技术分析论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

数据挖掘技术分析论文

数据挖掘技术分析论文范文第1篇

关键词:数据挖掘;决策树;C4.5算法;教学管理;高校教学

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2012)30-7150-04

随着数字信息化社会的飞速发展,计算机技术和数据库管理系统被广泛应用于科学探索、商业、金融业、电子商务、企业生产等各种行业,已逐渐发展成为一种智能管理过程。数据挖掘作为一种新兴的数据分析技术,它的研究成果取得了令人瞩目的成就[1]。利用数据库技术,通过对教务管理的大量数据进行多层次、多维度的加工处理,从而实现人性化管理,为科学决策提供支持。

毕业论文在教学体系中占有十分重要的位置,是本科生培养计划中衡量教学质量的重要指标。提高毕业论文教学质量是一项系统工程,为研究在当前的教学条件下如何提高毕业论文教学质量,本文采用数据挖掘技术对影响毕业论文成绩管理的多方面因素进行了深入分析和挖掘,以期发现对学校毕业论文教学管理有用的知识,将这些知识应用于本科学生毕业论文教学实践中,为学校管理者提供有用的信息,进而获得更好的管理效益,为学校未来的发展提供更广阔的空间,发挥重要的作用。

1 数据挖掘简介

数据挖掘(Data Mining),又称数据库中的知识发现(Knowledge discovery in Database. KDD)[2],是通过分析每一个具体数据,从大量的、有噪声的、模糊的、随机的海量数据中寻找其规律的技术,它是数据库研究中的一个很有应用价值的新领域。

1.1 数据挖掘的定义

H包含如下功能:

综上所述,数据挖掘具有三大特点:其一是处理大型数据;其二应用数据挖掘的目的是发现未知的、有意义的模式或规律;其三是一个对大量数据处理的过程,有特定的步骤[3]。

1.2 数据挖掘的主要方法

数据挖掘是一个多学科交叉领域,它由人工智能、机器学习的方法起步,并与统计分析方法、模糊数学和可视化技术相融合,以数据库为研究对象,围绕面对应用,为决策者提供服务。

数据挖掘的方法主要可分为六大类:统计分析方法、归纳学习方法、仿生物技术、可视化技术、聚类方法和模糊数学方法。归纳学习法是目前重点研究的方向,本文根据给定的训练样本数据集,采用归纳学习法中的决策树技术构造分类模型,将事例分类成不同的类别。

2 决策树算法基本理论

2.1 决策树方法介绍

决策树[4]方法是以事例学习为基础的归纳推算法,着眼于从一组无序的,无规则的事例中推断出类似条件下会得到什么值这类规则的方法,它是一种逼近离散值函数的方法,也可以看作一个布尔函数[5]。决策树归纳方法是目前许多数据挖掘商用系统的基础,可以应用于分析数据,同样也可以用来作预测。建模过程中,即树的生长过程是不断的把数据进行切分,采用“自顶向下,分而治之”的方法将问题的搜索空间划分为若干个互不交叉的子集,通常用来形成分类器和预测模型。如图1所示,为决策树的示意图。

决策树一种类似流程图的树形结构,是一种知识的表现形式。为了对未知样本进行分类,生成具体的分类规则,信息样本的各个属性值要在决策树上进行测试。主要分为两个阶段:在第一阶段中生成树。决策树最上面的节点为根节点,是整个决策树的开始,然后递归的进行数据分区,每次切分对应一个问题,也对应着一个节点;在第二阶段中对树进行修剪,此过程中去掉一些可能是噪音或异常的数据,防止决策树的过匹配,进而保证生成决策树的有效性和合理性。当一个节点中的所有数据都属于同一类别,或者没有属性可以再用于数据进行分割时,分割工作停止。具体的工作流程如图2所示。

