前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高电压技术论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
斩波内馈调速是融斩波控制和内馈电机两项专利技术于一体的新型高压电机调速技术。该技术可在高压中、大容量的风机、泵类节能调速中应用。
斩波实际是变流主电路的数字控制,目的是克服移相控制存在的缺点。从根本上解决了有源逆变器可靠性问题。目前,斩波控制已被视为取代移相控制的发展方向。
内馈调速是一种基于转子的电磁功率控制调速,其原理是把定子传输给转子的电磁功率中的一部分功率移出去。这样定子传输的电磁功率不变,但移出的电功率可任意控制,转子总的电磁功率就被改变,电机转速就可得到控制。
内馈调速巧妙地在异步机的定子上加设一个内馈绕组,专门用来接受转子移出的电功率。内馈绕组此时工作在发电状态,它把接受的电功率又通过电磁感应,反方向传输给定子原绕组,使定子的输入功率减小,与机械功率平衡,实现了高效率的无级调速。
内馈调速最适合于高压大容量电机,其特点如下。
1.回避了定子控制的高电压问题,可实现高压电机低压控制;
2.控制装置的容量可小于电机的容量,即为小容量控制大容量;
3.控制装置和定子电源均为电磁隔离,有效地抑制了控制装置产生的谐波电流对电源的干扰;
4.整个系统没有外附变压器,调速损耗小,效率高。
二、节能效益和环境效益
1.该项目年节电量618.9253万kW•h,折标准煤2500.46t,可减排二氧化碳1812.83t。
2.按山东上网电价0.30元/kW•h计算,年节能效益185.68万元。
3.投资回收期为1.59年。
论文首先介绍了电力电子技术及器件的发展和应用,具体阐明了国内外开关电源的发展和现状,研究了开关电源的基本原理,拓扑结构以及开关电源在电力直流操作电源系统中的应用,介绍了连续可调开关电源的设计思路、硬件选型以及TL494在输出电压调节、过流保护等方面的工作原理和具体电路,设计出一种实用于电力系统的开关电源,以替代传统的相控电源。该系统以MOSFET作为功率开关器件,构成半桥式Buck开关变换器,采用脉宽调制(PWM)技术,PWM控制信号由集成控制TL494产生,从输出实时采样电压反馈信号,以控制输出电压的变化,控制电路和主电路之间通过变压器进行隔离,并设计了软启动和过流保护电路。该电源在输出大电流条件下,能做到输出直流电压大范围连续可调,同时保持良好的PWM稳压调节运行。 开关电源结构
以开关方式工作的直流稳压电源以其体积小、重量轻、效率高、稳压效果好的特点,正逐步取代传统电源的位置,成为电源行业的主流形式。可调直流电源领域也同样深受开关电源技术影响,并已广泛地应用于系统之中。
开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。
SCR在开关电源输入整流电路及软启动电路中有少量应用, GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。在本论文中选用的开关器件为功率MOSFET管。
开关电源的三个条件:
1. 开关:电力电子器件工作在开关状态而不是线性状态;
2. 高频:电力电子器件工作在高频而不是接近工频的低频;
3. 直流:开关电源输出的是直流而不是交流。
根据上面所述,本文的大体结构如下:
第一章,为整个论文的概述,大致介绍电力电子技术及器件的发展,简单说明直流电源的基本情况,介绍国内外开关电源的发展现状和研究方向,阐述本论文工作的重点;
