前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇房屋钢结构设计论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键字】轻钢门式,刚架结构,设计要点,注意问题
中图分类号:TU318文献标识码:A文章编号:
一.前言
轻型钢门式钢架结构在建筑结构设计中是普遍存在的,因为这种结构设计具有很强的优势,是其他一些建筑结构设计所无法比拟的。为了更大范围的发挥这种结构设计的优势,确保这种钢结构设计的质量,我们就需要对该种钢结构设计的要点进行分析,克服在轻型钢门式结构设计中存在的问题,掌握其设计要点,使轻型钢门式结构设计得到更大的发展。
二.轻钢门式刚架结构相关概述
1.轻钢门式刚架结构形式
轻钢门式刚架的结构形式多样,主要有以下几种:单跨、双跨、多跨刚架以及带挑檐的刚架等。
2.轻钢门式刚架结构典型优势
(一)自重轻
轻钢框架结构重量比很高,墙厚较薄,因此可以使房屋的跨度达到很大,钢材可根据不同用途合理分配截面尺寸的高宽比,使用面积较其他结构要提高很多。轻钢结构与混凝土结构相比,自重约为后者的一半 。在工程设计中可以根据实际情况达到个性化的要求 。
(二)结构稳定性好,抗震性能突出
轻钢框架结构稳定性良好 ,钢梁、钢柱组成柔性框架,可充分发挥钢材强度高、延性好 、塑性变形能力强的特点,以吸收部分地震能量,房屋的抗拉伸、扭曲 、震动的能力得以强化,而且适合建造在各种地质条件的地基上,提高了结构的安全可靠性 。
(三)施工速度快
一般情况下,轻钢框架结构建筑的施工由于设计标准化 、定型化,构件加工制作工业化 ,另外加上现场安装施工的过程中不受气候影响 ,简单快捷 ,时间相对钢混结构住宅缩短 工 时1/3~1/2,加快了资金周转,大大提高了投资回报速度 。
三.轻钢门式刚架设计
1. 刚架的间距
刚架的架间距与刚架的跨度、屋面荷载及檩条形式等因素有关,刚架跨度较小时,选用较大的刚架间距,增加檩条的用钢量是不经济的,但是,如果对间距进行稍微的变动,不仅既经济,同时对于也不至于对结构的质量产生太大的影响。
2.刚架横梁的截面高度与其跨度之比
对格构式刚架横梁,截面高度宜采用跨度1/l5-1/25;对实腹式刚架横梁,截面高度宜采用跨度的1/30~1/45:轻型刚架采用比值的下限。
3.柱脚的假定
按柱脚与基础的连接形式,可分为刚接和铰接两种。经计算比较,与基础刚接的刚架比铰接的刚架可节省钢材l0%—15%,并且在提高结构承载力和减小刚架侧向位移方面,比铰接刚架有利。但刚接刚架的基础造价高,对地基条件的要求也比较高,如果把柱基做得符合刚接要求,对于轻型刚架并不一定经济,所以一般采用铰接柱脚。
四.轻钢门式钢架节点的设计
1.柱脚
刚架柱脚与基础的连接形式分理论铰接、工程铰接和刚接3种,分别示于图1。而图1所示的连接形式也难以抵抗柱脚的转动,柱脚实测应力值比计算值小,柱顶实测应力值偏大。铰接柱脚是门式刚架设计中常用的假定条件,柱脚具有部分的嵌固性,不会对刚架的受力产生不利的影响。在屋面的恒截和风载的作用下,理论铰接的柱顶位移过大,上述试验实测值为7.04cm,工程铰接可以改善这种情况。实测值为5.26cm,刚接的情况最好为2.94cm。
图1钢架柱脚形式
因墙体材料不同和柱脚连接的形式各异,对柱顶侧移的限值没有明确规定。为防止产生能够影响结构强度和稳定性的变位,将柱顶水平位移限制在1/150柱高以内比较合适。
2.角隅和屋脊节点
为保证节点连接的刚性和便于布置连接螺栓,常在角隅和屋脊处加腋。加腋高度一般为横梁截面高度为1/2,由横梁截面斜切而成。带加腋的门式刚架可以减少横梁的弯矩,从而可减小其截面的尺寸,当然也相应加大了柱子的弯矩,因为横梁的总长度通常大于柱子的长度,这样节约下来的钢材可以补偿加腋所用的费用。
在屋脊处的加腋不仅有利于节点构造,而且有助于减少刚架的垂直挠度,但由于屋脊附近的弯矩变化比较平缓,故对提高刚架的承载力并不起直接作用。
3.柱顶腹板的加劲肋