2.2 C4.5算法

1986年Ross Quinlan首次提出了ID3决策树算法,它是最早的决策树算法之一。ID3算法运用信息熵理论,选择当前样本中具有信息增益值的属性作为测试属性,对样本的划分则依据测试属性的取值[6]。C4.5算法是在ID3算法基础上发展起来的,它继承了ID3算法的全部优点,并增加了新的功能改进了ID3算法中的不足,可以进行连续值属性处理并处理未知值的训练样本。在应用单机的决策树算法中,C4.5算法不仅分类准确而且执行速度快。

C4.5通过两个步骤来建立决策树:第一阶段树的生成,第二阶段树的剪枝。C4.5算法采用信息增益率来记录字段不同取值的选择,首先计算各个属性的信息增益率,寻找到规则信息的优劣,选出信息增益率最大的属性作为结点,自顶向下生成决策树。C4.5算法构造决策树的基本策略如下:

首先计算出给定样本所需的期望信息,设S为一个包含s个数据样本的集合,对于类别属性,可以取m个不同取值,分别对应于m个不同的类别[Ci(i∈1,2,...,m)]。假设类别[Ci]中的样本个数为[si],期望信息为:

其中,[Pi]是任意样本属于[Ci]的概率,并用[sis]估计。

接着,计算当前样本集合所需用的信息熵,设一个属性A具有n个不同的值[(a1,a2,...an)],利用属性A可以将集合S划分为n个子集[S1,S2,...Sn],其中[Sj]包含了S集合中属性A取[aj]值的样本数据。如果属性A被选作测试属性,设[Sij]为[Sj]中属于[Ci]类别的样本集,根据A划分计算的熵为:

然后利用属性A对当前分支结点进行相应样本集合划分计算信息增益:

最后,求信息增益率,表达式为:

C4.5算法的伪代码如下:

输入:训练样本Samples;目标属性Target—attribute;候选属性的集合Attributes

输出:一棵决策树

1)创建根节点root;

2)If Samples都在同一类C Then;

3)返回label=类C的单结点树root;

4)If Attributes为空Then;

5)返回单结点树root,[label=Samples]中最普遍的Target-Atribute值;

6)Else;

7)For each测试属性列表Attributes中的属性;

8)IF测试属性是连续的Then;

9)对测试属性进行离散化处理,找出使其信息增益比率最大的分割阈值;

10)Else;

11)计算测试属性的信息增益比率;

20)添加子树Generate Tree C4.5;

21)对已建立的决策树计算每个结点的分类错误,进行剪枝,并返回根结点Root。

3 毕业论文成绩管理系统的设计和实现

利用数据挖掘技术对学生的成绩数据进行提炼,所产生的结果和信息会对以后的教学管理工作提供有用的信息,进而获得更好的管理效益。解决问题的重点在于怎样对学生的毕业论文成绩进行全面且深度的分析,从而挖掘出成绩与其他因素之间隐藏的内在联系。本文采用决策树技术挖掘信息时,主要操作步骤如下:

1)确定挖掘来源:清晰地定义挖掘对象,明确挖掘目标是数据挖掘所有工作中重要的一步。本文中应用于挖掘的数据信息是毕业生的毕业论文成绩,旨在通过对大量成绩数据进行各层次的挖掘,全面了解具体影响学生毕业论文成绩的各方面因素,正确的针对问题拟定分析过程。

2)获取相关知识:数据是挖掘知识最原始的资料,根据确定的数据分析对象,抽象出数据分析中所需要的特征信息模型。领域问题的数据收集完成之后,与目标信息相关的属性也随之确定。这些数据有些是可以直接获得的,有些则需要对学生进行调查才能的得到。

3)数据预处理:此过程中是对已收集的大量数据进行整合与检查。因为存放在数据库中的数据一般是不完整的、不一致的,通常还含有噪声的存在。因此就需要对数据库中数据进行清理、整理和归并,以提高挖掘过程的精度和性能。

