前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电阻测量论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
论文关键词:为何只用一只电压表测量
探究导ks5u.com体电阻与其影响因素的定量关系的实验是人教版物理3-1中的探究实验,教材实验电路如图1所示,图中a、b、c ks5u.com、d四条不同的金属导体.在长度、横截面积、材料三个因素方面,b、c、d跟a相比分别只有一个因素不同物理论文,b与a ks5u.com长度不同;c与a横截面积不同,d与a材料不同. 由于四段导体是串联的,每段导体的电压与它们的电阻成正比,因此用电压表分别测量a、b、c、d两端的电压,由电压之比就得到ks5u.com电阻之比.
该实验与旧教材测定金属的电阻率实验相比,实验的重点不是测量待测导线的具体电阻值,而是运用比值法和控制变量法的思想去探究电阻与其影响因素的定量关系,体现了新课程实验重在培养学生科学思想和探究能力的特色.然而物理论文,不少老师发现教材电路图是用一只电压表分别测量a、b、c ks5u.com、d电压的(图中用虚线表示的),为何不用四只相同的电压表同时测量电压(如图2)呢?是不是电路图画错了呢?为此,下面从实验的误差角度来分析这一问题.
为便于分析,现将问题简化为比较用一只电压表分别测两只电阻丝的(如图3)电阻之比和用两只电压表测量两个电阻丝(如图4)电阻之比的误差.
为简化分析,先讨论电源内阻r=0的理想化的情形.设电源电动势为E,电阻丝a、b的电阻分别为Ra、Rb,图3中电压表的测量值分别为Ua、Ub,图4中电压表的测量值分别为、物理论文,电压表内阻为RV.
电阻丝a与电压表并联时,电阻,ks5u.com
电阻丝b与电压表并联时,电阻,
图3中 ,
整理得,即
图3中 ,
整理得,即
所以,在不考虑电源内阻的情况下物理论文,用一只电压表测得两只电阻丝的电阻之比比用两只电压表测得两只电阻丝的电阻之比的误差小.
在实际实验中,电源有内阻,还要接入滑动变阻器.假设滑动变阻器接入电路的阻值和电源内阻之和为R0,再来比较图3、图4两种测量结果的误差.
图3中 ,
整理得
即
图4中 ,
整理得,即
比较与的大小.因,无论为真、假分数物理论文,根据不等式的性质可知比更接近于1,所以用一只电压表测得两只电阻丝的电阻之比比用两只电压表测得两只电阻丝的电阻之比的误差小.
上述分析方法和结论同样适用于四个电阻丝接入电路的情形,只是计算较为繁琐而已.
可见,在探究导ks5u.com体电阻与其影响因素的定量关系的实验中,用一只电压表分别测量导体a、b、c、d的电压得到的电阻之比比用四只相同的电压表分别测量a、b、c、d两端的电压得到的电阻之比误差小,所以教材电路中将电压表的连线画成虚线是科学的和正确的.
参考文献
张维善主编.普通高中课程标准实验教科书,物理选修3-1.人民教育出版社,2007.56
关键词:自然电位测井,影响因素,解决方法
一:自然电位的成因
在钻井剖面上煤岩层形成的自然电位场,是由煤岩层和井液间的电化学作用产生的。按其成因可分为两大类:一是由电子导电性矿层和井液形成的氧化还原电位。免费论文参考网。这种氧化还原电位多发生在高阶质煤层上。另一类是由井液和孔隙性煤岩层形成的离子性的扩散吸附电位、过滤电位。
1:氧化还原电位形成机理
氧化还原电位是由矿层和井液的氧化还原反应形成的。当矿层在井液中处于氧化环境中,矿层中的物质成份由于被氧化而失去电子带正电,井液物质成分由于获得电子带负电。这样在矿层和井液的界面处当氧化环境达到平衡时就形成电位差。这时我们就可以测量到该矿层的自然电位的负异常。
当矿层在井液中处于还原环境时,矿层中的物质成份由于被还原而得到电子带负电,井液物质成份由于失去电子带正电,这样也在矿层和井液的界面处当还原环境达到平衡时就形成电位差。这时就可以测量到该矿层的自然电位的正异常。
2:扩散吸附电位形成机理
扩散吸附电位一般形成于孔隙性地层和含水层中。是由于井液离子向地层渗透过程中,在井液和地层的界面处的离子浓度差形成的,与煤岩层的孔隙度大小有关。也与井液的矿化度有关。
一般负离子的移动速度大于正离子的移动速度。当地层水的矿化度Cw大于井液的矿化度Cf时,地层水中的负离子向井液中扩散,扩散达到平衡时,地层水中就有较多的正离子而带正电,井液中就有较多的负离子而带负电。在井液和地层之间就形成电位差。这种电动势主要取决于两种溶液的活度(矿化度)比值。并与溶液的温度和离子成份有关。该电动势的大小可表示如下:
E=K*Log (Cw/Cf)
式中 k 为扩散电动系数,单位 毫伏,Cw 为地层水的电化学活度, Cf 为井液泥浆的电化学活度。
二:自然电位测井的干扰因素及解决办法
目前,自然电位测井大多采用井下M电极,地面N电极的测量方式。免费论文参考网。而且测井时大多和电阻率测井共用M电极。所以自然电位测井的影响因素较多。
