前言:在撰写化学机理的过程中,我们可以学习和借鉴他人的优秀作品,小编整理了5篇优秀范文,希望能够为您的写作提供参考和借鉴。
化工机械设备产生腐蚀的机理分析
电化学腐蚀机理
由于机械设备大部分都是金属外壳,而金属表层与离子导电介质非常容易发生电化学反应,这样一来便会引起电化学腐蚀,从而使设备遭受严重的破坏。所有根据电化学机理产生的腐蚀都至少包含一个阳极和一个阴极反应,并且还会通过金属本身的电子流以及介质当中的离子流互相联系。其中阳极反应属于氧化过程,简单来讲就是金属离子从金属当中转移至介质当中,在这一过程中,会释放出大量的电子流,这部分电子流会与介质中的离子流相互联系,并结合到一起,进而引起电化学反应;而阴极反应则主要是对于介质中的氧化剂成分而言的,其通过对阳极中的电子进行吸收进而形成的还原过程。在电化学腐蚀的整个过程中,因电流并不会对外做功,一般都是腐蚀电池的内阴极发生自耗反应,这样一来便会导致金属遭受腐蚀的速度加快。
工业大气腐蚀机理
由于化工机械设备长期在工业污染较重的区域内运行,在这样区域中,空气中一般都含有大量的挥发物,如二氧化碳、硫酸、氢氧化物以及硫化物等等,并且还会含有大量的工业分层,而这些种种都是具有极强腐蚀性的介质。当它们在潮湿的条件下,酸性气体便会与H2O相结合,并生成无机酸,这些酸具有非常强的腐蚀性。举个简单的例子,铁质合金在这样的介质中会发生一系列化学反应,从而会导致其被严重腐蚀破坏。在工业大气的环境中,机械设备腐蚀大多都是由电化学和直接化学腐蚀综合作用所导致的。从这两种腐蚀的本质上讲,它们全部都属于金属原子失电子后转变为离子的氧化过程。而两者之间唯一的区别是环境背景有所不同。化学腐蚀是金属与介质发生的化学反应,此时的环境多为高温、干燥,而电化学腐蚀则基本都是发生在较为潮湿的环境当中。
化工机械设备的防腐设计要点分析
[摘要]当前素质教育改革力度在不断加大,对中职学生的化学学习要求也更加严格。但是在中职学生无机化学的基础还没有打牢的情况下,就要接触有机化学的学习,导致学生学习化学的兴趣大大降低。所以中职教师必须重视教学革新,在有机化学与无机化学的教学中,要利用创新的教学模式,及时更新教学内容,最大限度激发学生对化学的兴趣,从而促使二者有效衔接。
[关键词]有机化学;无机化学;有效衔接
为了适应新课标的革新,中职教师要及时做出教学改革,无论是教学内容还是教学形式都要重新规划,因为学生刚步入中职,而且大部分中职学生学习基础比较差,对化学没有清楚的认知,导致大多数学生还不能很好地适应教学的革新模式。
一、有机化学和无机化学
有机化学在化学的版块中占据着重要位置,是化学完整体系中的一员,有四个学习部分:化学反应、分子结构式、反应机理和物质的化学性质。其中,最主要的学习内容是化学性质,反应机理是整个有机化学学习的基础,在学习中只有学会最基本的内容,也就是化学中的机理,才能开展化学学习的深入研究,才能学会知识的贯通。由此掌握好化学机理对未来的化学学习有至关重要的作用。而无机化学是整个化学的核心内容,起着决定性作用。无机化学接触的层面比较广,也是化学中最古老的分支学科,无机物包括所有的化学元素和它们的化合物,大部分的碳化合物除外。由此来看,二者并不是两个独立的学科,所以要将两者的通性进行紧密衔接,在衔接过程中凸显各自的特性,从而使无机化学和有机化学的衔接对学生的学习起到重要作用,进一步提升学生的学习能力[1]。
二、激发学生学习兴趣,加强学生学习动力
[摘要]有机化学是一门非常重要的专业基础课。在有限的教学时间内尽可能的全面提高学生的有机化学综合素养是有机化学教师的一项重要任务。我们认为电子理论对有机化学中的离子型反应的发生、反应位点、活性都有非常好的解释作用,在教学实践中使用电子理论教学法有助于把众多分散的有机反应整合起来,形成一个整体,电子理论就是它们的主线。除此之外,在教学过程中不失时机的插入化学史的内容丰富课程教学,提高学生的学习兴趣和综合素质。化学安全观念在化学中同样非常重要,因此我们认为在课程中有必要引入相关的安全知识,提高学生的安全意识。