柱顶腹板常设置加劲肋,以提高角隅处板域的抗剪强度,如图3所示。同时由于图2柱顶腹板加劲形式柱翼缘板的厚度一般小于横梁端板的厚度,为防止柱翼缘板在受拉螺栓的作用下产生挠曲变形,在柱翼缘受拉螺栓附近设置加劲板(图2a)。图2c采用对角线受拉加劲肋与短加劲板相结合的形式,使加劲肋在结构上更有效,并且可克服采用其他形式加劲肋可能碰到的穿螺栓的困难。
图2 柱顶腹板加劲形式
4.檐口构件
刚架之间角隅处的檐口构件,应设计得比较刚强。檐口构件包括角隅处垂直支撑、墙梁和檩条等。它对柱顶提供“定位约束”,并把纵向风力传递给支撑系统,同时为角隅处受压内翼缘提供侧向约束。
为角隅处设置的垂直支撑,将檐口构件与受压内票缘直接而可靠地连接起来,防止侧间挠曲。如果是弧形内翼缘,支撑应设置于弧的中点或靠近中点处。在直梁和直柱的情况下,应设置于它们的交点,或沿角隅处柱内翼缘垂直布置。虽然在角隅处弯矩下降比较快,在距角隅很近的距离内受压内翼缘的弯曲应力已,不太大,但还应在附近设置侧向支撑点,一般在内翼缘的转折处,或曲线加腋的弧形端点。
在钢架角隅处测向支撑曲线加腋的角隅中,b2/Rt的关系应小于2,以减小曲线翼缘的法向分力向腹板集中的程度,此处b为翼缘的宽度,t为翼缘的厚度,R为益线加腋的益率半径。通常可用加强的墙梁和檀条,利用角撑为受压内翼缘提供侧面支撑。
五.结束语
轻型钢门式结构设计对于建筑工程钢结构设计来说具有十分重要的作用,对于钢结构设计的发展也是具有重大意义的,因此我们应该加强对于轻型钢门式结构设计的探讨。
参考文献:
[1]赵希平 某轻钢门式钢架厂房火灾后的恢复第三届全国现代结构工程学术研讨会论文集2003-07-01中国会议
[2]叶飞; 李其成; 沈小璞 带有长悬臂雨篷超大跨度门式钢架结构的有限元分析安徽建筑工业学院学报(自然科学版)2011-12-15期刊
[3]吕辉勇 轻型门式刚架平面内稳定性能及空间性能分析兰州理工大学2006-05-01硕士
论文关键词:门式刚架,适用范围及结构形式,材料选用,风荷载,支撑布置,保温隔热
0 前言
近几年,门式刚架房屋在工业建筑中得到广泛利用,这种房屋结构简单、施工方便、经济适用,适用范围包括工业厂房、库房、值班室、车库等建筑,主要形式见图1。结合近几年的工程设计,谈一下门式刚架房屋设计应注意的几个问题。
1 适用范围及结构形式
《门式刚架轻型房屋钢结构技术规程》(CECS102:2002)(简称门式刚架规程) 第1.0.2条指出门式刚架结构适用于主要承重结构为单跨或多跨实腹门式刚架、具有轻型屋盖和轻型外墙、无桥式吊车或有起重量不大于20t的A1~A5工作级别的桥式吊车或3t悬挂式起重机的单层房屋钢结构设计。
门式刚架的跨度宜采用9~36m,高度一般为4.5~9m,当有桥式吊车时高度不宜大于12m。
实际工程设计时,由于工艺专业要求或其他条件要求,门式刚架房屋的高度可能超过规范限制,或吊车起重量超过20t,此时已经超过门式刚架规程的应用范围,应按照单层钢结构厂房设计。
在门式刚架轻型房屋钢结构体系中,屋盖宜采用压型钢板屋面板和冷弯薄壁型钢檩条,主刚架可采用变截面实腹刚架。主刚架斜梁下翼缘和刚架柱内翼缘出平面的稳定性,由与檩条或墙梁相连接的隅撑来保证。
2 材料选用
2.1 规范规定材料选用,及基本设计规定
门式刚架的主要承重构件应采用Q235B、C、D碳素结构钢或Q345B、C、D低合金高强度钢。
在抗震区,钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85;钢材应有明显的屈服台阶,且伸长率不应小于20%,钢材应有良好的焊接性和合格的冲击韧性。
由于单层门式刚架轻型房屋钢结构的自重比较小,设计经验表明,当抗震设防烈度为7度时,一般不需做抗震验算,当为8度及以上时,横向刚架和纵向框架均需做抗震验算。
对轻型房屋钢结构,当由地震作用效应组合控制设计时,尚应针对轻型钢结构的特点采取相应的抗震构造措施。例如,构件之间的连接应尽量采用螺栓连接;斜梁下翼缘与刚架柱的连接处宜加腋以提高该处的承载力,该处附近翼缘受压区的宽厚比宜适当减小;柱脚的抗剪、抗拔承载力宜适当提高,柱脚底板宜设抗剪键,并采取提高锚栓抗拔力的相应构造措施;支撑的连接应按支撑屈服承载力的1.2倍设计等。
2.2 经济性比较