1:电极极化电位的影响及解决办法
测井时,测量电极M和地面电极N同时存在着和泥浆井液间的电极极化电位,这种电极极化电位主要取决于电极采用金属材料的电化学活性,活泼金属的电极电位大且不稳定,不活泼金属的电极电位小且稳定。所以测井电极一般采用不活泼的金属材料制作。电极电位的存在使得自然电位测井时曲线产生漂移现象。同时电极表面经长期使用产生凸凹锈蚀,使得和井液接触时产生较大的电极极化电位,同样使自然电位曲线产生漂移。
解决办法一般采用不活泼的金属铅做视电阻率测井和自然电位测井的供电及测量主电极。而且在测井前使 M , N 电极表面光滑、干净。可以减少这类干扰因素的影响。
2:电阻率测井漏电干扰及解决办法
目前煤田测井中,普遍采用视电阻率和自然电位共用测量电极M同时测量的方式,有时产生测得的自然电位曲线和视电阻率曲线倒形相似现象。在实际工作中经多方面分析研究认为:视电阻率测量地面供电B电极和电阻率与自然电位测量共用地面N电极之间距离有关,同时也与井液泥浆的矿化度有关。供电B电极一般放在井口,N电极一般在泥浆池。二者距离短时有时就会产生这种现象。分析其原因是B电极和N电极之间的接地电阻大小有关。
在实际测井工作中经多次验证。将视电阻率测井和自然电位测井时共用的地面N电极改用电缆铠皮作N电极可以消除这一现象。或将地面B、N电极距离加长至消除这一现象。免费论文参考网。
三:总结及建议
自然电位测井的影响因素较多,如工业杂散电流的影响、绞车滑环接触电阻的影响、仪器面板插座接触不良的影响等。希望我们今后在实际测井工作中及时发现问题及时解决。另外希望仪器制造厂家最好将测量电路做在探管中,以数字脉冲码的方式向地面仪器传送测量信号,这样可以减少很多干扰因素的影响。
参看文献:
(1):李舟波孟令顺 梅忠武编著,资源综合地球物理勘查,地质出版社,2006
开展物理实验科技竞赛,即要达到提高教师“教”的积极性,又要实现激发学生“学”的热情的目的。大学物理实验科技竞赛是一项推广物理概念,培养学生动手能力的活动。在搭建适合物理实验科技竞赛的平台方面,要尽可能采用综合设计性实验项目,该实验项目应是全开放式的,只提要求,不设限制[8],要求学生在任课老师指导下对自己在科学和技术范畴感兴趣的内容进行研究或设计,设计的内容可以是对某些自然现象的科学理论分析;也可以是对仪器设备的创新设计制作;或是对现有仪器设备的原理和设计进行改进;或是独特的测试方法和手段等。将其理论研究成果或设计思想、设计原理、实验结果等,以科技论文的形式提交,并将该内容与科技竞赛结合起来,开展全校性的大学物理实验科技竞赛活动,以此来提高学生对物理实验学习的积极性和兴趣。进而提高物理实验的效率和教学质量。
2科技竞赛的组织实施
2.1科技竞赛项目及要求
首先关于举办大学生物理实验科技竞赛的通知。竞赛分为初赛、实验操作和答辩三个环节进行,报名与参赛均以组为单位,每组两人。初赛以笔试形式考查报名选手的基本知识和基本实验技能。实验操作考察学生的动手能力和灵活运用所学知识设计实验的能力,参照我校现有仪器和条件,提出竞赛项目及要求:(1)学生在校期间完成的物理思想清晰,物理知识点明确的实验制作或测试方法和手段。(2)学生在校期间完成的物理思想清晰、与实验相关的科研论文和教学论文。教学论文包括物理实验内容和方法的改进、现代测量技术在物理实验中的应用以及实验数据处理优化等。(3)对物理实验现有仪器进行改进,使操作更加便捷、测量更加精确;对物理实验现有仪器进行重新组合,开发新的实验项目,完成新的实验功能;基于物理课现有实验项目,提出新的实验方法。实验操作中要求两名选手团结协作,按照自己的设计方案在规定时间内完成仪器调试、数据测量、提交报告。
2.2评判标准
由任课教师对学生提交的论文进行评定,要求论文的物理思想清晰,物理知识点准确,论文结构合理,语言描述流畅,符合科技论文的基本要求。
2.3评奖办法
由任课老师在每自然班筛选出三组同学进入最终的竞赛,评奖小组由所有任课教师和物理实验老师共同组成,最终采用答辩方式确定前三等奖,并颁发获奖证书及奖金。其成绩可按一定比例计入大学物理实验课程的总成绩。很明显,这种充分体现学生实践能力的竞赛项目及评奖活动,会充分激发教师和学生做好物理实验的积极性和“教好”与“学好”的热情,可有效地将老师和学生结合成统一的整体。
2.4科技竞赛项目实例
竞赛项目:利用万用表检测较为复杂的集成电路故障所需仪器:万用表;集成电路操作过程分析:首先要根据故障现象,判断出故障的大体部位,然后通过测量,把故障的可能部位逐步缩小,最后找到故障所在。集成电路中总有一个接地脚与印制电路板上的“地”线是接通的,由于集成电路内部都采用直接耦合,因此,集成块的其他引脚与接地脚之间都存在着确定的直流电阻。可通过用万用表测量各引脚的内部等效直流电阻来判断其好坏,若各引脚的内部等效电阻与标准值相符,说明这块集成块是好的;反之若与标准值相差过大,说明集成块内部损坏。当然,由于集成块内部有大量的三极管、二极管等非线性元件,在测量中单测得一个阻值还不能判断其好坏,必须互换表笔再测量一次,获得正、反向两个阻值。