4)数据转换:对预处理后的数据建立分析模型,对于特定的任务,需要选择合适的算法来建立一个准确的适合挖掘算法的分析模型。本文采用决策树技术进行分类建模来解决相应的问题。

5)分类挖掘知识和信息:此阶段的工作目的是根据系统最终要实现的功能和任务来确定挖掘的分类模型。选择合适的数据挖掘技术及算法,并采用恰当的程序设计语言来实现该算法,对净化和转换过得数据训练集进行挖掘,获得有价值的分析信息。

6)知识表示:将数据挖掘得到的分析信息进一步的解释和评价,生成可用的、正确的、可理解的分类规则呈现给管理者,应用于实践。

7)知识应用:将分析得到的规则应用到教学管理中,教师可以利用所得到的知识针对性的开展毕业设计的教学活动,进一步指导教学工作,提高教学水平和学生的毕业论文质量。

4 结论

最终发现影响学生毕业论文成绩主要的因素不是指导教师的职称,学生的基础及感兴趣程度,而是指导教师的学历高低。根据具体分类规则的结论,学校教学管理工作应加重对教师的素质及能力培养,合理的分配每个教师的毕业论文指导工作,不仅能够有效的完成毕业课题指导工作,更有助于学生整体论文质量的提高。

在高校教学数字化的时代趋势下,利用数据挖掘技术来挖掘提取教学工作中的全面而有价值信息,可以为教育管理者的教学工作提供有效的参考信息,改进教学管理方法,提高教学质量和学生的综合素质,是高校保持良好的可持续发展的有力工具。

参考文献:

[1] 刘玉文.数据挖掘在高校招生中的研究与应用[D].上海:上海师范大学,2008.

[2] 魏萍萍,王翠茹,王保义,张振兴.数据挖掘技术及其在高校教学系统中的应用[J].计算机工程,2003.29(11):87-89.

[3] 刘林东. Web挖掘在考试系统中的应用[J].计算机应用研究,2005(2):150-154.

[4] Tom M Mitchell.(美)卡内基梅隆大学.机器学习[D].曾华军,张银奎,译,北京:机械工业出版社,2003.

数据挖掘技术分析论文范文第2篇

>> 基于Web结构挖掘的HITS算法研究 基于C程序冒泡排序算法的研究与改进 排序算法综述 基于数据结构的选择排序算法剖析与改进 快速排序算法的分析与研究 探究基于云计算的Web结构挖掘算法 基于Web结构挖掘算法的网站构建 排序算法研究 基于遗传算法与神经网络混合算法的数据挖掘技术综述 数据挖掘算法研究与综述 基于超链接分析技术的排序算法的研究高国顺 基于模糊聚类算法及推荐技术的搜索引擎结果排序研究 基于综合排序的高维多目标进化算法研究 数据结构排序算法可视化的设计 一种基于排序奖惩的蚁群算法 基于Hadoop的海量网分数据MapReduce排序算法 基于快速排序算法的文献检索技术 基于FPGA的并行全比较排序算法 基于C语言排序的算法改进与应用 基于排序的增强球形空时码译码算法 常见问题解答 当前所在位置:.

[2] http:///f?kz=691510974.

[3] J.M.Kleinberg. Authoritativesources in ahyperlinked environment. Proc.9th ACM-SIAM Symposium on Discrete Algorithms. 1998:668-677.

[4] 李晓明,刘建国.搜索引擎技术及趋势.大学图书馆学报,2000,(16).

[5] 陈新中,李岩,谢永红,杨炳儒. Web挖掘研究.计算机工程与应用,2002_13.

[6] 刘军.基于Web结构挖掘的HITS算法研究.硕士学位论文.中南大学,2008.

[7] 刘悦.WWW上链接分析算法的若干研究:(博士学位论文).北京:中国科学院,2003.

[8] A. Blum and T. Mitchell. Combining labeled and unlabeled data with Containing. In COLT:Proceedings of the Workshop on Computational Learning Theory.Morgan Kaufmann Publishers. 1998.