进行工程设计时,在满足受力要求的前提下,还应进行结构经济性比较,保证结构设计安全可靠,经济适用。比如:在同样设计条件下,一榀刚架(高度为13.28m,跨度为66m),在满足受力条件下,采用Q235B钢材时,单榀刚架的重量为12.39t,采用Q345B钢材时,单榀刚架的重量为10.52t;按江西地区的报价,Q235B钢材的造价为5000元/t,Q345B钢材的造价为5550元/t;这样,采用Q235B钢材时,单榀刚架造价为6.2万元;采用Q345B钢材时,单榀刚架造价为5.84万元,经过综合比较材料选用,采用Q345B钢材比较合理。
通过以上比较可以看出,设计人员不仅要有扎实的专业基础,还应对主要建筑材料的价格有一定的了解,通过优化结构方案,可为业主节省一定投资。
3 风荷载计算
3.1 规范选用
轻型房屋钢结构的风荷载,是以《建筑结构荷载规范》(GB50009-2001)(2006年版)(以下简称荷载规范)为基础确定的,当柱脚为铰接且刚架的1/h小于2.3和柱脚刚接且1/h小于3.0时,采用荷载规范规定的风荷载体型系数进行刚架设计偏于安全;而在其他情况下,按门式刚架规程计算偏于安全站。设计时,应注意区分以上情况,避免一律采用门式刚架规程设计,影响结构安全。
3.2 参数选用
参考国外规范,按门式刚架规程计算风荷载时,基本风压值应乘以综合调整系数1.05。
设计刚架时,风荷载体型系数应分别按四种受力模型取值,既端区封闭式、端区部分封闭式、中间区封闭式和中间区部分封闭式,在不同位置及是否封闭状态下,刚架体型系数取值是不同的。许多设计者往往仅取中间封闭区计算,而忽略其他位置的刚架验算,这种做法是不对的,有时端区受力可能更大。此外,房屋布置天窗或有高低跨时,体形系数应严格按规范取值,不得混淆取值。檩条设计也有同样的问题。
4 支撑布置
门式刚架房屋应设柱间支撑及屋面支撑,支撑可采用钢管、角钢、槽钢、圆钢等截面形式,支撑布置除应满足门式刚架规程第4.5节要求以外,还应注意以下问题:
4.1 带吊车结构
刚架跨度大于18m且设有起重量≥16t的吊车时,宜在刚架端节间增设纵向支撑。当吊车起重量为20t时,宜在牛腿顶标高处沿纵向刚架柱外侧之间设型钢水平系杆。
4.2 无法设柱间支撑结构
对于无法设置柱间支撑的低矮门式刚架房屋(如车库),宜在纵向刚架之间设置刚接型钢梁,保证纵向稳定。
4.3 增设分配梁
当山墙抗风柱位置不在屋面横向支撑节点附近时,应在支撑交叉点处增设分配梁。
4.4 柱脚锚栓
计算设柱间支撑的柱脚锚栓上拔力时应记录柱间支撑产生的最大竖向分力材料选用,这是门式刚架规程第7.2.19强条规定,但设计人员往往容易忽视。对于设吊车或者其他水平荷载较大的房屋,柱间支撑产生的上拔力较大,如果不计入,可能会造成锚栓被拔起的严重后果。
5 保温隔热
屋面和墙面的保温隔热构造均应根据热工计算确定。屋面保温隔热可采用下列方法之一:
1.在压型钢板下设带铝箔防潮层的玻璃纤维毡或矿棉毡卷材;若防潮层未用纤维增强,尚应在底部设置钢丝网或玻璃纤维织物等具有抗拉能力的材料,以承托隔热材料的自重;
2. 金属复合夹芯板;
3. 在双层压型钢板中间填充保温材料。
外墙保温隔热可采用下列方法之一:
1. 采用与屋面相同的保温隔热做法;
2. 外侧采用压型钢板,内侧采用预制板,纸石膏板或其他纤维板,中间填充保温材料;
3. 采用多孔砖等砌体。
6 结语
还有其他问题,如刚架在施工中应及时安装支撑,严格执行规定的安装顺序;柱脚底板下面的每根锚栓,应设置调整螺母,校准后进行二次灌浆;底板的连接、柱与牛腿的连接、梁端板的连接、吊车梁及支承局部悬挂荷载的吊架,不得采用单面焊等,不再一一例举,希望以上问题能对读者今后的设计起到有益作用。
参考文献
[1]CECS 102:2002 门式刚架轻型房屋钢结构技术规程
[2]GB 50009-2001 建筑结构荷载规范(2006年版)
关键词:民用建筑;层次分析法;优化改进
随着各种新型结构和材料的引进和运用,结合我国现状研究高层住宅的抗震性能已成为一种趋势,这也是国民经济健康发展和国计民生的重要保证。研究高层和超高层房屋的抗震性和经济性涉及因素多,必须对方案从整体上进行综合评价,建立正确的决策模型,从而得到客观合理的优劣排序,并在此基础上对各建筑结构方案进行优化改进。