[关键词]有机化学教学;电子理论;化学史;安全意识
有机化学是高等教育中非常重要的一门专业基础课[1],是化学、化工、药学[2-4]、医学、食品[5]等众多专业的专业基础课,涉及的专业面和学生面都很广。如何上好有机化学课,如何在有限的时间内提高学生的有机化学素养是有机化学教师面临的一个重要问题。有机化学是一门博大精深的课程,涉及众多有机化合物的性质和大量的有机反应,并且有机反应的变化非常丰富、应用及其灵活。在有限的课程时间内,如何通过学习有机化学这门课程使学生具有较好的有机化学的思维和素养,对有机化学教师而言是极具挑战的。通过多年的有机化学教学实践,笔者认为在有机化学课程中必须抓住主线,利用有机反应中的电子理论[6,7]把众多复杂的有机反应进行整合,如亲电加成、亲电取代、亲核取代、亲核加成等。反复利用电子理论对这些反应进行系统的讲解,使学生在本质上理解反应的为什么发生、如何发生及其反应结果。同时在课堂教学中引入相关化学史的知识提高学生的学习兴趣和他们的全面素质,以及在课程中加强安全意识的教育都不容忽视。
1在有机反应中引入电子理论进行教学
在讲解有机反应过程和反应活性等知识内容时,引入电子理论教学,引入较为合理的逻辑概念,有利于学生对有机反应本质的理解和反应活性之间的差别。有机电子理论是用正负电荷吸引的性质,来说明化学反应的发生方式,即发生的位置和顺序,发生的难易程度。因此,它把分子中电子携带的电荷分布情况,也就是以电子密度作为基础概念来思考化学反应。电子密度的大小、增量已被量子中的理论计算和物理测定所证实,并获得化学界的承认。化学家中把这种电子密度当做类推的基本概念,广泛用于说明和理解各种化学现象。电子理论认为,分子中,电子(携带负电荷聚集的位置,即电子密度大的位置),容易与携带正电荷的试剂(亲电试剂具有吸引电子的性质)发生化学反应。反之,电子密度小的位置容易与携带负电荷的试剂(亲核试剂,具有排斥电子性质的一方)发生化学反应。利用电子理论能够轻而易举的解释有机反应中的离子型反应,而我们大学有机化学的教学当中,大部分反应是离子型反应,如亲电加成反应、亲核取代反应、亲电取代反应、亲核加成反应等。当然电子理论的理解有一个过程,学生在刚开始接触的时候很难理解电子密度的概念。在教学过程中需要逐步为学生打下一定的物理基础,如电子-电子云-电子密度等概念,使学生能够从微观的角度、物理的角度去理解有机分子、有机原子,同时强化电负性、诱导效应、立体效应、共轭效应等概念,让学生从高中学习化学的思维中转变过来,使用一种全新的有机化学微观思维方式来理解反应为什么发生、为什么在这个位点最容易发生、反应活性变化等现象。从而从本质上理解反应,在以后的学习和工作中能够举一反山,真正达到学习有机化学的目的。
2在课堂中引入化学史教学
1水岩化学作用过程
水岩化学作用过程的化学机理主要是指地下水和岩石之间发生的各种化学反应,如溶解作用,水合作用,水解作用,酸性腐蚀等,下面就这些影响因素进行详细论述。
1.1溶解作用在长时间的地下水和岩石的接触过程中,在岩石中存在的一些钠、钾等离子以及一些含酸的盐类可以直接溶于地下水,随着时间的积累,这些含有了腐蚀性物质的水会对岩石的结构造成不利的影响。而且,由于在岩石内部,尤其是那些颗粒之间都不可避免的存在大量的裂纹,然而存在于岩石空隙中的不同溶液可以逐渐渗透到岩石的颗粒中,并发生不同的化学反应。除此之外,在水溶液中含有的二氧化碳等气体也会对岩石的溶解产生不利的影响。同时,岩石的组成成分以及岩石所处的温度和湿度条件的变化都会对岩石的溶解造成不同程度的影响。
1.2水解作用由于在地下水中存在有大量的氢离子和氢氧根离子,因此使地下水成为了具有极强腐蚀性的溶液,正是由于这两种离子的存在,很容易使弱酸或是弱碱的盐类矿物质发生解离,解离物可以和水中的这两种离子结合生成新的物质,使岩石原有的结构和成分发生变化。岩石的水解作用是普遍存在的一种水岩化学作用。而且,随着水解过程的不断进行,会产生大量的粘土物质,进而对斜坡的稳定性造成不利影响。
