前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇封装工艺论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:工艺;自控仪表;电气;安装
分类号:TU758.7
计算机、网络信息化发展提升了各个领域经济效益,而在集成化、智能化、数字化等方面自控仪表工艺取得前所未有的发展。自控仪表安装施工程序如下:对施工图与技术资料进行了解、给予土建预留预埋作业配合、调校仪表单体、铺设电缆管路、安装电缆桥架、安装控制箱盘、铺设线缆、铺设导压管、安装自控仪表等。
一 、自控仪表安装工艺
1. 调校仪表单体
仪表到货后,应核对、检查设备与装箱清单上数量、规格、型号是否相符。安装仪表前,根据说明书要求,合格校验单体后进行仪表安装。以出厂使用说明书为依据开展校验试验,选用标准仪器的量程、精确度,试验所用电源、气标准,连接线路、管路的原理等均需达到标准。试验工作人员应对试验方法、试验项目等内容明确。调校试验的情况应真实反映在调校试验记录中,调试仪表后,应出具试验报告。按照设备本体与工艺系统图,将调校合格的仪表清楚标志、完好封装,以备安装。
2.铺设电缆管路
电气保护管的管口应无锐边、光滑,内部应无毛刺、清洁,外部应无裂纹及变形。铺设路径应按照控制点或测量点至控制盘间的电气电缆、管道、设备的分布情况合理进行选择。应按照电缆的安装位置、型号、规格等来确定保护管的支架位置、铺设位置、材质以及管径。保护管弯曲位置不应有裂缝或凹坑,其弯曲半径应超过管外径的六倍,弯曲角度应小于90度。
3.安装电缆桥架
根据现场实际情况,按照各系统仪表设计更改图或施工图,应预先规划电缆桥架路径,以防止管道、工艺设备等发生冲突。测量路径,按施工设计安装高度以及美观整齐、横平竖直、固定牢固等原则制作并安装吊架、托臂、支架。电缆桥架的组对应按分段的原则,平直连接,分段吊装定位,桥架之间应由跨接保护接地,同时连接接地网。
4.安装导压管
选择管子及附件材料时,应与设计标准相符,为便于检查及清理管线,附件及管子的连接应方便拆装。应以1:10至1:15的比例确保仪表管路坡度。并确保倾斜处气体凝结水的排出。安装管子时,还需对管道沉降物、冷凝水的排放进行考虑。为避免测量精度受管内液体温度变化的影响,其它高温管路应与测量液位管路保持一定距离。测量液位管路。应将排气阀安设于液体管路中;将集水器或排水阀安装于管路最低处,以便含湿气体的排出。全面检查安装完成的导压管系统,如:可拆连接的严密性、管道及支架的可靠性与安全性、设置排放口的正确性等等。安装完毕后,可开展管道系统试压,此时应将靠近压力变送器的阀门关闭。试压完毕后,拆开仪表管路2端阀门接头,仪表管路内部的吹扫采用压缩空气,同时对仪表管的连接进行确认与检查。
5.安装自控仪表
(1)安装压力表
以盘上安装为例进行介绍,在表孔内缓慢装入压力表,找正后固定,在接头中放入垫圈,拧紧接头,注意压力表与导压管的连接。
(2)安装变送器
用SC50镀锌钢管制作差压变送器与压力变送器的支架,并将钢管固定于就近位置,之后再钢管上安装差压变送器与压力变送器。为便于维护时将外壳揭开、或调零,变送器顶部与调零侧须留有一定距离。须将三阀组接于差压变送器前面,而二次阀门须接在压力变送器前面。变送器上丝扣螺纹须匹配于与变送器相连接的螺纹。在安装差压变送器时,应先对安装位置进行查找,之后将变送器的支架固定在该位置上,于支架上固定变送器。将毛细管放开,对好法兰,先将2根螺栓穿上,再将另外的螺栓穿好、拧紧。为使变送器在具有粉尘或腐蚀性气体的环境中得到保护,还必须试压、冲洗、吹扫取压管,之后连接差压变送器与压力变送器。变送器的安。
(3)安装流量仪
在无交直流电场干扰或强烈振动的地方,按照说明书要求控制前后4段的长度。施工工艺管道时,应将变送器发盘置于安装处,找正、找平后将法兰盘点焊住,待冷却,将变送器安装好。值得注意的是,安装在立管上时,为使被测介质流进变送器,应遵循垂直的原则。水平安装电磁流量变送器时,应垫稳变送器,使2电极处于同一水平面。如果工艺管道与变送器电接触不良,连接须采用金属导线。安装变送器时,应将无衬里的金属管道接于有绝缘衬里的工艺管道之间。为确保法兰与接地环良好接触,被测介质与环内边缘发生接触,变送器内径应较接地环内径略大。变送器流向应一致于被测介质流向。当管道试压吹扫结束后,可先行拆下变送器,清洗后再装上。
(4)安装转子流量
按照垂直安装原则安装转子流量计,且用支架固定转子流量计前后管段。如果玻璃管转子流量计对介质进行测量时具有腐蚀性或温度超过70摄氏度的情况下,应考虑加装防护罩。
(5)安装分析仪表与盘上仪表
分析仪表的安装必须满足避免服饰气体、剧烈的温度变化、防止高温、无强磁场干扰、无振动、易于维护操作、干燥、可靠安全、光线充足等安装条件。单独安装预处理装置的同时,应尽量缩短取样管线,并尽可能与传送器贴近。安装盘上仪表时,应注意其边缘光滑度,抽出、推进仪表时避免过于松或过于紧。仪表安装在盘内框架上应方便维护和接线,并且接地良好。须清楚、正确盘上仪表的铭牌、标志牌等。
二、处置施工中常见问题