只有当内部直流等效电阻正、反向阻值都符合标准时,才能断定该集成块完好。也可采用在路测量。先测量其引脚电压,如果电压异常,可断开引脚连线测接线端电压,以判断电压变化是由元件引起,还是集成块内部引起。在路检测集成电路内部直流等效电阻时可以不必把集成块从电路上拆下来,只需将电压或在路电阻异常的脚与电路断开,同时将接地脚也与电路板断开,其他脚维持原状,测量出测试脚与接地脚之间的内部直流等效电阻的正、反向阳值便可判断其好坏。效果与不足:学生通过竞赛对万用表的使用方法和注意事项有了更加深入的理解,通过对复杂的集成电路故障的分析检测,对各种仪器设备的电路故障分析检测能力有了明显的提升,懂得了学以致用的乐趣,对其他的物理实验项目也有了浓厚的兴趣。不足之处是每个自然班只有三组同学参加竞赛,竞赛的影响面不够宽广,今后要进一步扩大参赛同学的人数。
3结论
论文关键词:数字万用表,测电容
人民教育出版社出版的普通高中课程标准实验教科书《物理》选修3-1《教师教学用书》(2010年5月第3版)(以下简称《教参》),在其第60面实验参考资料一文中提供了两种测电容的方法,方法一为“利用电容器放电测电容”;方法二为“用传感器做定量实验学习电容的概念”。以上两种方法的原理均为利用给电容器充电后通过高阻漏电,测量漏电电流与时间的关系,通过曲线面积计算法得到电量,计算电容值。
但以上两种方法在实际操作中均有不足,现分析如下:
方法一的难点在于记录放电时间的同时要记录放电电流物理论文,虽然课本上提供了“节拍器计时法”和先描点后记录等操作技巧(具体操作步骤参见《教参》),但实验操作技巧要求高,学生在实际操作中,实测数据偏差大。且方法一所测电流从几微安到数百微安,测量范围大,对电表要求较高。对《教参》中生成的图像计算后发现,该实验使用的电容值达到1400μF,在实际中不易获得。
方法二利用朗威数字化实验室器材,利用电流传感器测定电流强度,其优点是通过数据采集器与计算机连接,迅速测定电流的同时在屏幕上显示出电流I随时间t变化的图像,该实验现象清晰、直观,实验效果很好龙源期刊。但由于使用R=100Ω的电阻放电,整个放电过程在0.7s内就基本结束,学生过程性体验较差物理论文,同时目前配备一间数字化实验室费用较为昂贵,部分学校暂时无法配备,在一定程度上限制了此方法的推广和使用。
笔者在日常教学中使用价格仅数百元的数字万用表,较好的解决了以上问题。其操作步骤如下:
首先需要准备一块具有与 PC 机联机功能的数字万用表,笔者使用的数字万用表为“VICTOR 98A”。通过该表精确度高(分辨率0.1μA,精确度0.2%+4)【1】可实现实时测量和保存测量数据,极大的增强了准确性和方便性。同时利用该表配备的联机软件,通过Miniusb接口与计算机的USB接口相连,可以直观的将测量数据在大屏幕上显示,方便教学中使用。
利用该数字万用表,可以通过以下两种方式完成数据记录。
一、不使用计算机的情况下,使用该表“间隔存储模式”,手动选择间隔存储时间(如1秒),待实验完毕后,将记录数据读出并描点作图。此法与《教参》中方法一相同物理论文,但与使用指针式万用表读数相比,简化了实验操作的同时,提高了测量的准确性。
二、数字万用表与计算机连接使用,借助该表配备的联机软件,计算机连接数字万用表以后,选择实时记录功能,设置间隔时间后,即可对测量的数据进行存储,并以图像形式模拟显示。
以上两种形式存储的数据均可按照Excel格式导入计算机,借助Microsoft Excel软件进行后期的处理分析。
按照以上原理,如图1所示连接电路,电容两极板间电压为U,放电电阻为R,闭合开关S1较长时间(1分钟以上),再断开开关S1接通S2物理论文,放电电流为I,对于此回路电压方程为
U-IR=0
在放电时有,,将它们代入上式得
将上式积分,并注意到t=0时q=CE,可得
其中τ=RC称为RC电路的时间常数,它标志充放电的快慢[2]。
笔者使用标称电容值为16v,47μF(实测为72.0μF)电解电容,放电电阻为15kΩ,在不同充电电压下放电测量数据。数据经Microsoft Excel软件插入图表、添加趋势线等处理后得图2、图3龙源期刊。
时间(s)
电流(μA)
38.5
1
7.5
2
关键词:芯线,电缆故障,断线故障,中间接头,点距,测定方法,电容L-XRL,电阻值
1 电缆故障的种类与判断
无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力作用等原因造成故障。电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面:①三芯电缆一芯或两芯接地。②二相芯线间短路。③三相芯线完全短路。④一相芯线断线或多相断线。