1传统民用建筑结构方案初选
1.1多层砖混结构房屋
特点:砖混结构中的“砖”,是指一种统一尺寸的建筑材料,也包括其他尺寸的异型黏土砖、空心砖等。 “混”是指由钢筋、水泥、沙石、水按一定比例配制的钢筋混凝土配料,包括楼板、过梁、楼梯、阳台。这些配件与砖做的承重墙相结合,所以称为砖混结构。砖混结构住宅一般以多层 (24米以下,住宅10层以下)住宅为主,其抗震性能比起以下三者相对弱一些。
1.2框架结构房屋
特点:由钢筋混凝土浇灌成的承重梁柱组成骨架,再用空心砖或预制的加气混凝土、陶粒等轻质板材作隔墙分户装配而成。墙主要是起围护和隔离的作用,由于墙体不承重,所以可由各种轻质材料制成。
1.3剪力墙结构房屋
特点:剪力墙是用钢筋混凝土墙板来承担各类荷载引起的内力,并能有效控制结构的水平力,这种用剪力墙来承受竖向和水平力的结构称为剪力墙结构。剪力墙结构在高层(10层及10层以上的居住建筑或高度超过24米的建筑)房屋中被大量运用。
1.4钢结构房屋
特点:钢结构是以钢材为主要结构材料。钢材的特点是强度高、重量轻,同时由于钢材料的匀质性和强韧性,可有较大变形,能很好地承受动力荷载,具有很好的抗震能力。一般的超高层建筑(100米以上)或者跨度较大的建筑通常应用钢结构。不过,由于钢结构建筑的造价相对较高,目前应用不是非常普遍。
2.4各方案的总排序
表4-10各方案总排序
因素
方案 C1 C2 C3 C4 C5 C6 C7 Wi 排序结果
0.321 0.160 0.107 0.160 0.107 0.080 0.065
A1 0.355 0.261 0.429 0.048 0.077 0.107 0.063 0.230 3
A2 0.284 0.087 0.214 0.238 0.385 0.160 0.313 0.240 2
A3 0.203 0.130 0.214 0.286 0.308 0.092 0.187 0.207 4
A4 0.158 0.522 0.413 0.428 0.230 0.641 0.437 0.351 1
3.建筑结构优化
3.1传统建筑结构的优劣态势和改进空间分析
3.1.1砖混结构
优劣态势:由于砖混结构的材料成本低,建造简单,故其造价相对较低,施工较容易。但由于砖混结构是由钢筋混凝土配料与由粘土砖、空心砖等做的承重墙结合,故其抗震能力和耐用性相对较差,结构自重偏大,空间布置也不灵活。
改进空间:由于砖混结构是传统的房屋结构,发展较其他结构快,技术已经达到几乎完全成熟,故砖混结构改进空间很小。
综上,砖混结构各方面相对其他传统建筑结构较弱,且几乎没有改进空间。
3.1.2框架结构
优劣态势:根据层次分析法,框架结构建安成本低于剪力墙结构和钢结构,且耐用性好,但框架结构最大的缺点就是施工过程繁琐复杂,抗震能力相对钢结构和剪力墙结构较弱。
改进空间:由于现阶段各种减震结构的设计和应用很多,将其应用于框架结构中可以有效增强框架结构的抗震能力,故框架结构的改进空间相对砖混结构较大。
综上,框架结构抗震能力较弱的缺点可以通过应用合适的减震设计来改进。
3.1.3剪力墙结构
优劣态势:根据层次分析法,剪力墙结构的结构自重偏重,大大影响其建设高度;且由于剪力墙结构布置不灵活,致使其适应性弱于框架结构和钢结构。
改进空间:针对剪力墙结构布置不灵活的缺点,框架―剪力墙结构可以弥补。它是框架结构和剪力墙结构两种体系的结合,吸取了各自的长处,既能为建筑平面布置提供较大的使用空间,又具有良好的抗力性能。这种结构的住房有很好的抗震性。而使用自重较轻的材料构成剪力墙可以弥补剪力墙结构自重较大的缺点。
3.1.4钢结构
优劣态势:与传统的住宅相比,由于钢结构导热快,比热小,随着温度的升高,钢材的机械力学性能迅速下降,未加防火保护的钢结构,遭遇火灾只需10几分钟时间,自身温度就可达540℃以上,故钢结构有不耐高温且易腐蚀的缺点。