常见问题与处置方法如下:①未正确显示差压、压力,这是由于变送器选型与安装位置出现差错。处置方法:当变送器取压点较变送器安装位置低时,进行正迁移;变送器安装位置低于变送器取压点时,进行负迁移。②测压、测温不标准,这是由于施工未严格按照图纸要求和规范进行,插入的温度计过浅、或者过于深所致。处置方法:在安装测压、测温部件之前,测压位置应严格按照仪表规范来确定,以管道的50%为基准判定温度计插入深度,建议测压位置远离三通、弯头、以及阀门处。③测定流量缺乏稳定性,在连接差压变送器与取压管时,喷嘴或孔板方向上反,正负错位所致。处置方法:在连接差压送变器与取压管时,应对其正负进行核对、确认后在进行操作。在安装喷嘴或孔板时,必须在对喷嘴或孔板安装方向与关内流向进行确定后进行操作。④二次仪表未显示,连接端子与线头时,端子被绝缘层压住,造成闭合回路不通。处置方法:在结束线缆施工后,绝缘测试线缆,并校对标号线缆,端子中插入线缆头时应防止端子被绝缘层压住,且插入深度适宜。⑤管内堵塞,施工前未清理干净取压管内部。处置方法:进行施工前,应预先用空压机吹扫取压管,待清理干净后,再进行安装。⑥气动、电动薄膜调节阀闭、开不到位,出现闭、开超过极限,或者管内渗漏,顶坏阀体、阀杆或者阀芯。处置方法:对行程开关进行合理的调整。
三、结束语
自控仪表工艺及施工中逐渐运用了集成化、智能化、数字化技术,本文对自控仪表的安装工艺与施工种常见问题进行总结,并针对其问题进行处理。特别在安装自控仪表一节中,详细地介绍了压力表、变送器、流量仪、电子流量、分析仪表与盘上仪表等步骤,最后提出针对性措施。
参考文献
[1]禹扬,余国平,朱雀,文鹏. 石油化工装置中自控仪表工程施工流程的质量控制 [期刊论文].电源技术与应用,2012(9).
关键词: 柔性显示;组装;引线键合;覆晶;异向导电胶
中图分类号:TN141 文献标识码:B
1 柔性显示背景分析与发展前景
1.1 背景分析
近半个世纪来,电子信息技术的发展对日常生活的影响有诸多案例,但其中显示技术的发展带来的日常生活的变革是最显而易见的。
从首台基于动态散射模式的液晶显示器(liquid crystal display,LCD)(约为上世纪70年代),到目前LCD电视的普及、3D电视的热潮,显示技术的发展颠覆了我们对传统阴极射线管(cathode ray tube,CRT)显示器的认知。2012年1~5月,液晶电视销售额为1,331.9万台,占彩电销售总额(1,470万台)的90.6%(数据来源:视像协会与AVC),可以毫不夸张地说,目前已经是液晶电视的天下。与传统的CRT显示技术相对比,液晶显示技术的显著优点已广为人知,不用赘述。
随着电子技术应用领域的不断扩展,电子产品已经逐步成为日常生活的必须品,而将更多显示元素引入家庭和个人环境是未来显示技术的发展趋势,目前基于此类的研究正在逐步进行(如飞利浦、索尼、通用已经开始相关技术的研发)。但是刚性、矩形、基于玻璃基板的显示器件已经显示出不能满足设计者对外形的需求,设计人员更趋向于选择一种可弯曲、可折叠,甚至可以卷曲的显示器件。
与此同时,对产品品质的要求不断提升,电子产品被要求能承受更多次的“随机跌落试验”。而实验证明基于刚性玻璃基板的显示器件在试验中极易损坏,所以在引入全新设计理念的过程中,具有轻薄、不易碎、非矩形等特性的“概念产品”被普遍认为“具有不一般的对市场的高度适应性”。
在产品外形方面,与传统显示器相比,柔性显示器具有更结实、更轻薄、样式新颖的特点,而这些特点对产品设计师和最终用户都极具吸引力。
在制造商方面,柔性显示器生产时,可以采用新型印刷或者卷绕式工艺进行生产,运输成本相对低廉,使得制造商具有进一步降低生产成本的潜力。
在潜在安全性方面,当柔性显示器破裂时,不会产生可能导致人员受伤的锋利边缘,因此相对刚性显示器而言,柔性显示器无疑更加安全。
1.2 柔性显示的发展前景
由于柔性显示技术具有独特的技术特点,与现有显示技术相比具有一定的先进性,所以普遍认为,在某些市场中,柔性显示具有潜在的替代优势,同时,柔性显示技术更具开拓全新应用领域的潜力(如军方将柔性显示应用于新式迷彩服,而这个领域传统刚性显示器件是很难涉及的)。柔性显示器是一种具备良好的市场前景的新技术,目前用于生产柔性显示器的显示技术有十多种,包括传统的液晶、有机发光显示(organic light-emitting diode,OLED)、电致变色、电泳技术等等,据估计全球约有数百家公司正在或即将开始柔性显示的研发。
可以认为,柔性显示技术的发展将为显示技术领域注入革命性的创新动力。
2 现有组装技术的分析
2.1 组装技术概述
作为柔性显示重要部件之一的驱动芯片,如何与柔性显示器件相连接是一个值得研究的课题。无论何种显示技术,最终的显示画面依赖于驱动芯片给显示介质(例如液晶,发光二极管等)提供其所需的信号(电压信号或电流信号)。已有的芯片组装和封装方式有很多种成熟的方案,但在柔性显示器芯片组装时,最主要考虑的因素有以下几点:
(1)组装制程中的压力和温度;
(2)组装方式的可靠度(包括物理连接可靠度和电性能的可靠度);
(3)组装中能达到的最小管脚距离(Pin pitch)和最高管脚数量。
就目前主流的芯片与目标介质的组装技术宏观上可以分为如下4类(由于TFT-LCD的驱动芯片与目标介质组装技术比较特殊,所以单独归为一类):