对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接地故障,用兆欧表摇测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。故障类型确定后,查找故障点并不是一件容易的事情,下面根据笔者的经验,介绍几种查找故障点的方法,供参考。
2 电缆故障点的查找方法
2.1 测声法
所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。当电容器充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋”放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。
2.2 电桥法
电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。首先测出芯线a与b之间的电阻R1,则R1=2Rx+R,其中Rx为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出a′与b′芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a′相或b′相芯线至故障点的一相电阻值,测完R1与R2后,再将b′与c′短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示,RL=Rx+R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL,因此,故障点两侧芯线的电阻值可用下式表示:Rx=(R1-R)/2,R(L-X)=(R2-R)/2。Rx、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,线径要足够大,与电缆芯线连接要采用压接或焊接,计算过程中小数位数要全部保留。
2.3 电容电流测定法
电缆在运行中,芯线之间、芯线对地都存在电容,该电容是均匀分布的,电容量与电缆长度呈线性比例关系,电容电流测定法就是根据这一原理进行测定的,对于电缆芯线断线故障的测定非常准确。使用设备为1~2kVA单相调压器一台,0~30V、0.5级交流电压表一只,0~100mA、0.5级交流毫安表一只。测量步骤:①首先在电缆首端分别测出每相芯线的电容电流(应保持施加电压相等)Ia、Ib、Ic的数值。②在电缆的末端再测量每相芯线的电容电流Ia′、Ib′、Ic′的数值,以核对完好芯线与断线芯线的电容之比,初步可判断出断线距离近似点。③根据电容量计算公式C=1/2πfU可知,在电压U、频率f不变时C与I成正比。因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。设电缆全长为L,芯线断线点距离为X,则Ia/Ic=L/X,X=( Ic/ Ia)L。测量过程中,只要保证电压不变,电流表读数准确,电缆总长度测量精确,其测定误差比较小。
2.4零电位法
零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算,测量原理如下:将电缆故障芯线与等长的比较导线并联,在两端加电压E时,相当于在两个并联的均匀电阻丝两端接了电源,此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零。反之,电位差为零的两点必然是对应点。因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导线上移动至指示值为零时的点与故障点等电位,即故障点的对应点。测量步骤如下:
①先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导S,该导线要用裸铜线或裸铝线,其截面应相等,不能有中间接头。②将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。
②合上闸刀开关K,将软导线的端头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。
参考文献:
【1】魏书宁;龚仁喜;刘珺;;电力电缆故障检测的方法与分析[A];04'中国企业自动化和信息化建设论坛暨中南六省区自动化学会学术年会专辑[C];2004..
【2】邢海文;电力电缆故障诊断技术的研究[D];广西大学;2005.
【3】华菊金;电缆故障无损检测系统设计[D];中北大学;2006.
【4】秦方;;多芯电缆的故障测试[A];冶金企业自动化、信息化与创新——全国冶金自动化信息网建网30周年论文集[C];2007.