前言:在撰写化学工程学的过程中,我们可以学习和借鉴他人的优秀作品,小编整理了5篇优秀范文,希望能够为您的写作提供参考和借鉴。
1材料化学工程二级学科的内涵
化学工程与材料学科相互支撑发展的这种态势导致了新兴交叉学科——“材料化学工程”的诞生。它是将传统化学工程与材料学科交叉融合,以化学工程为基础和手段,面向生物材料、高分子材料和无机材料制备及应用的一个新兴学科。它既是化学工程学科内涵的拓展和应用领域的外延,也是学科间的交叉渗透,符合当今社会的需求和学科发展的必然规律。材料化学工程学科的内涵主要表现在两个方面:一是应用化学工程的理论与方法对材料生产与加工过程进行系统的研究,其目的在于在材料高性能化的同时,最大限度地降低材料生产对于资源、能源的消耗和环境污染,实现材料制备的高质量、低成本、环境友好和可循环再生利用;二是利用新材料,如新型催化材料、分离材料等发展新型高效的化工技术与理论,形成新的流程工艺和集成技术。
2材料化学工程二级学科发展现状
近十年来,材料化学工程学科作为化学工程和材料科学与工程领域的新增长点,发展迅速。目前,国内外一些大学的化工学院或材料学院均出现了材料化工的研究领域,有的大学(如大连理工大学化工学院)甚至出现了专门的“材料化工”系等人才培养和科研机构。材料化工的交叉研究已经展示出了良好的发展前景,近年来我国在该领域取得了包括国家技术发明一等奖在内的一系列重大研究成果。2005年7月,南京工业大学经国家教育部批准,成立“省部共建材料化学工程教育部重点实验室”;2006年5月在南京召开了第一届材料化学工程大会,大会总结了国内外材料化学工程的研究进展,明确了我国材料化学工程进一步发展的方向和重点。2007年10月国家科技部正式批准建设“材料化学工程国家重点实验室”。基于化学工程和材料学科的交叉融合,国内多所重点院校开始在“化学工程与技术”及“材料科学与工程”一级学科下设置“材料化学工程”二级学科。2002年,南京工业大学首先在化学工程与技术一级学科下设立“材料化学工程”二级学科。随后,天津大学、华东理工大学等知名高校开始设立“材料化学工程”二级学科。据初步调研,已经有11所重点大学设立材料化学工程,如表1所示。该学科的设置,有力地促进了“化学工程与技术”与“材料科学与工程”一级学科的交叉和融合,有利于材料化工领域交叉型人才的培养和学科建设。
3材料化学工程二级学科的建设对策
3.1重新定位“材料化工”学术硕士培养目标的定位
1材料化学工程的概述
材料化学工程是由化学工程学科和材料学科交叉渗透所形成的一门分支学科,其研究方向主要有两个:一是以新材料为基础,不断发展反应过程的反应技术,比如吸附过程、膜过程、催化过程等。该方向主要是通过材料的特征将其分离并进行反应,其目的是揭示材料微观结构中物质进行传递和反应机理,进而总结出适用于材料设计和反应过程优化的理论方法和工艺技术。二是在材料制备的过程中,用化学工程的理论方法解决所遇到的关键问题,比如如何运用微结构的性能关系来实现对材料微观结构和性能的控制,从而完成从材料制备到定向制备的转化。新材料的开发是材料化学工程发展的关键和先导,直接可以衡量出国家的材料化学发达与否,因此,开发新材料对于材料化学工程的发展至关重要。材料化学包括陶瓷材料、聚合物材料、磁性材料、化学传感材料、电子材料、超硬材料、无机非金属材料、催化和吸附材料和薄膜材料等,这些材料很大程度上丰富了材料化学工程的领域,对其发展做出重要贡献。
2新材料的开发
我国在新材料的开发领域取得了很多亮点,这些新材料的开发成为分离和反应过程的重要基石。一些研究所和大学正在开发一种非晶态的金催化材料,这种材料很有发展前途,因为它具有非常明显的催化特性,而且其催化活性还具有特殊的选择性,具有显著的催化活性和特殊的选择性。对这种材料进行流程综合和技术集成,可以有助于我国新型石油化工技术的构建。石油化工科学研究院也开发出一种新型的钛硅分子筛催化材料,这种材料具有定向氧化催化作用,可以实现“原子经济”,使“零排放”工艺成为可能,而且也具备工业化生产的可能性。而在新材料的分离技术方面,我国也取得了很大的进步,其中南京工业大学发展了以陶瓷膜材料为原料的新单元技术,同时加强了对集成单元技术的开发,这些研究不仅使我国陶瓷技术更加趋于成熟,而且还形成了陶瓷膜新产业,为我国带来巨大的社会和经济效益。
3材料化学工程技术的进展