第一类,微电子封装技术,是指将晶圆(Wafer)切割后的Chip做成一种标准的封装形式的技术。
第二类,微电子表面组装技术(Surface Mount Technology,简称SMTc),是指将封装后的芯片(IC)成品组装到目标介质上的技术。
第三类,裸芯片组装(Bare Chip Assembly),是指将晶圆切割后的Chip直接组装到目标介质上的技术。
第四类,液晶显示器(TFT-LCD)领域特有的芯片封装和组装技术(COF/TCP封装和ACF bonding技术)。
下面将逐一介绍各类组装技术。
2.2 微电子封装技术
对于电子设备体积、重量、性能的期盼长久以来一直是促进电子技术发展的源动力,而在微电子领域,对芯片面积减小的期望从未停歇(从某种程度上讲,芯片的面积决定芯片的成本价格),在莫尔斯定律的效应下,芯片电路的集成度以10个月为单位成倍提高,因此也对高密度的封装技术不断提出新的挑战。
从早期的DIP封装,到最新的CSP(Chip scale package)封装,封装技术水平不断提高。芯片与封装的面积比可达1:1.14,已经十分接近1:1的理想值。然而,不论封装技术如何发展,归根到底,都是采用某种连接方式把Chip上的接点(Pad)与封装壳上的管脚(Pin)相连。而封装的本质就是规避外界负面因素对芯片电路的影响,当然,也为了使芯片易于使用和运输。
以BGA封装形式为例,通常的工艺流程如图3所示。
通常的工艺流程是首先使用充银环氧粘结剂将Chip粘附于封装壳上,然后使用金属线将Chip的接点与封装壳上相应的管脚连接,然后使用模塑包封或者液态胶灌封,以保护Chip、连接线(Wire bonding)和接点不受外部因素的影响。
另外随着芯片尺寸的不断缩小,I/O数量的不断增加,有时也会使用覆晶方式(Flip Chip)将芯片与封装壳连接。覆晶方式是采用回焊技术,使芯片和封装壳的电性连接和物理连接一次性完成,目前也有在裸芯片与目标介质的组装中使用覆晶方式。
2.3 微电子表面组装技术
微电子表面组装技术(surface mount technolo gy,SMTc,又称表面贴片技术),一般是指用自动化方式将微型化的片式短引脚或无引脚表面组装器件焊接到目标介质上的一种电子组装技术。
表面组装焊接一般采用浸焊或再流焊,插装元器件多采用浸焊方式。
浸焊一般采用波峰焊技术,它首先将焊锡高温熔化成液态,然后用外力使其形成类似水波的液态焊锡波,插装了元器件的印刷电路板以特定角度和浸入深度穿过焊锡波峰,实现浸焊,不需要焊接的地方用钢网保护。波峰焊最早起源于20世纪50年代,由英国Metal公司首创,是20世纪电子产品组装技术中工艺最成熟、影响最广、效率最明显的技术之一。
表面贴片元器件多使用再流焊技术,它首先在PCB上采用“点涂”方式涂布焊锡膏,然后通过再流焊设备熔化焊锡膏进行焊接。再流焊的方法主要以其加热方式不同来区别,最早使用的是气相再流焊,目前在表面组装工艺中使用最为广泛的是红外再流焊,而激光再流焊在大规模生产中暂时无法应用。再流焊中最关键的技术是设定再流曲线,再流曲线是保证焊接质量的关键,调整获得一条高质量的再流焊曲线是一件极其重要但是又是极其繁琐的工作。
2.4 裸芯片组装技术
裸芯片组装是指在芯片与目标介质的连接过程中,芯片为原始的晶圆切片形式(Chip),芯片没有经过预先的封装而直接与目标介质连接。常用的封装形式为COB(Chip On Board)形式。
COB方式一般是将Chip先粘贴在目标介质表面,然后采用金属线键接的方式将Chip的接点与目标介质上相应的连接点相连接。完成后Chip、金属连接线、目标介质上的连接点均用液态胶覆盖,用以隔离外界污染和保护线路。
裸芯片组装还有另一种方式,即覆晶方式。覆晶方式是指在Chip接点上预先做出一定高度的引脚,然后使用高温熔接的方式,使引脚与目标介质相应位置结合,形成电性的连接。与传统方式相比,覆晶方式不需要使用金属线进行连接。TFT-LCD驱动芯片常用的TCP/COF封装使用的即是覆晶方式,但是由于TCP/COF封装应用领域的特殊性,所以没有将其归入裸芯片封装技术中,而是单独划为一类。
2.5 液晶显示器领域特有的芯片封装和组装形式
由于TFT-LCD显示电路的特殊性,要求驱动芯片提供更多的I/O端口,所以一般情况下TFT-LCD驱动芯片封装多采用TCP(Tape Carrier Package)方式,或者COF(Chip On Film)方式,芯片与TFT-LCD显示面板连接多采用ACF(Anisotropic Conductive Film)压合粘接的方式。
TCP/COF多使用高分子聚合材料(PI ,polyimide)为基材,在基材上采用粘接或者溅镀(Spatter)方式使之附着或形成铜箔,然后使用蚀刻方式(Etching)在铜箔上制作出所需要的线路、与Chip连接的内引脚(ILB Lead,ILB:Inner Lead Bonding)、与TFT-LCD显示电路连接的外引脚C(OLB Lead-C,OLB:Outer Lead Bonding)、和外部目标介质(多为PCB板)连接的外引脚P(OLB Lead-P,OLB:Outer Lead Bonding),最后在所有引脚表面附着一层焊锡。
