前言:在撰写控制系统论文的过程中,我们可以学习和借鉴他人的优秀作品,小编整理了5篇优秀范文,希望能够为您的写作提供参考和借鉴。
一、目前广泛使用的的控制方法
继电器控制,PLC控制,单片机控制,其中PLC检测控制系统应用最为广泛。其具有以下特点:
1.1可靠性PLC不需要大量的活动元件和连线电子元件。它将控制逻辑由传统的继电器硬件运算变为软件运算,使得它的连线大大减少。PLC经过多年的不断发展,具有工业针对性,有很高的抗干扰能力。在各大PLC厂家的不断更新发展下,PLC各模块可靠性已经有很大提高。与此同时,系统的维修简单,维修时间短。PLC进行了一系列可靠性设计,例如:冗余的设计(包括硬件冗余技术和软件冗余技术),断电保护功能(电容电源和UPS的应用使得断电时有充分的处理时间),故障诊断和信息保护及恢复。PLC具有编程简单,操作方便,维修容易等特点,一般不容易发生操作的错误。PLC是为工业生产过程控制而专门设计的控制装置,它具有比PC控制更可靠的硬件和更简单的编程语言。采用了精简的编程语言加上强大的编译诊断功能,编程出错率大大降低。
1.2易操作性对PLC的操作包括程序输入和程序更改的操作。通过专业的编程软件进行编程并进行下载,更改程序的操作也可以直接根据所需要的接点号或地址编号进行搜索或程序寻找,然后进行更改。PLC有多种程序设计语言可供使用。由于梯形图与电气原理图较为接近,容易掌握和理解。PLC具有强大的自诊断功能降低了维修人员维修技能的要求。当系统发生故障时,通过软件和硬件的自诊断,维修人员可以很快找到故障部位进行故障维修和故障排除。
1.3灵活性PLC采用的编程语言有梯形图、功能表图、功能模块和语句描述等编程语言。编程方法的多样性使编程简单、可以使得不同专业的人员都有自己习惯的编程语言。操作灵活方便,监视和控制变量变得十分容易。以上特点使用PLC控制系统具有可靠性高,程序设计方便灵活,运行稳定,扩展性能好,抗干扰能力强等诸多优点今后PLC控制系统还会得到更广泛的使用。
二、PLC控制系统组成
一、巡航控制系统的发展
1.1发展背景概括随着中国高速公路建设以及汽车工业在我国的不断发展,汽车行业已经由传统的机械装置演变成一个具有复杂技术的系统。与此同时,我国电子技术也在快速发展着。随着科技的革新,我国在步入21世纪以后,智能化为核心的汽车巡航系统目前已经作为高级轿车的主要附加功能设备。
1.2汽车巡航系统技术的概述汽车巡航控制系统,就是我们所说的驾驶员不用对控制加速踏板而使汽车保持稳定行驶的系统,也是全方位检测数据的系统。随着汽车电子技术的发展,目前巡航系统中的主要技术则是通信能力。而在汽车复杂的电控系统中,通常各种信息是可以共享的,其中CAN总线作为实现数据共享和协同工作的工具,主要以灵活性和稳定性以及实时性所被大家广泛应用。
1.3巡航控制系统的主要发展趋势汽车巡航控制系统随着电子技术的发展而不断进行完善,就需要我们的技术也不断进行改变,这样才能更加准确掌握系统检测。总而言之,汽车巡航控制系统的改革我们可以从以下六个方面进行简析:
(1)新型控制理论的应用每辆车行驶状况在很大程度上受发动机的因素影响的。驾驶员只需要更加稳定地控制车速即可。因此,我们要根据原有的传统控制理论对新的控制理论进行改革,便于其更好地应用到汽车行驶上。
(2)联动控制、复合控制我国目前的巡航控制装置大多数是独立式的,为了更好地提高精度和敏感度,就需要利用计算机进行发动机和变速器的控制,以此形成一体化的复合控制模式。
1系统结构设计及总体方案