第二章,主要从理论上讨论开关电源的工作原理及电路拓扑结构;
第三章,主要将介绍系统主电路的设计;
第四章,介绍系统控制电路各个部分的设计;
关键词:TCA785,调压调功,感性元件,感应钎焊
1 引言
在感应钎焊过程中,为了适应负载随温度变化和加热工艺的需要,电源应能对负载功率调节。其中调功方式主要有以下几种:直流调压调功、移相调功、扫频调功和脉冲密度调功等。其中直流调压调功有以下特点:逆变器输出电压波形与负载无关,均为交变方波。在串联谐振负载下,利用锁相电路实现负载电流频率跟踪使负载始终工作在谐振状态,输出功率因数较高;逆变器中各个功率器件均在零电流方式下开通和关断,器件的开关损耗和应力都很小。其中调压调功电路采用晶闸管作为开关器件,利用相控方式调节输出电压。这种方式具有控制方便,价格便宜等特点,因而得到了广泛的应用。
2 直流调压调功电路的设计研究
目前国内外已经研制生产出多种用于晶闸管电路的集成触发器。其中TCA785集成触发器是由德国西门子公司研制生产的。它内部集成有同步检波、移相脉冲、过流过压保护等电路,是一种锯齿波移相触发器。与其它集成触发器相比,由它构成的晶闸管触发电路具有功耗小、功能强、输入阻抗高、抗干扰性能好、移相范围宽、外部器件少、单一电源工作、调整方便等优点。论文参考网。本文所设计的直流调压调功具体电路如图1。
图1 直流调压调功电路图
图1中,220V交流电经过变压器T1、二极管D2、电容C1以及稳压管7815转变为+15V直流电,给该调压电路提供电源。TCA785的1和16端分别接地和+15V电源。5端是同步信号的输入端,该信号取自R6两端交流电压,同步信号经同步过零电路送至同步寄存齿波信号发生器,在每个正弦信号的过零点矩齿波发生器迅速放电并从0初始值开始充电,从而产生和同步交流信号一致的三角波,如图2。9端外接固定电阻R7和可变电阻RW1,10端外接电容C5,通过调节RW1可以调节锯齿波的斜率。6脚为脉冲封锁控制端,当检测负载电流过大时,通过控制辅助电路,使6端有由高电平变为低电平,封锁脉冲的输出,从而切断主电路,它是为系统过流过压或进行其它控制而设置的控制端。11脚外接控制电压,改变该控制电压可以控制触发脉冲的触发角在0-180°范围内移相,该控制电压可以有手工给定,也可以由PLC系统自动给出。论文参考网。12脚外接电容C4,可以控制触发脉冲的宽度。
图2同步交流信号和三角波
在一个周期内,TCA785的14和15端分别是正、负半周对应的脉冲输出端,如图3,图中“1”为触发脉冲,“2”为干扰信号。为保证在一个周期内正负半周均有输出,利用CD4017的或门逻辑电路,将14和15端输出脉冲或逻辑运算后,得到频率增加一倍的触发脉冲信号,如图4所示。再将该信号送到MC1413进行功率放大,以提供足够的功率触发脉冲来驱动整流模块,如图5,该信号电压为7.5V左右,持续时间约为75μs,可以满足整流模块的触发功率要求。
图314端对应的触发脉冲
图4或逻辑运算并功率放大后的触发脉冲
图5示波器时间轴调整后的触发脉冲
根据感应钎焊的使用要求,控制触发脉冲触发角的电压分手动和自动两种方式提供。手动控制方式的电压源来自于7810提供的+10V电压,调节RW3就得到所需的11脚控制电压。而自动控制方式时的控制电压源来自于PLC相关模拟端口的输出电压,该电压大小通过PLC的给定电压与所采集的负载电压大小的比较后得到的。脉冲变压器T2起到电气隔离的作用。
其中检测系统主要检测主电路电流,将检测电流转换为电压后,一方面给PLC自动控制系统提供采集电压,另方面给保护系统提供保护依据,当该电压大于设定保护电压时,就停止触发脉冲的输出,进而切断整个主电路。