Chip的接点为具有一定高度的金突块(Au Bump),在与Chip连接(Assembly)时,Chip的接点与TCP/COF上的内引脚通过高温高压形成金-锡-铜合金,从而达到电性导通的目的,然后使用液态胶灌封。而在与外部目标介质——TFT-LCD显示电路连接时,则采用另一种组装方式——ACF压合粘接方式(AFC bonding)。
ACF胶结构类似于双面胶,胶体内富含一定密度的导电粒子(Conductive Particle),导电粒子为球状,外部为绝缘材料,内部为导电材料。当导电粒子受到外部压力破裂时,内部导电材料露出,多个破裂的导电粒子连接,可形成电性通路。由于导电粒子破裂时仅受到垂直方向的压力,加之芯片相邻接点距离远大于导电粒子直径,因此,破裂的导电粒子产生的电性链路具有垂直方向导电,水平方向不导电的特性。基于该种特性,ACF胶能使TCP/COF封装形式的芯片每根外引脚在水平方向上互相绝缘,不致形成短路,而在垂直方向又能与目标介质实现电性导通。由于ACF胶加热固化后具有很强的粘合力,所以形成电性导通的同时,可以使COF/TCP与目标介质实现物理连接。
TCP/COF封装形式能支持高达数千的I/O引脚数,因此在TFT-LCD驱动芯片领域得到广泛的应用。
当然,随着成本因素的影响日渐增加,另一种方式COG(Chip On Glass)也应运而生。与TCP/COF方式唯一的不同点在于,COG方式不需要PI基材,而是使用ACF压合粘接方式,直接将Chip与TFT-LCD显示电路连接,因此会更加节省成本。由于在组装中芯片是晶圆切片形式,所以COG技术也可以认为是一种裸芯片组装技术。
3 柔性显示驱动芯片组装方安提出
3.1 柔性显示动芯片组装方案概述
基于上述介绍,可将芯片与目标介质连接的技术做如下归类:
第一类为使用金属线形成电性连接,该种形式多用在常规的芯片和封装壳组装、裸芯片COB封装,可将其归纳为Wire bonding方式。
第二类为芯片和目标介质采用焊接的方式形成电性连接,电子表面组装技术,裸芯片覆晶方式多使用该种技术形式,可将其归纳为焊接方式。
第三类为TFT-LCD芯片组装中经常使用的ACF胶压合连接方式,可将其归纳为ACF bonding方式。
按照上述分类,拟依照不同技术背景,制定不同的芯片与目标介质连接方案,实现驱动芯片与柔性显示基材的电性连接。
具体方案如下:
方案1:采用Wire bonding方式。
方案2:采用Flip Chip方式。
方案3:采用ACF bonding方式。
需要指出,提出方案时,只讨论理论上该方案的可行性,并没有对该种方案是否具有投入实际生产的可行性做出判断和论述。
下面将具体讨论三种方案的优劣。
3.2 Wire bonding方案
目前Wire bonding技术的具体实现步骤如下:
首先,在晶圆制程后期使用电镀方式将Chip的连接点做成金突块;同时,目标介质上的引线(Lead)上也使用镀金技术使其附着一定厚度的金;然后使用Wire bonding设备将金属线的一端熔接(采用超声波或高温熔接方式)在金突块上,另一端采用相同的方式熔接在目标介质的Lead上,从而实现电性的导通。由于金具有良好的延展性和良好的导电性,所以,在Wire bonding的过程中,一般使用高纯度金线(99.99%)。当然,目前在一些极低端应用中出于成本的考虑,或者在SOC(System On Chip)/SOP(System On Package)封装中出于保密的需求,会在某些没有高频信号和大电流信号的连接管脚上使用铝线或者铜线进行Wire bonding。
在柔性显示中使用Wire bonding方案的优势和劣势同样明显。
首先,金是良好的导体,所以在使用金线键接时无需担心传输线RC/RH效应对高频率信号传输造成的影响;同时,也不需过多考虑大电流信号在传输过程中由于传输线本身电阻造成的电压降效应和热效应;其次,采用COB方式可以将芯片直接固定在柔性基材上,省去芯片封装的成本。
但是,Wire bonding的劣势也同样明显,第一,一般只有在金含量较高的连接点上才能实现金线和Lead/Pad的熔接;第二,Wire Bonding要求目标介质能承受一定压力且不能有太大形变;第三,Wire Bonding要求目标介质能承受较高温度;第四,Wire bonding受Wire bonding设备精度的限制,以BGA封装为例,一般I/O数量为500以内的芯片使用Wire bonding的方式,I/O数量增高,势必会使单个芯片连接点的尺寸减小,而在I/O数超过500以上时,芯片接点的尺寸会使Wire bonding的成功率大幅下降,而目前的显示技术恰恰又要求驱动芯片提供更多的I/O数目。
所以,综合分析上述各种因素,只有在低分辨率金属材质(如用金属箔为基材的柔性显示)的柔性显示方案中才有可能采用Wire bonding的方式进行芯片和柔性基材的键接。因此,作为一种连接技术,Wire bonding技术可以使用在柔性显示中,但是受到Wire bonding技术自身的制约,它在柔性显示中的应用会受到不小的限制。
3.3 覆晶方式