拖拉机动力输出轴连接药液泵,开始喷雾前打开与药箱连接的吸水阀门,关闭快速管接头阀门;控制系统经过上电初始化设定好电动调节阀的初始开度,通过触摸屏设定工作模式和亩喷量,并打开与喷头连接的电动阀;拖拉机动力输出轴运转后,药液从药箱通过吸水阀门、过滤器进入药液泵,控制系统通过速度传感器实时采集作业速度,结合设定的亩喷量和采集的喷药压力,计算出理论的流量值,与采集到的实际流量值进行比较;经过PID算法调节电动调节阀的开度,使得实际流量值尽可能与理论流量值一致,从而实现变量喷雾。药箱上安装的超声波液位传感器检测药箱液位高度,通过触摸屏显示实际液位,当液位低于设定的安全值时,触摸屏显示“液位过低”,进行报警。当行驶到地头转弯作业时,控制器根据转向控制传感器的信号,关闭转弯半径内侧的阀门,防止重复喷药。作业过程中,可以点击触摸屏的摄像头按钮切换到摄像头界面来观察喷雾效果。
2硬件电路设计
控制系统硬件结构,包括DSP核心算法单元、电源电路、RS485、RS232、A/D转换电路、开关量输入电路、继电器输出电路,以及传感器、电动阀、电动调节阀外围电路、触摸屏显示电路。
2.1核心芯片系统设计采用TI公司的TMS320F28335DSP作为核心控制芯片。该芯片内置了浮点运算内核,能够执行复杂的浮点运算,可以节省代码执行时间和存储空间,具有精度高、成本低、功耗小、外设集成度高和数据及程序存储量大等优点。
2.2电源电路TMS320F28335工作时所要求的电压分为两部分:3.3V的Flash电压和1.8V的内核电压。TMS320F28335对电源很敏感,所以选择TI公司的双路低压差电源调整器TPS767D301。TPS767D301带有可单独供电的双路输出:一路固定为3.3V,另一路输出可调。设计中选取R49为20k,R50为12k,而且TPS767D301芯片自身能够产生复位信号,不需要为DSP设置专门的复位芯片。要保证系统可靠的工作还需要有电源管理芯片,选用TI公司的TPS3305-33D来监控系统的3.3V和5V电压。当系统电压降到允许范围以下时,产生复位信号使系统复位,保护系统免受低电压影响。TPS3305-33D同时还具有看门狗功能,看门狗输入信号WDI接DSP的XCLKOUT引脚。
一通信原理
1并行通信与串行通信工程应用中
为实现分散控制和集中管理,控制系统的各个部分必定要相互进行数据通信。按照传输方式,可分为并行通信与串行通信。并行数据通信是以字节或字尾单位的数据传输方式,其特点是传输速度快,但传输线的根数多。适用于近距离数据传输。串行数据通信是以二进制的位(bit)为单位的数据传输方式,每次只传送1位,适用于举例较远的场合。工业控制一般使用串行通信。PC机和PLC都有通用的串行通信接口,例如RS-232C和RS-485接口。
2异步通信与同步通信在实际通信中
操作时很难保证数据接收方和发送方有相同的传输速率,为了保证发送过程和接受过程同步,不发生累计误差造成的错位。可以根据实际通信要求选用同步或异步通信方式。异步通信发送字符的信息格式有1个起始位,7、8个数据位,1个奇偶校验位(可省略),1、2个停止位组成。在通信开始之前,通信双方需要对所采取的信息格式和数据传输速率作相同的约定。由于1个字符中包含的位数不多,及时发送方和接受方的收发频率略有不同,也不会因两台设备之间的时钟脉冲周几的积累误差而导致收发错位。其特点就是传送附加的非有效信息较多,传输效率稍低。同步通信方式以字节为单位(8bit),每次传送1、2个同步字符,若干个数据字节和校验字节。在同步通信中,发送方和接收方要保持完全同步,因此要用调制解调的方式从数据流中提取出同步信号,使接收方得到与发送方完全相同的接收时钟信号。其传输速率较高,一般用于高速通信。
3单工通信方式与双工通信方式
一安萨尔多CBTC车载控制系统