[9] Chakrabarti S, Gerg M, Dom B. Focused Crawling:A New Approach to Topic-Specific Web Resource Discovery. Computer Networks. 1999,31(11):1623-1640.

[10] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search Engine. In seventh International World Wide Web Conference. Brisbane. Australia, 1998.

[11] Haveliwala T H. Topic-sensitive PageRank[C]. Proceedings of the Eleventh International Word Wide Web Conference. Hoho Lulu Hawaii,2002.

[12] 江裕明.基于超链接的Web结构挖掘算法的研究.硕士学位论文.西安电子科技大学,2006.1.

[13] Jiawei Han, Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann 2000.

[14] 刘芳芳.Web链接分析中HITS算法的研究.硕士学位论文.大连理工大学,2006.

[15] 李秋锐.基于蜜罐网络的邮件捕获系统分析与部署[J].信息网络安全,2012,(01):64-67.

[16] 郎为民, 杨德鹏, 李虎生.智能电网WCSN安全体系架构研究[J].信息网络安全,2012,(04):19-22.

基金项目:

阿坝师专2011年校级科研基金(编号:ASC10-19)。

数据挖掘技术分析论文范文第3篇

在高校教育领域,就当前阶段数据挖掘还是一种较新的技术。如何在高校的学生成绩管理中合理的利用数据挖掘技术,对存放了大量学生的信息的数据库中的数据进行挖掘处理,从而提取出可以对教师的教和学生的学都起到积极促进作用的关键性规律,获得更加良好的教学效果是我们目前高校的教育工作者面临的一大急需解决的有价值的问题。随着数据挖掘技术的成熟,它的应用领域也在不断的扩展,被关注程度也不断提高,很多高校已经投入大量的人力物力在这项研究工作上,并逐渐的将其研究成果应用于日常的教学及管理工作中。比如,将其应用在学生信息的管理、学生的各门课的成绩分析和考试系统、教育教学的评估工作等,这些应用都将对提高高校的教学和管理水平等各方面都起到十分显著的的指导作用[1]。

1 当前很多高校学生的成绩管理面临的问题

目前大部分高校教务管理系统是采用联机的事务处理系统对学生成绩进行管理,成绩数据只能简单地存储于数据库中,而对数据的处理也停留在单纯的数据查询和插入修改等功能上,仅有的对成绩的分析可能也只是求总和、平均值、均方差和合格率等之类的统计。教务管理系统中的数据单纯的保存了相关数据信息而没有能够挖掘出这些数据背后所隐藏的可能有用信息——例如学生每门课程取得的成绩的可能原因、每门课程的诸多知识点之间以及课程和课程之间的联系。庞大的数据库里数据和数据之间存在着很多的关联,我们如何充分利用这些数据关联,为高校教育教学决策者提供一定的决策依据,从而科学的指导教学,提高高校的教学及管理水平,进一步提高办学效益和水平,是目前高校需要去面对和解决的问题。

2 利用数据挖掘技术管理学生成绩

数据挖掘技术就是从大量的、有噪声的、不完全的、随机的、模糊的应用数据中来提取隐藏在其中的潜在并且十分有用的信息过程[2]。利用数据挖掘对存储在高校成绩数据库中的学生成绩数据信息进行全面的深层次的分析和挖掘,达到全面地分析成绩数据的优劣及产生原因、各种因素之间隐含的内在联系的目的。挖掘分析这些数据所隐藏的有用信息,找到对指导教师教学和学生学习有用的知识,帮助高校管理者对未来高校的发展进步的决策。由此可见,数据挖掘技术一定会在教师提高教学质量、学生增加学习效率和学校强化管理水平等方面起到至关重要的引导作用[3]。