覆晶封装方式的应用十分广泛,由于覆晶方式可以节省Wire bonding的金线成本,同时芯片与封装壳的距离更近,可以保证高频信号具有良好的信号品质,所以被大量使用在对信号品质要求较高的CPU芯片封装中。传统封装形式,芯片的最高工作频率为2~3GHz,而采用覆晶方式封装,依照不同的基材,芯片的最高工作频率可达10~40GHz。
覆晶方式的基本做法是在芯片上沉积锡球,然后采用加温的方式使得锡球和基板上预先制作的Lead连接,从而实现电性连接。可以这样认为,覆晶方式是焊接方式的提升。
应用覆晶方式实现柔性基材和驱动芯片的连接有其独特之处。首先,芯片与柔性基材直接连接,从电性上考虑,该方式由于省略了封装中的信号传输线,所以可以降低芯片管脚上杂讯的干扰,而从成本角度考虑,由于使用裸芯片,该方式可以节约芯片的封装成本;其次,当芯片晶背(Chip backside)减薄到一定程度后(例如将Chip晶背研磨至13μm时,Chip可以弯折,如图6所示),Chip会呈现一定程度的柔性,可以在一定程度上实现与显示基材同步的柔性弯曲。
与Wire bonding方式相比,覆晶方式会有其成本上的先天优势(不需使用金属线键接),但是覆晶方式也存在一些问题。
覆晶方式中会使用锡球工艺,目前出于绿色环保考虑,微电子表面焊接技术中大量使用无铅焊锡,无铅焊锡的熔点约在200℃以上。而在柔性显示基材的各种方案中,一般具有良好弯折特性的柔性基材多为有机材料,有机柔性基材所要求的制程温度范围一般在150℃以内,超过200℃的高温会对柔性显示基材造成不可逆的损伤。所以,柔性基材不耐高温的特性与覆晶技术中需要使用的高温制程存在一定的矛盾。因此,我们可以推测,覆晶方式在柔性显示的应用领域会受到其制程温度的限制。
综上所述,覆晶方式多应用于柔性电路板(Flexible Print circuit)与芯片连接或者PCB板直接与芯片连接。当然,在能够耐受高温的柔性基材上使用覆晶方式实现驱动芯片与柔性基材的连接也极为可行。
3.4 ACF bonding方式
ACF bonding是目前TFT-LCD领域驱动芯片和显示基板连接最常用的方式,可以将裸芯片或者TCP/COF封装形式的芯片通过ACF胶与目标介质实现电性连接以及物理连接。
ACF胶连接方式中,ACF胶电阻率变化曲线依赖于导电粒子密度、导电胶厚度、宽度以及导电胶的固化温度。本文没有设计具体实验测量导电胶电阻率的实际曲线,参考相关文献,导电胶的电阻率约为5×10-4Ω×cm。而基于TFT-LCD Array线路本身带给驱动芯片的负载远大于导电胶引入负载的事实,以及驱动芯片输出信号对电容类负载比电阻类负载更为敏感的特性,可以认为,ACF bonding方式的电阻率的非线性变化不会为显示电路引入太多负面因素。而在TFT-LCD中大量使用ACF bonding方式的事实更能说明ACF bonding方式的电性能和可靠度是可以接受的。
其次,由于TFT-LCD分辨率的增加,驱动芯片所需的I/O数量也随之增加。目前主流的Driver IC已可以提供多于1,000 channel的输出I/O。I/O数量的增加直接导致Chip中接点尺寸和管脚间距(Pitch)的减小,而导电胶中导电粒子的直径远小于Chip接点的尺寸,同时,ACF胶能提供的最小Bonding pitch约为10μm,足以满足驱动芯片的需求。所以在支持I/O数量和小管脚间距方面,ACF bonding具有巨大的优势。
再次,由于使用金属箔和薄化玻璃为基材制成的柔性显示器只能实现有限的“柔性”,所以目前柔性显示器基材更倾向于使用柔性更佳的有机材料。以PET/PEN为例,其耐温性与传统刚性显示基材相比较差,仅为120℃左右。而传统的Wire bonding和覆晶方式在组装过程中需要较高的温度,故该两项技术在柔性基材上的应用受到制程温度的极大限制。而ACF bonding方式的组装温度取决于ACF胶本压过程中使用的ACF胶固化温度,固化温度会影响最终成品的物理特性,但对电性的影响较为有限(图7 所示为ACF胶在不同温度/压力下的电阻变化曲线)。
目前,索尼和3M已经有低于150℃的ACF胶出售(约为140℃),而PET/PEN可以短时间耐受150℃的高温,所以,使用低温ACF胶连接驱动芯片和显示基材成为可能。相比上述前两种方式,ACF bonding方式具有工艺简单、适用范围广的特点,所以就目前而言,ACF bonding应该是柔性显示驱动芯片与显示基材连接的最佳方式。
4 结 论
通过比较基于不同技术背景的各种组装技术方案,综合考虑柔性显示基材的物理特性,ACF bonding方式以其在制程温度上的低温特性相比其它两种方案更具优势。客观的说,各种组装技术均有其各自的技术特点和应用领域,而目前柔性显示基材的物理特性限制了组装技术的选择。我们期待新型柔性显示基材的面世,能给柔性显示组装方式带来更大的选择空间。
本文仅在理论层面探讨用于柔性显示屏的驱动芯片连接技术实现,未对用于柔性显示屏的驱动芯片连接技术应用于实际生产中的可行性进行讨论。
参考文献
[1] Nicole Rutherford. Flexible Substrates and Packing for Organic Display and Electronics[J]. Advanced Display, Jan/Feb 2006: 24-29.