材料化学主要是对产品微结构进行调控,其主要手段是在加工材料时,将化学方法引入进去,这样我们就可以通过宏观条件来调控产品的微观结构,从而为材料的加工和制备提供理论和技术指导。因此,化学工程技术的改进将直接促进材料化学工程的发展。我国在化学工程技术改进方面已经取得了非常大的进展。清华大学在碳纳米粉体材料的制备过程中,引入了传统的流化床技术,大大降低了生产成本,从而使此生产技术可以用于工业化生产,带来巨大的经济效益。北京化工大学则用超重力场技术来放大纳米材料生产过程中的形貌控制问题,这样就可以通过调节超重力场的强度来调节和改变产品的粒径,。通过这种方法,我国已经成功制备出碳酸钡、碳酸、碳酸锂、氢氧化铝和碳酸锶等纳米粉体,并且形成了工业化生产的技术体系,为我国带来巨大的经济效益。
摘要:
当今社会,在科学技术和国民经济水平的快速发展下,人们的生活水平以及生活需求不断提高,全球对于化学行业的关注、需求也不断提高。在这些因素的作用下,为了能够最大化满足社会需求,提升化学工程的建设发展,节省在生产过程中的时间,化学生产必须逐渐将化学工程技术应用到生产过程中来。全文笔者也是以此为重点,对化学工程技术在化学生产中的应用进行了深入分析,提出了化学工程技术发展方向的同时,也对化学行业的发展提出了一些建议。
关键词:
发展方向;化学工程;应用
引言:
当今社会科学技术发展水平越来越成为国家综合国力的重要体现,其应用范围也不扩大,涉及到人么生活中的方方面面。其中,化学生产中也应用到了化学工程建设技术,并受到越来越多的人关注。在各个行业的发展当中,化学工程技术也起到了重要的作用。因此,对于化学工程技术在化学生产中的应用探讨研究是非常必要的,全文也主要对此进行了探讨分析。所谓化学工程技术,主要指的是将化学生产过程中的开发、研究作为研究的基础,对化学生产过程中的过程装置进行设计、制作以及管理的一项具有综合性的科学技术。通过实践证明,化学工程技术在化学生产中的应用效果十分显著,它对于提高生产效率、降低生产过程中的消耗、利益最大化起着至关重要的作用。同时也引导着企业生产技术的改革,对于技术的研发、完善都有很大的影响。
摘要:化学工程技术是以化学工业为中心的过程及装置的开发、设计、操作及优化问题的工程技术学科。本文首先从化学工程技术核心理念和技术优势进行分析,接着对我国化学工程技术发展的动向和应对举措进行研究。
关键要:化学工程技术;发展动向;应对举措
现代工业技术的发展促进了化学工程技术在工业生产的应用,随着我国工业企业规模的壮大,化学工程技术的应用领域也在逐渐拓宽。化学工程技术的运用,提高了工业企业的生产效率,减少了劳动力的工作强度。研究化学工程技术的发展与应用,是促进我国工业企业发展必经途径。
一、化学工程技术核心理念和技术优势
(一)化学工程技术核心理念化学工程技术的理论基础是化学元素和化学反应,化学反应物质的性质和催化条件功能是重要影响化学反应的因素。利用大型机械设备,满足发生化学反应的环境条件,主要用于大型的工业化生产企业,实现产品的批量成产。(二)化学工程技术优势化学工程技术具有以下三个非常明显的优势。第一,具备完善的理论基础。化学工程技术是建立在完善的化学理论基础上,化学反应理论、物质结构理论、电化学理论等都是化学工程技术的核心理论,并且理论基础是经过人类历史的验证,具有客观、规律性,是化学工程技术坚固的理论支撑。第二,能够提高生产效率。化学工程技术在大型机械生产中发挥着生产优势,生产企业引入了化学工程技术,优化了生产模式,联合装置生产和车间生产相结合,不仅压缩了生产成本还提高了成本的使用率。第三,避免资源浪费和保证持续性能源供应。化学工程技术利用特定物质的进行化学反应,达到资源的重复使用,提高资源的利用效率,并反应成其他物质。同时化学工程的应用可以促进能源的生产,达到了持续性的能源供应,对解决我国一直以来的能源危机有着积极作用。
二、化学工程技术的发展动向
摘要:化学工程技术是现代化最具影响力的技术手段之一,它有助于满足人们日益增高的需求,更好的融入资本市场,实现多种技术的结合。近年来,化学工程技术出现了新的变革,在生产中的作用也愈加凸显。本文就结合我国化学工程技术的核心理念和技术形式,讨论它的实际应用与推广,从而为人们提供重要的参考。
关键词:化学工程技术;化学生产;应用发展
化学工程技术又被称为化工技术,在化学应用与研究领域占据着十分重要的地位,通过科学的技术使用能够大规模的进行化工生产,并与农业、工业等行业结合起来,使其向纵深方向发展。当然,在实际应用领域,化学工程技术的优势还无法凸显出来,无法实现大规模的应用。本文就结合我国化学工程技术的使用状况和技术发展趋势,做好研究与讨论,促进技术的合理推广。
1新型化学工程技术的研究与应用
1.1超临界化学反应技术
所谓的超临界液体,是当温度与压力都处于临界点状态时,物体状态介于液体与气体之间的一种形式,它具有双重性质。它不仅能够应用在化学工业、食品工业与生物技术之中,还能够在医学领域推广开来,彰显出巨大的魅力和发展前景。目前,我国有关超临界化学反应技术的应用还不够广泛,环境保护等领域都没有应用到超临界水氧化方法,技术发展的不够成熟。