第一,使用计算机对高校学生成绩进行信息管理相对于传统管理方法有着十分明显优势:在现代的互联网时代,信息的管理早已经超越传统概念,使用计算机存储量大且成本低,可以长久保存,同时对信息的检索更迅速也更方便,结果的可靠性也是传统管理方法不可比拟的,这些也正是高校管理正规化和教育单位的科学化所必需的。

第二,学生成绩管理系统对于任何一个教育单位来说都是一个不可或缺的组成部分。它对于高校的管理者的办学思路的抉择来说是至关重要的。高校的成绩管理系统不仅应该做到为用户提供方便快捷的查询手段还用改能够提供充分的信息量以满足不同用户的不同查询需求。学生可以通过这个系统方便的查找自己到各门课的考试成绩及其他的教学相关信息;教师也能够通过系统提供的查询和分析工具非常准确的掌握学生的成绩变化,及时获取教学效果反馈信息,改进教学方式方法等;对高校的管理者来说,运用了最新的数据挖掘技术的学生成绩管理系统也可以让他们更及时快捷的从海量的数据中找到有用的信息,从而为不断提高高校的办学质量和管理水平提供保障。

3 学生成绩管理系统的设计

3.1数据挖掘的过程

数据挖掘是一个多阶段的复杂过程,如图1所示直接数据目标数据净化数据数据源知识数据选择清理与集成数据转换数据挖掘模式评价数据预处理数据挖掘解释和评价。

主要分为以下六个主要步骤[4]:

1)确定数据源。数据源的确立是整个系统的基础,是挖掘结果准确的保证。对学生成绩信息进行数据挖掘时,面向对象是各类不同的学生,例如教务处要挖掘的信息是面向全校学生的成绩,从而掌握全校学生的学习情况,而每个系所要掌握的学生的学习情况是针对本系的学生来说的,所以要挖掘的对象也只是每个系学生的成绩信息。他们面向对象和数据挖掘的目的都是不同的;

2)选定模型。为所挖掘的问题选择恰当的数据挖掘方法,并且针对该挖掘方法选择几种或是一种的算法。选择何种算法将直接影响挖掘信息的质量;

3)采集数据。这个阶段在整个开发过程中将会占用开发者大部分的工作量和时间。因为开发者需要收集在以往的教学实践中的数据信息,这些信息中,有些数据他们可以以直接的方式获得,而有些数据可能需要对学生以问卷调查等形式获得。

4)数据预处理。开发者在这一步需要将收集到的大量的不同的数据预处理,使其为一个分析数据模型;数据预处理是数据挖掘很重要的一步,数据只有经过预处理才能提高挖掘对象的质量;

5)数据挖掘。算法在这一步得到具体的实现,开发者将对经过预处理的数据信息进行挖掘;

6)解释和评价。分析和验证上一步的挖掘结果,并从中找到有价值的信息,将其集成到教师的教学环节和学生的学习环节中去,使教师和学生可利用所得信息改进教和学的策略,指导学生进一步更好的学习。

3.2数据挖掘的方法

在实际应用中需要根据对信息的实际需求选择恰当的挖掘算法。通过对几种常用的数据挖掘方法进行比较和分析,本文选择了以下两种适合的算法:关联分析方法以及决策树分类方法。

1)关联分析

利用关联分析对数据进行挖掘的目的就是挖掘出隐含在数据之间的关系。首先给定一组或一个记录的集合,然后,通过分析此记录集合从而推导出信息之间的相关性[5]。一个适用于关联规则的最有说服力的例子就是“90%客户在购买黄油和面包的同时也会选择购买牛奶”,即:规则“购买黄油和面包也会同时购买牛奶”的信息可信度高达90%。在大型的数据库系统中,类似的关联规则会产生很多,因此需要开发者进行筛选。一般来说,我们会采用 “可信度”和“支持度”这两个闽值去淘汰一些没有太多实际意义的规则。

关联规则算法主要 有以下两个步骤:第一步要求开发者查找出所有的频繁项集。频繁项集就是指其支持度大于或是等于最小支持度的那些项目集。第二步是指由频繁项集所产生的强关联规则,即所产生的以上规则一定要满足最小置信度和最小支持度[6]。