[2] 3M. Anisotropic Conductive Film Adhesive 7303. 3M Web.
[3] 3M. Anisotropic Conductive Film 7376-30. 3M Web.
[4] Prof. Jan Vanfleteren (Promotor). Technology Development and Characterization for Interconnecting Driver Electronic Circuitry to Flat-Panel Displays.
[5] Shyh-Ming Chang, Jwo-Huei Jou, et al. Characteristic Study of Anisotropic-conductive Film for Chip-on-Film Packaging. Microelectronics Reliability.
[6] 陈党辉. 微电子组装用导电胶长期可靠性的研究[D]. 西安电子科技大学硕士学位论文.
[7] 肖启明,汪 辉. 焊球植球凸块工艺的可靠性研究[J].封装、测试与设备,第35卷,第12期: 1190-1212.
【关键词】阻隔;包装;环保;复合
引言
近年来,高阻隔膜材料因阻隔性能优异,且成本低廉、使用方便、透明度好、印刷适应性强、机械性能好等优点,在市场上广泛应用于食品、药品、化学品等产品包装,电子器件封装及燃料电池隔膜等领域,并飞速发展。
优异的阻隔性是高阻隔膜材料的重要特性,包含良好的阻气性、阻湿性、阻油性、保香性等。早期的阻隔膜材料以乙烯-乙烯醇共聚物(EVOH),聚酰胺(PA),聚偏二氯乙烯(PVDC),聚乙烯醇(PVA)等薄膜为代表。随着食品饮料、医疗、化学品等领域产品强劲的需求推动,对包装阻隔性的要求也越来越严格,现已开发出多种性能优异的高阻隔膜材料,包含多层聚合物复合膜,真空蒸镀复合膜,聚合物/层状纳米复合膜等,本文就各种高阻隔膜材料的阻隔性能、生产技术和应用发展等进行总结和分享。
1.多层聚合物复合膜
由于各种聚合物在性能方面各有其优势和弱点,单一聚合物膜材料很难满足众多产品对多功能性的要求,因此利用多层薄膜复合技术,将两种及以上的单一聚合物薄膜进行复合形成多层聚合物复合膜,使各种聚合物性能优势互补,不仅能提高膜材料的阻隔性能,还可改善热封性、耐热性、机械性能、抗紫外线性能等其他性能。目前研究发展的多层膜复合技术主要有共挤出复合、涂布复合、自组装复合等。
1.1共挤出复合膜
共挤出复合膜是利用多台挤出机对各聚合物进行加热熔融,通过一个多流道复合机头共挤出生产的多层复合薄膜。共挤出复合技术主要用于具有相容性的热塑性聚合物复合,不使用溶剂,环境污染小,生产工序少,生产成本低,在薄膜生产企业中得到广泛应用。
目前共挤出复合膜材料取得新的研究进展,汪若冰等[1]以聚乙烯(PE)、聚丙烯(PP)、尼龙6(PA)、乙烯-乙烯醇共聚物(EVOH)四种聚合物作为原料进行熔融共挤,制备五层复合膜材料,其中EVOH和PA6为复合膜的阻隔层,PE为复合膜的热封层。五层共挤复合膜具备高阻隔性和良好的力学性能,是理想的高阻隔包装材料。梁晓红等[2]将EVOH与PE、PA共混改性,制备PE/PA/EVOH/PA强韧性高阻隔复合膜,综合性能优异,具有良好的应用前景。
1.2涂布复合膜
涂布复合膜是将阻隔性聚合物溶解在溶剂中形成涂布液,利用涂布设备将涂布液涂布于基膜表面,干燥熟化后形成的多层复合膜。涂布复合技术可用于难以单独加工成膜的聚合物,如PVDC, PVA等,工艺简单,生产成本低,阻隔性能好,但可能有有机溶剂残留,造成环境污染。
目前涂布复合膜研究取得了很多新进展,桑利军等[3]在PP、PE、CPP(流延聚丙烯)、PET(聚酯)薄膜上涂布2-4um PVDC的复合薄膜,其透气性和透湿性显著降低,应用于制造药品复合包装袋。舒心等[4]以双向拉伸PP、双向拉伸PET、双向拉伸PA或PE等薄膜作为基膜,经电晕处理后,将改性丙烯酸酯类聚合物BARILAYER高阻隔涂布液涂布于基膜电晕面,经5-6小时的室内40-50℃完全干燥熟化后,在涂层面印刷,再复合一层聚烯烃薄膜,最后得到新型高阻氧性塑料软包装薄膜,产品原料易得,价格低廉,阻隔性优于PVDC,且不受相对湿度影响,BARILAYER可降解,燃烧仅产生CO2和H2O,具有环保创新性。
1.3逐层自组装(Layer-by-Layer)复合膜
逐层自组装复合膜是特定聚合物、量子点、纳米粒子、生物分子等,在互补性相互作用下(静电相互作用、氢键结合,配位键和、共价结合等)交替沉积形成的多层复合膜。通过改变沉积周期、PH、温度、分子量、离子强度等条件,获得性能优异的复合膜材料,广泛应用于阻燃、抗菌、气体阻隔等。