改进空间:针对钢结构易腐蚀和不耐高温的缺点,可以通过钢结构构件防火来弥补,以减轻钢结构在火灾中的破坏,避免钢结构在火灾中局部倒塌造成灭火及人员疏散的 困难;尽可能延长钢结构到达临界温度的过程,以争取时间灭火救人;避免钢结构在火灾中整体倒塌造成人员伤亡;减少火灾后钢结构的修复费用,缩短灾后结构功能恢复周期,减少间接经济损失。
综上,通过提高钢结构的防火防腐性能可以改善钢结构,其改进空间较大。
3.2优化传统民用建筑结构
3.2.1框架结构房屋
优化方案:根据框架结构优劣方案和改进空间的分析,可以通过应用合适的减震设计来改进。由于框架结构房屋主要是由框架承重,利用限制屈曲支撑(BRB)这种新型耗能减震构件代替传统的钢支撑可以降低框架结构房屋在地震中的结构位移,大大消耗地震能量,减轻结构中的扭转变形。
3.2.2框架-剪力墙结构房屋
优化方案:为了增强剪力墙结构的空间布置灵活程度,可以将剪力墙结构和框架结构结合起来形成框剪结构。而框剪结构中的框架-核心筒结构,不仅由于建筑采用框架结构得以获得宽敞的使用空间,而且十分有利于结构受力。为了弥补传统剪力墙自重较重的缺点,我们可以摆脱传统材料的束缚,使用钢板剪力墙。钢板剪力墙是20世纪70年展起来的新型抗侧力结构,其主要是提供结构的侧向刚度、抗剪强度和抗震延性。钢板剪力墙由周边框架和内嵌钢板组成,具有自重轻、安装方便等特点,这刚好弥补了传统剪力墙自重大的缺点。
3.2.3钢结构房屋
优化方案:为了克服钢结构建筑不耐火的缺点,可以使用防火板材和防火涂料来对钢结构实施防火保护。目前市场上防火涂料品种繁多,效果也不尽相同。超薄型钢结构防火涂料是使用较广泛的新型材料,该类防火涂料在受火时缓慢膨胀发泡形成致密坚硬的防火隔热层。针对钢结构易被腐蚀的缺点,常用喷锌或喷铝,加重腐蚀涂料构成长效防腐结构,或者用配套重防腐涂料涂装防护。
4结论
砖混结构的建造技术已经相当成熟,改进空间较小;框架结构针对施工过程繁琐复杂,抗震能力相对较弱的缺点,采用在建筑抗震能力较弱部位布置BRB支撑的方法来进行改进,具有一定的改进空间;剪力墙结构布置不灵活的缺点通过与其它结构结合改进成为框架-核心筒结构进行改进,剪力墙自重大的缺点使用钢板剪力墙减轻自重;钢结构易腐蚀并且不耐高温,通过使用超薄型钢结构防火涂料及喷铝涂层加防腐涂料封闭的方法来改善。
参考文献
[1] 邹晶,李元齐. 钢结构住宅体系在我国的发展现状及存在问题[J]
[2] 徐涛.对高层建筑结构设计的分析[J]
【关键词】抗震设防烈度;基础埋深;底部嵌固层;高宽比;不规则性;偏心距;开洞;梁高度
1. 结构设计选型问题
对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架——剪力墙结构体系、框——筒结构体系、筒中筒结构体系、束筒结构体系。
高层和超高层建筑在结构设计中除采用钢筋混凝土结构(代号RC)外,还采用型钢混凝土结构(代号SRC),钢管混凝土结构(代号CFS)和全钢结构(代号S或SS)。 > 东南科技研发中心,建筑高度100m,柱网为8.4m,抗震设防烈度为6度,采用框架——剪力墙或框——筒结构体系较为经济合理,这种结构体系的剪力墙或筒体是很好的抗侧力构件,常常承担了大部分的风载和地震荷载产生的水平侧力,总体刚度大,侧移小,且满足玻璃幕墙的外装饰要求。
一个合理的设计必须选择一个经济合理的结构方案,也就是要选择一个切实可行的结构形式和结构体系。结构体系应受力明确,传力简捷。同一结构单元不宜混用不同结构体系,地震区应力求平面和竖向规则。总而言之,必须对工程的设计要求、材料供应、地理环境、施工条件等情况进行综合分析,并与建筑、电、水、暖等专业充分协商,在此基础上进行结构选型,确定结构方案,必要时应进行多方案比较,择优选用。
2. 基础埋深问题
基础应该要有一定的埋深,埋置深度可以从室外地坪一直算到基础底面,对于独立的高层建筑而言,基础埋深比较容易确定,但当今多数高层建筑与地下车库都是相互连接的,当地下车库基础采用筏板基础或设有防水底板的独立基础(防水底板不宜太薄)时,高层建筑的基础埋深可从室外地坪算起,此时高层建筑地下室顶板及地下车库顶板应按嵌固层要求设计,地下车库应有足够的侧向刚度作为高层建筑的侧限。假如不满足以上条件的时候,高层建筑的基础埋深应该要从地下车库地面算起。高层建筑通常设地下室来满足埋深要求,主要有以下几点优势:
(1)提高地基承载力。当高层建筑采用天然地基时,地基承载力可进行修正.随着基础埋深的增加,修正后的地基承载力随之增大,从而可满足高层建筑对地基承载力的要求。
(2)有利于高层建筑上部结构的整体稳定。高层建筑地下室外墙一般采用钢筋硷墙,地下室顶板厚不宜小于160mm,地下室具有较大的层间刚度,同时地下室外墙周边土也提供了很大的侧向刚度和约束。因此设地下室有利于上部结构的整体稳定,有利于协调结构整体变形,调整地基不均与沉降。
3. 房屋高宽比
房屋高度指室外地面至主楼主要屋面的高度。房屋宽度按所考虑方向的最小投影宽度作为建筑物的计算宽度。 对带裙房的高层建筑,当裙房面积与其上塔楼面积比大于2.5或裙房抗侧刚度与其上塔楼抗侧刚度比大于2.0时,可取裙房以上部分的房屋高度和宽度计算高宽比。
4. 建筑结构不规则性界定
建筑结构不规则性除应按高规4.3与4.4节的相关规定界定外,还需注意以下问题:
(1)计算结构构件的最大位移比时应按刚性楼板假定。
(2)当结构的位移比和周期比超规范规定时,说明结构的抗扭刚度相对结构的抗侧刚度偏小,结构的扭转效应较大。在结构抗侧刚度较大,结构的层间位移满足要求的情况下,可减小结构的抗侧刚度,对楼层中部结构做减法,可取消、减短、减薄剪力墙,减小连梁高度等。当结构的抗侧刚度较小,侧移较大时,可对楼层周边结构做加法,可增大周边构件的刚度。对带裙房高层建筑,带裙房部分楼层的位移比和周期比往往超规范规定。由于裙房高度不高,裙房楼层的绝对侧移值很小,因此可不按高层建筑的侧移控制条件来要求裙房,即位移比可适当放宽。 转贴于 中国论文下载中心。
(3)对某些建筑,因功能需要,下部几层为大空间,上部为办公或客房,隔墙较多,上下层刚度差别较大,此时刚度变化处的下一层宜指定为薄弱层,进行内力放大调整。
5. 框架结构梁柱偏心距较大应采取的措施
框架结构梁柱偏心较大时,将导致节点核心区受剪面积减小,且梁端弯矩作用在节点上时出现扭矩。因此当梁柱偏心距大于柱截面在该方向宽度的1/4时,应采取措施。通常可加大梁宽或设置梁水平腋。当设置梁水平腋时,在梁柱节点处形成了较强的刚域,梁塑性铰将外移。因此梁端箍筋加密区长度应与普通框架梁有所区别,水平加腋梁的梁端箍筋加密区长度应取普通框架梁箍筋加密区长度与加腋水平长度之和。
6. 较长剪力墙的开洞问题
高规7.1.5条规定:“较长的剪力墙宜开设洞口,将其分成长度较为均匀的若干墙段,墙段之间宜采用弱连梁连接,每个独立墙段的总高度与其截面高度之比不应小于2,墙肢截面高度不宜大于8m。”此条规定主要基于以下考虑:
(1)提高剪力墙的延性,避免脆性破坏。墙段高宽比大于2时一般为弯曲破坏,墙段高宽比小于2时一般为剪切破坏。
(2)避免单片剪力墙承担过大的水平剪力而首先破坏,使得整个结构抗侧力构件依次破坏。在某些工程设计中,设计人员往往将较长的剪力墙开结构洞,洞口较小,形不成弱连梁,此时的剪力墙为小开口剪力墙,仍具有很大的侧向刚度,承担的水平力很大,造成剪切脆性破坏。因此开结构洞时一定要开大洞,形成弱连梁,连梁跨高比宜大于6使得较长剪力墙开洞后形成两个较独立的墙肢。
论文关键词:高层建筑;结构设计;水平载荷
目前我国内地高层建筑中,仍以高层住宅(12~30层)占主体,约占全部高层建筑的80%,所以钢筋混凝土高层建筑仍是具有很强的优势。
一、高层建筑的结构特点高层建筑结构与普通建筑一样,都需要同时承受水平、垂直荷载以及地震的作用,但是,水平荷载和地震是高层建筑的主要控制因素。随着建筑层数的不断增加,位移会迅速提升,弯矩的提升速度仅次于位移。因此在对高层建筑的结构进行设计时,不仅要求其具有足够的承载能力,还会要求其具有足够的刚度,以便将因水平荷载而产生的侧向变形控制在一定范围之内。由于高层建筑受地震的影响较强,因此其结构还应具有延性,以便在地震作用下使结构进入塑性阶段,避免被地震破坏或出现倒塌。由此可知,抗侧力结构的设计是高层建筑设计的关键部分。
(一)、水平载荷成为决定因素