3 直流调压调功电路使用中存在的问题
在该电路调试过程中,当晶闸管后边电路不存在滤波电感等感性元件时,整流后所得电压从零到最大值能够可靠调节。
而负载要求很平稳的直流电压,则需要在晶闸管后采用滤波环节,即电路中有较大电感。这时当电压调节到一定值时,会出现输出电压突然跳变为零的现象,使负载运行出现异常。如果该现象出现在感应钎焊电源中,则可能在钎焊尚未完成就停止加热,造成钎料熔化不完全,工件焊接质量不合格。
解决的办法是:首先测量出电压突变时TCA785的6端的电压U6,然后采取相应措施,比如串接分压电阻,使U6为6端电压的一端极限值,从而可以避免电压突变现象。论文参考网。
4 在感应钎焊电源中的应用
感应钎焊电源整体结构如图6。主要包括整流、滤波部分,逆变器部分,变压器部分,感应圈,调压部分以及控制部分等。主电路采取串联谐振电路,逆变部分采用半桥结构,逆变元件采用一个IGBT模块,整流部分采用的是半控晶闸管整流器件,触发脉冲通过控制其导通角的大小可以得到幅值大小变化的直流电压并供给其后的逆变环节,从而改变逆变器输出功率。
图6 感应钎焊机整体结构框图
图中直流调压调功方框内就是前面所设计电路,要想检测其功能是否正常,可以通过测量主电路中变压器原边电压或者副边电压波形加以判断。调节图1中TCA785的6端电压,测得其中两组对应的波形分别如图7和图8。图7中电压为50V且很平稳,电流较小,而图8中电压为100V左右且较平稳,电流较大。根据电流波形可以看出,两种电压下电路都可以起振并正常工作。所以所设计的直流调压调功电路可以进行电压调节且所得电压比较平稳,感应钎焊电路能够可靠起振,满足了对不同负载进行感应钎焊的要求。
图7 电压为50伏的电压和电流波形图
图8 电压为115伏的电压和电流波形图
5 结论
本文设计了一种直流调压调功电路,可以使所得电压从零到最大值之间连续稳定变化,不仅满足手动调节模式,也可以和PLC系统配合进行自动调节,并具有可靠的保护功能和相关的控制功能。通过试验,该电路已成功应用于感应钎焊电源之中,使其可以稳定起振,对于不同负载进行功率调节,可靠保证了逆变部分的IGBT元件,具有一定的实用价值和经济价值。
参考文献
[1] 潘天明.现代感应加热装置[M]. 北京:冶金工业出版社,1996,1-135
[2] 林渭勋.现代电力电子电路[M]. 杭州:浙江大学出版社,2002,34-35
[3] 张智娟,侯立群. 电力电子技术在感应加热电源中的应用[J].应用能源技术.2000,(5):41-43
[4] 龙飞,李晓帆,蔡志开等. TCA785移相控制芯片应用方法的改进[J]. 国外电子元器件. 2004,(3):25-28
关键词:T接线 三端口光差保护 两端运行 通道异常
中图分类号:TN929.11 文献标识码:A
1 引言
T接的线路可以节省一次设备成本,但是对于T接线的保护整定非常困难,尤其是各端都有电源的距离保护和零序保护更加难以整定,但光差保护完全不用考虑各种复杂的整定情况,只用将各端的保护电流传送到两端,然后三侧各自计算差动电流,逻辑简单,保护速度快,可靠性高。尤其是当部分光纤通道断裂时,保护依然能够可靠的动作,但是,三端口的光差保护在联调时特别麻烦,需要三侧同时进行,而且调试结果复杂,不易整理和维护,因此,本论文以联调的困难为出发点,系统的对三端口保护联调进行分析,由于厂家的不同,各个厂家的保护装置都由不同的动作逻辑以及同步方式,本文主要以南自保护为例来说明。
2 通道的连接