当前逐层自组装复合膜也取得了新的研究进展,Fangming Xiang等[5]将聚丙烯酸(PAA)和聚环氧乙烷(PEO)通过氢键结合作用,逐层自组装制备韧性气体阻隔复合膜,当调整PH为3时, PAA/PEO双分子层自组装20层形成高阻隔复合膜,涂覆于1.58mm厚天然橡胶片上,使得天然橡胶片的氧气透过率降低89.6%,阻氧性优异,且氢键结合强度弱于离子键合,制得的高阻隔复合膜具有一定韧性,适合高应变应用。Chungyeon Cho等[6]将聚醚酰亚胺PEI,PAA,PEO进行逐层自组装沉积,通过PEI/PAA离子键合作用和PAA/PEO氢键结合作用,形成PEI/PAA/PEO/PAA复合膜,当调整PH为3,PEI/PAA/PEO/PAA四分子层自组装20层形成高阻隔韧性复合膜,涂覆于1mm厚聚氨酯橡胶片,使得聚氨酯橡胶片的氧气透过率降低93.3%,适用于轮胎等充气用品的气体阻隔。
1.4其他复合膜
除上述多层膜复合技术外,研究还采用逐层浇铸复合、化学接枝复合、共混挤出复合等创新方法,制备阻隔性能优异的多层聚合物复合膜。
董同力嘎等[7]采用逐层浇铸法制备三层可降解左旋聚乳酸PLLA/聚乙烯醇PVA/左旋聚乳酸PLLA复合膜,其中中间层PVA为阻隔层,两侧疏水性的PLLA为保护层。PVA阻隔层显著提高了PLLA的阻隔性,当PVA含量占复合膜比重20%时,阻氧性较PLLA单膜提高了272倍,同时力学性能也有所提升。PLLA/PVA/PLLA复合膜实际应用性更强,且完全符合环境友好型复合膜的开发趋势。
Yuehan Wu等[8]将壳聚糖CS接枝到氧化纤维素OC基体上,化学接枝过程改变了基体微观结构,OC/CS复合膜兼具两种聚合物的性能优势,具有优异的阻水阻氧性、抗菌性、高透明性和良好的机械性能,是安全、可生物降解、性能优异的包装材料。
呼和等[9,10]将EVOH与PA6进行共混挤出后制备丙烯酸乙基己酯EHA薄膜,再与PE膜复合,得到EHA/PE复合膜,研究证明,EHA薄膜阻氧性能很高,EHA/PE复合膜的阻水阻氧性能优于PA膜、EVOH膜和PA6/PE复合膜,适用于冷藏保鲜包装。
2.真空蒸镀复合膜
利用真空镀膜工艺将金属(如铝Al)或者无机氧化物(如氧化硅SiO2,氧化铝Al2O3,氧化钛TiO2)蒸镀在塑料膜表面,制备真空镀铝膜或真空蒸镀陶瓷膜,阻隔性能优异、生产效率高、成本低廉、使用方便,广泛应用于食品包装,甚至电子产品封装领域。陶瓷膜透光率高且绿色环保,是目前高阻隔膜研究热点。
齐小晶等[11]利用等离子体增强化学气相沉积法在聚己内酯(PCL)膜基材表面蒸镀SiOx层,可以提高薄膜的阻隔性能,且不受温度湿度影响,同时符合开发环境友好型材料的需求。
赵子龙等[12]经等离子化学气相沉积法在PLLA薄膜表面上沉积SiOx层,并利用溶液涂布法在SiOx层上涂覆PVA层,制备新型PLLA/SiOx/PVA复合膜,其阻隔性能与PA/PE复合膜相似,柔韧性也得到改善,加上可生物降解的环保优势,可替代PA/PE复合膜应用于食品包装领域,前景十分可观。
朱琳等[13]采用射频磁控共溅射的方法在PP基底膜表面蒸镀TiNx/CFy薄膜,TiNx的体积分数为0.28时,复合薄膜的阻隔性能和柔韧性能最好,解决了传统陶瓷膜的裂纹问题。
3.聚合物/层状无机物纳米复合膜
聚合物/层状无机物纳米复合膜是将能形成纳米尺寸结构微区的层状无机填料分散到聚合物中,形成纳米复合膜。填料的纳米片层结构可以阻挡气体渗入,提高材料气密性,显著改善聚合物的阻透性能。目前层状纳米填料如蒙脱土(MMT)、层状双氢氧化物(LDHs)和石墨烯(GNSs)以其独特结构和优异性能,成为备受关注的研究前沿和热点。
Ray Cook等[14]利用熵增原理制备自组装高度有序有机/无机纳米复合膜,使用喷墨打印机,将0.1-0.2%体积分数的聚乙烯吡咯烷酮(PVP)水溶液打印为聚合物膜层,将0.2wt%体积分数的MMT分散液打印为纳米层,聚合物层和纳米层通过离子键合自组装为PVP/MMT双分子膜层,当在PET基体上打印5层PVP/MMT双分子膜层后,阻氧性能优于高阻隔性金属PET,且具有高透明性,又安全环保,在食品包装领域具有广阔应用前景。
张思维等[15]以氧化解压多壁碳纳米管的方法,制备氧化石墨烯纳米带(GONRs),然后用异氟尔酮二异氰酸酯(IPDI)对GONRs进行化学修饰制得功能氧化石墨烯纳米带(IP-GONRs)。采用溶液成形的方法在涂膜机上制备功能氧化石墨烯纳米带(IP-GONRs)/热塑性聚氨酯(TPU)复合薄膜。当IP-GONRs含量为3.0wt%,TPU氧气透过率降低67%,阻隔性能明显提高,在食品包装和轻量气体存储器领域存在潜在应用。