安萨尔多CBTC列车控制系统由列车自动监控(ATS)系统、列车自动防护(ATP)系统、列车自动驾驶(ATO)系统、计算机联锁(CBI)子系统、数据传输(DCS)子系统等组成。CBTC车载控制系统提供ATP和ATO功能,负责确定列车速度和位置、超速保护、紧急制动、列车停靠、方向控制、安全的车门控制、CBTC运行模式等。车载控制系统设备包括车载控制器(CC)和速度传感器、查询应答器主机(TI)天线、司机操作显示单元(TOD)和移动无线设备(MR)天线。CC与速度传感器、TI主机和TOD接口,以确定列车的位置,显示驾驶信息,设备状况,并给司机报警。本系统采用开放式架构的数据传输子系统,采用802.11g来提供更大的带宽和更强的抗干扰的数据通信能力;采用802.11i无线网络技术来保障安全,阻止未授权用户进入网络;防火墙提供额外的防护措施来抵御恶意攻击。MR用于车载设备和轨旁设备之间传输数据。ATP和ATO子系统通过两个独立的以太网连接到MR。A、B网同时工作,当一端通信中断时,系统会接受另一端的车地通信信息,以保证车地通信的可用性,实现冗余车载网络的交换和扩展。以太网扩展设备ESE利用双绞电缆彼此连接,实现车厢之间的网络通信。当列车经过信标时,储存在其中的信息通过应答器天线发送给TI主机。主机接收到报文后进行解码,将解码后的数据用两个不同的通道传送给CC。CC将会关联来自TI主机的诊断信息、磁场强度信号和信标正在读取的信息来判断TI主机是否故障。随着车轮轮齿的转动,当传感器经过轮齿的时候会输出数字脉冲。这些脉冲由硬件计数器来计数,可以在给定周期内测试速度。系统采用独立的模块测量列车的位移和速度。即使其中一个速度传感器部分失效,CC也会正常工作。2个光电速度传感器和4个加速度计(2个数字型和2个模拟型,以避免共模故障),用于速度测量和车轮空转/打滑的补偿。一旦检测到空转/打滑,CC将利用速度传感器上一次的安全速度和位置,通过加速度计测量出来的加速度来更新列车速度和位置,位置误差通过信标来消除。每个处理器有四个处理模块:应用处理器模块(App),比较处理器模块(VO),交互式存储处理器模块(ME),接口处理器模块(CPL)。App用于计算,VO对数据结果进行检查,ME实现数据共享,CPL主要处理数据的输入和输出。处理器采用3取2比较结构,通过各自的APP模块独立运算,相互通过ME模块交换结果,再通过VO模块表决,保证三个计算机至少有两个的结果一致。如果表决同意,处理器会通过通信模块发送控制信号给列车,允许列车继续运行。这也就是保证在单点故障时的安全运行的冗余方式。
二ATO与ATP子系统
ATP子系统是保证列车运行安全的系统,它根据线路数据、列车临时限速信息、联锁设备提供的列车进路信息,提供列车运行间隔控制、超速防护、车门和站台屏蔽门监督等安全防护功能,且符合故障-安全原则。ATO子系统在非人工状态下通过控制牵引和制动力来控制列车运行,列车按运行图规定的区间走行时分行车,自动完成列车启动、加速、巡航、惰行、减速和停车的合理控制。ATO子系统为热备份,即当主ATO单元故障时,能够自动从主ATO单元切换到备用ATO单元。“热备份”在这里是指主备两套ATO单元运行完全相同的软件,获得相同的传感器输入,独立进行运算;但是同时只有一套ATO单元作为主机和其他子系统如ATP、车辆、TOD、ATS等交互,备用ATO不提供任何输出。仅当检测到当前主ATO单元发生任何故障时,并且列车完全停车后,能够自动进行切换,这样,就避免了影响运行,或司机进行一些不必要的操作。ATO和ATP分别运行于独立的CPU处理器中,彼此通过高速PCI总线连接。系统采用连续速度-距离曲线控制模式进行闭塞设计。当列车运行速度接近ATP最大允许速度时,车载设备产生声光报警,并采用常用制动降低列车速度。采用常用制动时,系统连续地检查列车的制动率,如常用制动率达不到规定值,或车速未按要求进行减速而列车速度达到ATP紧急制动触发曲线速度时,实施紧急制动。
三结束语
基于CBTC的车载控制系统采用统一标准,易于实现互通互联;硬件冗余,保证了高可靠性;实现了车-地之间的双向、实时、高速、可靠、安全的移动通信,完成了列车超速防护,保证列车以最小间隔安全运行。该系统已成功应用于沈阳、西安、杭州、郑州、成都等城市。