对于T接线的光差线路保护有三个端口,为了便于区分,通常将三段分别称为本侧、对侧1、对侧2,每个端口均有两组通道,这两组通道实现三端的通讯,一般情况下本侧的通道1和对侧1的通道2相连接,本侧的通道2和对侧2的通道1相连接,对侧1的通道1和对侧2的通道2相连接,这种方式连接后具有唯一性,当然,我们也可以采用别的连接方式, 但是这种方式比较易于问题的分析和管理,如图1:
3运行方式转换
3.1 一侧投入两端运行压板
当三端口保护的其中一端投入两端运行压板时,保护认为是误投入,此时保护逻辑仍按三段运行方式来处理。
3.2 两侧投入两端运行压板
当其中两端投入两端运行压板时,各侧装置中均显示为两侧运行压板投入,自动退出三段运行方式,两端运行方式的逻辑和常规两侧差动保护的逻辑一样。
3.3 三侧投入两端运行压板
如果三端都投入两端运行压板时,此时各端的保护装置会报运行方式错误的报文,但在逻辑方面会先满足两端运行的方式,如当本侧线投入两端运行压板,接着先将对侧1投入两端运行压板,后再将对侧2投入两端运行压板,那么,保护会判断为本侧与对侧1的两端运行方式。反过来就会判为本侧与对侧1的两端运行方式。
4 “T”接线光差保护的联调
4.1 一侧合位联调及现象
4.1.1 对侧1和对侧2均不加电压
本侧断路器在合位,对侧1和对侧2的断路器在分位,这种状态相当于对两侧充电,无论本侧是否加电压本侧模拟内部瞬时性故障时,在本侧差动保护单跳单重,对侧1和对侧2由于已经在跳位,所以无论差动保护动作还是不动都没有关系,因为各个厂家都有自己不同的处理方式,南自和四方的处理方式就是保护没有任何反应,但是许继的差动保护也会动作。
4.1.2本侧全电压,对侧1或对侧2一侧全电压
当在本侧加全电压,模拟差动动作电流大于动作值时,由于对侧1和对侧2都在分位,这时将不会影响本侧的差动保护,本侧也不会因为本侧的全电压导致拒动。
4.1.3本侧不加电压,对侧1或对侧2一侧全电压
当在本侧不加电压,模拟差动动作电流大于动作值时,由于对侧1和对侧2都在分位,这时将不会影响本侧的差动保护,本侧也不会因为本侧的全电压导致拒动。
4.1.4 本侧不加电压,对侧1和对侧2均加全电压
这种情况,虽然在本侧产生了电流的变化量,由于对侧1和对侧2都在分位,这时将不会影响本侧的差动保护,本侧也
4.1.5本侧加全电压,对侧1和对侧2均加全电压
这种情况类似于正常运行时,本侧发生CT断线,这时,各侧差动电流可能达到动作值,由于其他两侧都处于分位,所以不会影响本侧的差动
4.2 两侧合位联调及现象
4.2.1 两端运行方式
当本侧和对侧1投入两侧运行压板时,这时对侧2将会自动退出差动保护,在对侧2可以进行检修工作,同时也可以断开对侧2的光纤通道,虽然会导致各侧的保护装置报通道异常,但不会闭锁差动保护,此时的差动动作逻辑和常规两端差动的动作逻辑一样,要注意的是南自和许继的保护在两侧差动时电压受其中一侧开放。
1 本侧合位,对侧1合位
这时相当运行状态,在两侧加全电压,一侧模拟CT断线,虽然差动电流达到动作值,但是由于全压闭锁导致差动保护不会动作。如果本侧加全压,对侧1不加电压,在本侧模拟区内故障时,两侧差动保护均动作单跳单重,如果本侧不加电压,对侧1加电压,在本侧模拟区内故障时,两侧差动保护也动作单跳单重,因为电压受其中一侧开放。
2本侧合位,对侧1分位
这种情况相当于由本侧向对侧1充电,这时无论本侧加不加电压,在模拟故能故障时差动保护都会动作单跳单重,而对侧1的差动保护不动作,由于也有差动,差动保护会启动。
4.2.2 第三侧热备方式
当T接线的三段都投入时,如果某一端处于热备状态,这种情况的联调和6.1.2的联调方法以及联调现象一样,不过要分别对第三侧进行加电压和不加电压两种情况的联调。