豆义波等[16]采用简易抽滤成膜法,制备柔性透明聚乙烯醇(PVA)/水滑石(LDH)复合自支撑薄膜,该复合膜良好的二维有序结构有效抑制了氧气扩散,提升了薄膜阻氧性能,在阻隔性要求极高的电子器件封装及原料电池隔膜等领域有较好的前景。
总结
当前,在食品、药品、化学品产品的强劲市场需求推动下,包装膜材料持续快速发展,产品对膜材料的要求更高,要求开发高阻隔性、保鲜性、耐热性、抗菌性等多功能性膜材料,其中高阻隔膜材料发展迅速。同时随着资源越来越紧缺和人们环保意识增强,开发环境友好高阻隔膜材料也成为热点。未来几年,我们应当继续将高阻隔膜材料作为研究开发重点,缩短与国外高阻隔膜技术差距,满足日益增长的市场发展需求。
参考文献
[1]汪若冰,冯乙巳.五层共挤阻隔薄膜的结构、性能、工艺及表征[J].安徽化工,2015, 41(6): 31-35.
[2]梁晓红,呼和,王羽,等.乙烯-乙烯醇共聚物复合膜的力学、热学及阻隔性能研究[J].塑料科技,2015, 43(6): 21-24.
[3]桑利军,王敏,陈强,等.聚乙烯薄膜表面沉积纳米SiOx涂层的阻隔性能[J].中国表面工程, 2015, 28(3): 36-41.
[4]舒心,周海平.新型高阻氧性包装薄膜[J].塑料包装,2015, 25(6): 22-25.
[5]Fangming Xiang, Sarah M Ward, Tara M Givens, et al. Super Stretchy Polymer Multilayer Thin Film with High Gas Barrier[J]. Macro Letters, 2014, 3: 1055-1058.
[6]Chungyeon Cho, Fangming Xiang, Kevin L. et al. Grunlan. Combined Ionic and Hydrogen Bonding in Polymer Multilayer Thin Film for High Gas Barrier and Stretchiness[J]. Macromolecules, 2015, 48: 5723-5729.
[7]董同力嘎,王爽爽,孙文秀,等.多层复合聚乳酸薄膜的阻隔性和力学性能[J].高分子材料科学与工程, 2015, 31(8): 177-181.
[8]Yuehan Wu, Xiaogang Luo, Wei Li, et al. Green and biodegradable composite ?lms with novel antimicrobial performance based on cellulose[J]. Food Chemistry, 2016, 197: 250-256.
[9]呼和,梁晓红,王羽,等. EHA/PE薄膜的阻隔性及其在冷鲜肉包装中的应用[J].塑料工业, 2015, 43(6): 66-69.
[10]王羽,云雪艳,张晓燕,等. EHA/PE高阻隔复合膜对鲜切莴笋保鲜效果的影响[J]. 食品工业科技, 2015, 36(22): 308-312.
[11]齐小晶,宋树鑫,梁敏,等. PCL/SiOx复合膜的热学、力学及阻隔性能[J].塑料工业, 2015, 43(9): 113-116.
[12]赵子龙,王羽,,云雪艳,等.高阻隔性PLLA薄膜的制备及其对冷鲜肉保鲜效果的研究[J].食品科技, 2015, 40(11): 89-95.
[13]朱琳,王金武,刘壮,等. PP基材表面磁控共溅射制备新型阻隔薄膜的研究[J]. 包装工程, 2015, 36(9): 73-76.
[14]Ray Cook, Yihong Chen, Gary W Beall. Highly Ordered Self-Assembling Polymer/Clay Nanocomposite Barrier Film[J]. Applied Materials & Interfaces, 2015, 7: 10915-10919.
[15]张思维,赵文誉,李长,等.功能氧化石墨烯纳米带/热塑性聚氨酯复合材料薄膜的制备及阻隔性能[J].高分子材料科学与工程, 2016, 32(1): 151-157.
[16]豆义波,潘婷,刘晓西,等.聚乙烯醇/水滑石复合薄膜的制备及其氧气阻隔性能研究[C].中国化学会第九届全国无机化学学术会议论文集――D无机材料化学, 2015.