1.3氧化还原作用由于地下水也存在一定的流动性,使得地下水中含有一定量的游离氧。而氧化作用发生的先决条件就是存在有游离的氧离子。因此,水岩作用过程通常发生在地下水面以上的地表岩层,而在游离氧较少的地区,主要发生还原反应。
1.4离子交换作用由于在地下水溶液中存在有多种的阴离子和阳离子,在这些离子中那些结合能力强的离子可以将岩石中含有的一些离子置换出来,进而产生新的物质。最为常见的是,水中含有的氢离子可以将岩石中含有的钾离子和钠离子置换出来,进而导致岩石的溶解。地下水和岩石之间的水化作用严重破坏了岩石的结构,并降低了岩石的强度。1.5其他因素这些因素主要包括酸性腐蚀和化学沉淀等。所谓酸性腐蚀就是在水中含有的酸性物质对岩石的腐蚀作用,其主要是含有的弱酸性盐类物质导致的岩石的溶解。而所谓的化学沉淀则是指因为水分的蒸发和伴随着温度的变化,使某些物质从岩石中脱落,破坏岩石结构的稳定性。除此之外,化学沉淀也是导致矿床形成的一个关键性因素。
在干旱区水文学中,湖泊的研究是非常重要的。从生态学的角度研究干旱区的湖泊是20世纪80年代末90年代初开始探索的[1]。干旱区内陆湖泊水系是一个独立的自然地理系统[2,3],要揭示其科学内涵,必须从总体上进行国际性的联合研究。1993年起,中、哈(哈萨克斯坦国家科学院)两国科学家把亚洲中部(中亚部分)的湖泊作为一个完整的区域系统,实现跨学科的综合研究,取得了很好的成果,丰富了生态循环的理论。之后,中国学者对我国干旱区的湖泊进行了观测研究[3~10],证实了合作研究成果的科学性和实用性。
亚洲中部干旱区咸海地区居民亲眼目睹了咸海的衰亡[1],罗布泊、艾丁湖、玛纳斯湖、艾比湖、巴里坤湖、博斯腾湖和巴尔喀什湖地区人民亲身经历了生态与环境恶化所带来的灾难,事实告诉人们,咸海的消亡完全是人类一手造成的。为了迅速增加中亚棉花灌溉面积,明知咸海正在消亡,仍人为地加强了这一趋势。虽然当地的专家学者反对“浇水作业全面机械化”,却被湿润区来的专家学者所取代。后者,虽然具有很好的技术,但对当地实际——干旱区湖泊水生态学基本知识的缺乏……。
咸海的消亡只是世界舆论所注意到的一个侧面,更糟糕的是中亚经受着双重荒漠化的威胁。其一,来自咸海干涸湖底的有毒盐类和尘埃微粒。他们被风扬起并搬运到灌溉地及周边地区;其二,源于灌溉地本身,地下水位升高,土壤盐渍化。其结果是大片的土地被污染,这些土地正逐渐变成荒漠。
历史教训告诫人们,干旱区湖泊不同于湿润区,干旱区湖泊有其自身的特征,应该加强对其研究,以期能给子孙留下茂盛的草场、清澈的河水和肥沃的土地。1干旱区湖泊水系的独特性
近期研究表明,水和其他物质一样在全球循环的背景下,在各个地区实现区域性循环,例如咸海、博斯腾湖、艾比湖等与帕米尔—天山山区产流系统之间的循环。这一无地表径流和地下径流与全球大洋相通,也不与其他集水区相连,即无水力学联系的水分循环的相当大部分分布在内陆水体流域。特别突出的是分布在地球上最宽的干旱带的欧亚大陆腹地。这个地区又分成若干个水力学上互不相通的局部集水区,其中较大的内陆湖有里海、咸海、博斯腾湖、乌伦古湖、玛纳斯湖、巴尔喀什湖、阿拉湖、艾比湖、罗布泊、伊塞克湖、田吉兹湖。湖群有北哈萨克斯坦的谢列特湖群、恰内湖群、库伦达湖群等。
上述每一个水域在水文学上都有自己的水分、能量和其他物质循环系统,是一个相对独立的水利系统。内陆湖流域在陆地上的质量、能量交换是具有极大局部性的流域结构。由于局部循环是在全球循环的背景下进行的,因此,每一个这样的流域又是一个开放的系统。而且拥有自己的径流形成区(山区)、自己的水系(天然河流)、自己的尾闾(内陆湖水体)以及自己定常的气流(山谷环流)。咸海的河川径流形成区(产流区)是帕米尔和天山山系,巴尔喀什湖的产流区是中国西部天山山脉,博斯腾湖的径流形成区是中国天山南坡,艾比湖和玛纳斯湖是中国天山北坡和阿拉套山等等。