4.3 三侧合位的联调及现象
4.3.1 对侧1和对侧2均不加电压
本侧断路器在合位,对侧1和对侧2的断路器在合位,本侧是否加电压本侧模拟内部瞬时性故障时,在本侧差动保护单跳单重,对侧1和对侧2由于均没有加全电压,所以不会影响差动保护,三侧均出现单跳单重的现象。
4.3.2本侧全电压,对侧1或对侧2一侧全电压
当在本侧加全电压,模拟差动动作电流大于动作值时,由于本侧和另一侧都有全电压,这时将会闭锁差动保护,本侧也不会因为第三侧的无压导致动作,因为T接线在发生故障时不可能出现两端电压变化、一端电压不会的现象,因此三端口保护受任意两侧的全压闭锁。
4.3.2本侧不加电压,对侧1或对侧2一侧全电压
当在本侧不加电压,模拟差动动作电流大于动作值时,由于本侧有电压的变化,这时因为第三侧没有电压闭锁,各侧将会开放差动保护,因此三侧差动保护均动作。
4.3.3 本侧不加电压,对侧1和对侧2均加全电压
这种情况,虽然在本侧产生了电流的变化量,但是两个对个的电压都没有变化,此时将会受到两个对侧的全电压闭锁各侧的差动保护均不会动作。
4.3.4本侧加全电压,对侧1和对侧2均加全电压
这种情况类似于正常运行时,本侧发生CT断线,这时,各侧差动电流可能达到动作值,但是由于三侧都是全电压,所以差动保护不会动作。
5 总结
缩短了三端口光差保护的调试时间,提高了调试效率;为三端口保护提出规范性资料,对以后的联调工作提供借鉴作用。
参考文献
[1] PSL 621U型系列保护装置(智能站)说明书.
[2] 国家电网公司. 继电保护培训教材下[M].北京:中国电力出版社,2009.
[3] 张保会.电力系统继电保护原理[M].北京:中国电力出版社,2009.
作者简介:
丰田(1983-)男 助理工程师 大学本科 从事电力系统继电保护技术工作。
[关键词]光伏照明系统,太阳能控制器,检测系统
中图分类号:TM912 文献标识码:A 文章编号:1009-914X(2016)02-0199-01
1 概述
光伏发电技术关系着开发利用绿色能源、改善生态环境和人民生活质量等重大问题,是目前研究的热点方向。光伏照明系统是应用光伏发电技术的实例,具有丰富的学术研究价值和经济社会效益。其中,光伏照明系统中的控制器是整个系统的核心,不仅要调节光伏电池的输出功率使之具备最大的转换效率,还要控制蓄电池充放电,所以控制器性能的优劣直接关系到整个光伏照明系统的效率。这就要求在搭建实际光伏照明系统前要对系统的进行测试。相关参数的获取,对于优化选取实际光伏照明系统的单元组件,设计出高效实用的光伏照明系统具有非常重要的意义。本文设计了能够测试控制器和照明系统其他组件各种性能参数的测试系统。该系统能够实现同时测试控制器的多项性能参数。通过实际测试,可以确定使太阳能转换效率最高、照明系统工作最稳定的控制器。
2 光伏照明系统的组成
太阳能照明系统包括:太阳能电池组件、蓄电池、太阳能充放电控制器、直流负载及其驱动电路,如图1所示。系统各部分容量的选取配比,需要综合考虑效率、成本和可靠性等问题。在带负载实际应用过程中,应该考虑到连续阴雨天的情况,对系统容量留出一定裕度。
作为光伏照明系统的输入,光伏电池为整个系统提供电能,蓄电池是整个系统的储能部分,白天将太阳能电池输出的电能转换为化学能储存起来,夜间将化学能转换成电能输出到照明负载。太阳能控制器是整个系统的控制核心,它是以单片机为核心辅以逻辑控制电路来实现系统中光伏电池最大功率点跟踪(MPPT)、蓄电池容量预测和蓄电池充放电精确控制,以满足太阳能照明系统在不同工作状态下的稳定运行与准确切换的要求,从而提高太阳能照明系统效率,确保系统运行稳定,并延长蓄电池的寿命。