在实际教学中应用关联分析的数据挖掘方法对学生成绩信息进行分析和处理,研究课程的开设先后关系以及各门课程的成绩相关性,分析的结果将对一些课程的教与学提供很多有用的信息,使高校的教学工作迈上一个新的台阶。

2)决策树算法对学生成绩的分析

决策树算法是以实例为基础的归纳学习算法,用来形成数据挖掘的预测模型和分类器,同时可以对大量未知数据进行预测或分类、数据的预处理以及数据挖掘等。通常包括两部分:树的生成和树的剪枝[7]。

使用决策树算法来提取分类规则时,规则使用以“if——then”的形式表示。决策树算法和其他算法相比具有以下的优势:处理速度较快;从结果上来说,分类准确率也更相近,算法更容易转换为SQL语句。

4 结论

利用数据挖掘技术进行高校学生的成绩、心理分析和德育评估、教学及管理决策、教学质量评估等,能够为学生、教师以及教学管理人员等用户提供相应的数据信息支持,对教务管理和教学过程有着极为重要的指导意义,同时也为高校教与学、管理与决策的服务提供了一种新的思路。

参考文献

[1]刘春阳,数据挖掘技术在高校成绩管理中的应用研究,学位论文大连交通大学,2009.

[2]J.Braehaan,T.Anand.The Proeess of Knowledge Diseovery in Databases.A Human一eentered APProaeh.1996:37-58.

[3]刘军.决策树分类算法的研究及其在教学分析中的应用[D].河海大学,2006.

[4]邓景毅.关联规则数据挖掘综述[J].电脑学习,2006(3):2-3.

[5]赵辉.数据挖掘技术在学生成绩分析中的研究及应用,学位论文,大连海事大学,2007.

数据挖掘技术分析论文范文第4篇

摘要:基于现代计算机技术的快速发展,网络技术和高等院校教育教学系统实现了有机整合,并且促进了教育教学与组织管理等多种活动的信息化发展,一定程度上提高了教育教学质量以及效率,构建了全新的教育教学管理模式。在此背景下,教育教学数字化发展速度也不断加快,信息量增长速度加快,对于信息提取的要求也随之提高。所以,在大量数据当中获取重要的信息也逐渐成为高等院校教育教学决策的重要依据。基于此,文章将高校教育教学作为研究重点,阐述了数据挖掘技术的具体应用,以供参考。

关键词:高校教育教学;数据挖掘技术;运用

一、数据挖掘概述

所谓的数据挖掘,具体指的就是在海量且模糊随机数据当中提取出隐含其中,同时具有潜在价值的信息与知识过程。将数据挖掘技术应用在教育教学当中,可以对海量数据予以深入挖掘与分析,进而获得数据当中所隐含的潜在信息内容,更好地为高校教育教学管理人员决策提供有力支持[1]。

二、高校教育教学管理中的数据挖掘技术应用

2.1在教学质量提升方面的应用

高等院校为了更好地提高教学管理的质量,教务管理部门会在学期期末测评学员领导与任课教师的教学思想、态度以及教学方法等,并且根据最终的评分结果来明确教师的教学质量。然而,受评价人员对标准理解以及把握程度的影响,学生评价仍存在随意性特征。

在这种情况下,导致评分结果很难对教学效果进行真实地反映,因而也影响了教学质量的评估。

但是,将数据挖掘技术应用在教学质量评估方面,通过对关联规则算法的合理运用,可以将教学质量评价当中的不同指标权重系数进行设定,并通过Apriori的算法来扫描数据集,在数据挖掘的作用下,获取学历、年龄以及职称三者之间存在的联系,同样也可以获得教学质量和方法的关系[2]。