任何一个建筑结构都要同时承受垂直荷载和风产生的水平荷载,还要具有抵抗地震作用的能力。在较低楼房中,往往是以重力为代表的竖向荷载控制着结构设计,水平荷载产生的内力和位移很小,对结构的影响也就较小;但在较高楼房中,尽管竖向荷载仍对结构设计产生着重要影响,水平荷载却起着决定性的作用。随着楼房层数的增多,水平荷载愈益成为结构设计中的控制因素。一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中所引起的轴力,是与楼房高度的两次方成正比;另一方面对某一高度楼房来说,竖向荷载的风荷载和地震作用,其数值随结构动力特性的不同而有较大幅度的变化。
(二)、轴向变形不容忽视
通常在低层建筑结构分析中,只考虑弯矩项,因为轴力项影响很小,而剪切项一般可不考虑。但对于高层建筑结构,情况就不同了。由于层数多,高度大,轴力值很大,再加上沿高度积累的轴向变形显著,轴向变形会使高层建筑结构的内力数值与分布产生显著的改变。对连续粱弯矩的影响:采用框架体系和框一墙体系的高楼中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种差异轴向变形将会达到较大的数值,其后果相当于连续梁的中间支座产生沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩增大。对构件剪力和侧移的影响,与考虑竖向杆件轴向变形的剪力相比较,不考虑竖杆件轴向变形时,各构件水平剪力的平均误差达30%以上,结构顶点侧移减小一半以上。
(三)、侧移成为控制指标
与低层建筑不同,结构侧移已成为高层建筑结构设计中的关键因素,随着楼层的增加,水平荷载作用下结构的侧向变形迅速增大。设计高层结构时,不仅要求结构具有足够的强度,能够可靠地承受风荷载作用产生的内力;还要求具有足够的抗侧刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,保证良好的居住和工作条件。
(四)、结构延性是重要设计指标
相对低层结构而言,高层结构更柔一些,在地震作用下的变形更大一些。为了使建筑在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采以恰当的措施,来保证结构具有足够的延性。
二、高层建筑结构分析与设计方法
高层建筑结构是由竖向抗侧力构件(框架、剪力墙、筒体等)通过水平楼板连接构成的大型空间结构体系。要完全精确地按照三维空间结构进行分析是十分困难的。各种实用的分析方法都需要对计算模型引入不同程度的简化。下面是常见的一些基本假定:弹性假定;小变形假定;计算图形的假定。
对于框架一剪力墙体系来说,框架一剪力墙结构内力与位移计算的方法很多,大都采用连梁连续化假定。由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与外荷载之间关系的微分方程来求解。由于采用的未知量和考虑因素的不同,各种方法解答的具体形式亦不相同。框架一剪力墙的机算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。单片剪力墙按受力特性的不同可分为单肢墙、小开口整体墙、联肢墙、特殊开洞墙、框支墙等各种类型。不同类型的剪力墙,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。剪力墙结构的计算方法是平面有限单元法。筒体结构的分析方法按照对计算模型处理手法的不同可分为三类:等效连续化方法、等效离散化方法和三维空间分析。等效连续化方法是将结构中的离散杆件作等效连续化处理;等效离散化方法是将连续的墙体离散为等效的杆件,以便应用适合杆系结构的方法来分析;比等效连续化和等效离散化更为精确的计算模型是完全按三维空间结构来分析筒体结构体系,其中应用最广的是空间杆一薄壁杆系矩阵位移法。
(一)、对结构高宽比进行控制
在高层建筑的设计中,对于侧向位移的控制往往是结构设计工作的主要矛盾所在,并且倾覆力矩也会随着层数的增加儿显著增大,因此,建造宽度较小的高层建筑是不符合确保结构安全的要求的,一般来说,应该将高层建筑的高宽比控制在5~6左右,如果设防烈度超过8度,那么对于高宽比应该进行更为严格的限制。