3 测试系统设计
在实际中检测控制器的电流电压,时间控制等参数需要分开多次测量,不能一次完成,这加长了实验的时间,降低了实验的准确度,使整个检测过程显得繁琐而复杂。本测试装置制作目在于:通过一次实验检测出所需要的控制器的主要参数,将电流、电压、时间等参数的测量综合到一个系统中,检测出控制器的性能好坏,得出系统中各个组成部分的最佳配比。
光伏照明测试系统的原理是通过光伏系统的电路设计,将电流表,电压表,定时器连接到测试系统中,设计阳光模拟装置,用来模拟太阳光,提供太阳能电池板光源,在整个系统的运行过程中通过对充放电过程的测试,并用电流表,电压表进行数值记录,来了解控制器的各项参数,方便快捷的检测试过充过放参数时可以快速,方便的更换为稳压电源来进行测试。
4 太阳能控制器特性测试
选择两种型号的太阳能控制器,用本论文中自行设计的光伏照明测试系统对控制器的性能参数和整个系统的效率进行测试,选择出性能最优良的控制器。测试的参数项目有太阳能控制器的光控点、自耗电、过充、过放电压、过放返回电压和延迟时间。
测试过程:将控制器连接进测试系统,并将系统通电(交流 220V),交流电是为了给测试系统的电流表,电压表和定时器供电。在空载情况下测试控制器的自耗电,从放电测试的电流表中显示的数值即是控制器的自耗电。测试完控制器的自耗电后将蓄电池接入系统,将光伏照明测试系统各个组成部分全部连接到系统中,太阳能电池组件为2 块 12V/5W 的板并联,总功率为 10W。负载是3并联的LED 灯泡,电压都是12V,其功率分别为1W、3W、4W。蓄电池选择12V/10AH 的铅酸电池。测试环境中无光,为了模拟测试过程中的黑天情况。
将滑动变阻器的主调旋钮和微调旋钮全部调至最大值,使模拟光照度达到最大,太阳能电池板将光能转化为电能通过控制器为蓄电池充电,在充电电流表上显示电流数值,充电电压表上显示太阳能电池板的电压值。在电池板给蓄电池的充电过程,负载不亮,相当于室外的白天情况,将滑动变阻器的主调旋钮和微调旋钮全部调至最小值,相当于夜晚情况,观察负载 LED灯泡是否立刻亮,如果即刻变亮,说明控制器的延迟时间为零,即没有延迟时间。如果负载没有立刻亮,则通过定时器来记录时间,当负载LED 灯泡亮时,定时器上显示的数值即为控制器的延迟时间。
将系统选定在给太阳能电池板给蓄电池充电状态,阳光模拟箱中的灯泡调到最亮,太阳能电池板给蓄电池充电的充电电压不断升高,当升到某一数值时,控制器开始保护,切断充电电路,保护蓄电池,从充电电压表上记录这个电值,这个值就是控制器的过充电压。 将系统选定在蓄电池给负载 LED 灯放电的状态,为了方便试验测试和保护蓄电池用直流电源来代替蓄电池,模拟放电过程中电压的变化,调节直流电源的电压值,不断降低,当降到某一数值时,控制器开始保护,切断放电电路,负载 LED 灯熄灭,记录放电电压表上的电压值,这个数值就是控制器的过放电压值,当负载 LED 灯熄灭后,调高直流电源的电压值直到负载 LED 灯再次亮起,记录此刻放电电压表上的数值,这个临界电压值就是控制器的过放返回电压值。这些测试的数值就是控制器的性能参数值。
5 结论
本论文的主要工作是设计了光伏照明测试系统,以具体数值的形式直观的显示出光伏电池板对蓄电池的充电参数值以及蓄电池对负载LED的放电参数值。测试系统最重要的测试功能是对系统核心部件太阳能控制器的测试,在系统的实际工作过程中测试出控制器的性能参数,对各款控制器进行检验和评估,选择出最优化的太阳能控制器,使整个太阳能LED照明系统的效率最大化。并在实际工程中进行应用。
参考文献