为此,高校教务管理部门就可以将获得的规律应用在教学管理实践当中,合理地设置督学小组并制定出听课制度,将教学课堂教学的质量真实且客观地反映出来,实现高校教学水平的全面提升。

2.2课程体系结构的有效完善

高等院校教育体系当中的专业建设作用十分重要,所以,必须要具备高质量的课程体系结构设置。在对学生成绩数据库以及毕业生去向数据库等多种数据信息进行数据挖掘以后,可以通过对关联分析与序列模式的分析和探究,获得数据与数据间存在的相关性。

其中,课程间的关系和先后顺序亦或是课程和课程体系结构之间的关系等等。在此基础上,保证学习高级课程前事先学习先行课程。以计算机专业《数据结构》为例,在教学中将《C语言》作为重要的先行课程,以保证学生在学习《数据结构》内容的时候可以具备良好语言基础,更深入地理解并灵活地应用数据结构当中的算法。

而在完成《数据结构》学习以后,应根据学生就业走向和市场的实际需求来确定是否安排《JAVA语言程序设计》课程教学。这样一来,学生的学习成绩实现了有效地提高,更利于学生未来就业。除此之外,对内容重复的课程进行有效地压缩,将落后的课程内容适当地删除,与专业特点相结合。

由此可见,将数据挖掘技术应用在高校教学中,对于专业建设以及课程改革决策具有积极的作用。

三、网络教学中的数据挖掘技术应用

在网络教学中应用数据挖掘技术,可以从Web文件以及Web活动当中选择出用户较为感兴趣的有价值模式以及信息,这就是所谓的Web挖掘[3]。因为接受教育对象在多个方面都存在差异,具体表现在个人学习目标、学习能力与知识基础的差异等。为此,网络教学也必须要能够适应个性化的学习需求。可以把不同用户学习状况与轨迹详细记录并存放至数据库当中,通过对WEB挖掘技术的合理运用,在序列模式挖掘的作用下合理地分类文档,以保证学生信息检索速度的提高。

另外,也可以根据学生访问浏览的数据挖掘并分析,针对访问的数据展开聚类分析,以保证更好地了解学生感兴趣的内容,并为其推送相关内容。与此同时,可以在相关联的页面当中合理地设置超链接,对网站结构予以有效地改善,确保页面间的链接与用户访问的习惯更吻合。

结束语:

总而言之,在高校教育教学中合理地运用数据挖掘技术可以在大量数据信息当中处理并提取出更具价值的信息内容,促进高等院校教育教学管理工作的正常开展,特别是评估与决策方面,数据挖掘技术的作用更为明显。

除此之外,该技术也可以应用在网络教学当中,使得网络教学资源配置更加合理,在教育教学中充分发挥自身的效用。上文针对数据挖掘技术在高校教育教学中的实际应用展开了相关性地研究和分析,主要的目的就是为了更好地帮助高校进行决策,为学生提供更为理想的学习环境,在提高学生学习兴趣的基础上,增强高校教育教学的质量与效率。

参考文献

[1]侯锟.数据挖掘技术在高校教育教学中的应用[J].吉林省教育学院学报(下旬),2012,28(7):51-52.

数据挖掘技术分析论文范文第5篇

【关键词】 计算机 数据挖掘技术 开发

引言:计算机数据挖掘技术是基于计算机原有的功能基础之上,融入了一些统计学理论,使人们可以利用数据挖掘技术在众多的计算机系统内部的信息中抓取自己需要的信息和数据。计算机数据挖掘技术的出现极大的促进了社会整体的进步,引领了社会各个领域内的数据量潮流,人们要想在无限的数据中采集有用信息,就必须深入计算机数据挖掘技术的开发研究。

一、计算机数据挖掘技术开发流程

1.1明确数据挖掘目的

由于数据挖掘技术的功能是多种多样的,所以在开发具体的计算机数据挖掘技术过程中需要根据自身需要明确数据挖掘目的,进而选择对应数据库。因为在开发过程中,不同的数据挖掘目标需要依靠不同的挖掘技术数据算法,如果目的不明很容易造成最终开发结果的偏差[1]。