(二)、做好结构的平面设计
如果高层建筑的长度较长,那么在风力的持续作用下,建筑结构就会因为风力的不规则变化而发生楼板平面扭曲或结构扭转等现象。为了避免因楼板变形而导致的复杂受力,应该注意对建筑物的长度加以限制。当设防烈度为6~7时,应该将长宽比控制在6以下;如果设防烈度超过8度,那么长宽比应该限制在5以下。无论高层建筑物的型式如何,其平面设计都应该坚持对称、简单、规则的原则,在最大程度上避免扭转受力和复杂受力。建筑的质量和刚度中心应尽可能荸合,以便在最大程度上降低扭转,一般来说,应该将偏心率控制在垂直于外力作用线边长的5%以内。
(三)、做好竖向设计
在进行结构的竖向设计时,应注意坚持均匀和连续的原则,避免结构不连续或刚度发生突然变化的情况出现。如果建筑所处地区为地震频发区,则不得采用底部存在软弱层的、完全由框支剪力墙组成的结构体系,也不得出现剪力墙在某一层突然发生中断的现象,避免在中部形成软弱层。
三、抗震分析与设计在高层建筑的应用
在罕遇地震作用下,抗震结构都会部分进入塑性状态。为了满足大震作用下结构的功能要求,有必要研究和计算结构的弹塑性变形能力。当前国内外抗震设计的发展趋势,是根据对结构在不同超越概率水平的地震作用下的性能或变形要求进行设计,结构弹塑性分析成为抗震设计的必要的组成部分。我国现行抗震规范(GB50011-2001)要求高层建筑的抗震计算主要是在多遇地震作用下(小震),按反应谱理论计算地震作用,用弹性方法计算内力及位移。对于重要建筑或有特殊要求时,要用时程分析法补充计算,并进行罕遇地震作用下(大震)的变形验算。
在我国高层建筑的抗震分析与设计中常见的问题有以下几种:
首先是高度问题,对于超高限建筑物,应当采取科学谨慎的态度。因为在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化,随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。
其次是材料选用和结构体系的问题,在高层建筑中,我国150m以上的建筑,采用的三种主要结构体系(框一筒、筒中筒和框架一支撑),这些也是其他国家高层建筑采用的主要体系。但国外特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%。如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验。根据现在我国建筑钢材的类型、品种和钢结构的加工制造能力,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。
第三是轴压比与短柱问题,在钢筋混凝土高层建筑结构中,往往为了控制柱的轴压比而使柱的截面很大,而柱的纵向钢筋却为构造配筋。柱的塑性变形能力小,则结构的延性就差,当遭遇地震时,耗散和吸收地震能量少,结构容易被破坏。
第四,在某些烈度区采用了较低的抗震措施与构造措施,现在许多专家学者提出,现行的建筑结构设计安全度已不能适应国情的需要,认为我国“取用了可能是世界上最低的结构设计安全度”并主张“建筑结构设计的安全度水平应该大幅度提高”。有人主张在设防烈度下应该采用弹性设计,特别是高烈度区要有严格的抗震措施与抗震构造措施来保证结构的安全。
四、结语
结构设计是一项集结构分析,数学优化方法以及计算机技术于一体的综合性技术工作,是一项对国家建设有重大意义的工作,同时,亦是一门实用性很强的工作。如果高层建筑所在地发生了地震,那么建筑结构所受到的不仅仅是剪切和平移作用的影响,还会存在围绕建筑刚度重心的扭转作用。对于一般的钢筋混凝土高层建筑结构来说,想要对地震所产生的扭转效应进行控制,一方面可以通过合理配筋来使建筑物具备一定的抗扭刚度,另一方面就是对建筑结构平面的不规则设置问题进行处理,以便在最大程度上抵抗扭矩对建筑物产生的不良作用。
参考文献:
[1]陈肇元、钱稼茹.建筑与工程结构抗倒塌分析与设计NO.1[M].北京:中国建筑工业出版社,2010.12
[2]王伟.试论建筑结构中的抗扭设计[J].中国科技财富,2010(18),223-223