1.2数据选择和预处理

明确数据挖掘目标、数据库后还要对所持有的数据进行选择和预处理,数据选择是要将数据中的部分信息纳入数据挖掘研究范围内,预处理是将这些数据中的错误信息进行删除和修正,确保列下有用信息。

1.3数据挖掘

数据挖掘过程中要有两个步骤,其一是根据挖掘目标确定接下来要利用的开发技术和采用的算法,其二是在确定了挖掘技术和数据算法后构建出数学模型,以此来推动挖掘技术的开发。

1.4评估结果

评估结果的最大作用就是对开发出的数据挖掘结果进行科学评估,对数据挖掘技术的开发成果进行检测和验证。如果数据挖掘结果不能够达到数据挖掘开发目的要求,就要及时进行修正,如果数据开发结果符合数据开发目的要求,那么就可以将其投入到实践应用之中[2]。

二、计算机数据挖掘技术开发

1、可视化技术开发。要想得到有效的信息,就需要从计算机系统中获得的信息入手,但是当前的网络信息中存在不少的隐性信息,这些信息的获得就要依靠计算机数据挖掘技术。采用计算机挖掘技术可以有效的抓取隐性信息的某些特征,当利用散点图的方式将这些隐性信息表现出来。所以可视化技术是计算机数据挖掘技术开发项目中的一个重点。

2、联机分析处理。网络是复杂的,其中的网络信息和数据更是十分的庞杂,要想快速、准确的抓取到自己想要的信息,需要依靠联机分析出不同地域和时段的多维数据,联机分析处理方式需要依靠用户的配合。在处理多维数据时,需要所有计算机用户自行的使用或者筛选出分析算法,利用这些分析算法对数据做处理,这样对探索数据也有巨大的推动作用。

3、决策树。计算机数据挖掘技术的开发中需要对决策树进行规则化建立,决策树是一项重要的开发项目,因为决策树的作用是发挥预测和分类的功能,对所处理的数据信息进行具体的预测和分类。目前开发的决策树算法已经有很多种,主要有SLIQ、SPRINT、ID3、C4.5等,SLIQ算法具备连续性属性,还可以对数据做出具体的分类,SPRINT算法与SLIQ算法有同样的功能属性,并且这两种算法可以通过大型训练集对决策时做出归纳[3]。

4、计算机神经网络。计算机数据挖掘技术在开发之中借助了医学神经系统的研究结果,将人体神经元研究脉络通过技术处理形成了计算机网络神经的研究,并且经过一系列的深入探索,目前已经取得了重大的成果。计算机中研发出的神经网络是安全输入、输出和处理单元三种类型进行规划的,这三个层面代表了计算机神经网络系统,当前的开发结果中显示,可以利用计算机神经网络技术实现数据的调整、计算和整理。

5、遗传算法。计算机数据挖掘技术的开发中借鉴了许多其他学科领域中的研究方向和理论,在自然学科中,生物基因可以通过遗传中的不同变化促进后代的自我优化,利用这种思想理论,在计算机数据挖掘技术的开发中也可以通过对不同模型进行组合、演变来创新开发出新的数据算法。

结束语:计算机数据挖掘技术属于当前社会中最重要的分析工具之一,数据挖掘技术已经被各个领域广泛的应用,并且其功能得到验证,极大的促进了社会行业的快速发展。随着科技水平的日益提升,相信计算机数据挖掘技术将会得到更多方面的创新研究和开发,给社会带来更大的促进作用。

参 考 文 献

[1]夏天维. 计算机数据挖掘技术的开发及其应用探究[A]. 《Q策与信息》杂志社、北京大学经济管理学院.“决策论坛――管理科学与工程研究学术研讨会”论文集(下)[C].《决策与信息》杂志社、北京大学经济管理学院:,2016:1.