前言:本站为你精心整理了生活污水处理范文,希望能为你的创作提供参考价值,我们的客服老师可以帮助你提供个性化的参考范文,欢迎咨询。
摘要:本中试试验结果表明:一体式好氧中空纤维膜-生物反应器处理生活污水用于回用在技术和经济上都是可行的。在不人为排泥的条件下,该系统连续运行110多天没有洗膜。系统出水稳定优质(cod<30mg/l,nh3-n<1.0mg/l,无色无味透明,未检出大肠杆菌);基建费用低,运行费用和传统污水深度处理工艺相差不多。空曝气和在线药洗是进行膜日常维护的有效方法,反应器水力循环条件和启动阶段的运行操作对膜的清洗周期有重要影响。
关键词:好氧膜-生物反应器膜污染中水回用
pilotplantstudyonintegralmembranebio-reactortotreatdomesticwastewater
abstract:thetechnicalandeconomicalfeasibilityofintegralmembranebio-reactor(imb)totreatdomesticwastewaterforreusehasbeenapprovedbytheresultsofapilotplantexperiment.thepilotplantrancontinuouslyover110dayswithoutmembranerinsingandnosludgedischarge.theoutputwaterisquitestableandhighqualitywithcod<30mg/landnh3-n<1.0mg/lrespectively,itseemstransparentandfreeofcolorandsmell,andnocoliformwasdetected.fortheimbfacilitytheinvestmentislowerthanandtheoperationexpenseissimilartothetraditionaladvancedtreatment.airblowandon-linechemicalrinsingiseffectivefortheroutinemaintenanceoftheimb.themembranerinsingcycleisheavyeffectedbytheconditionofwatercirculatinginsidethereactorandtheoperatingatthestartingstage.
膜-生物反应器工艺是一种新兴工艺,近年来已被逐步应用于城市污水和工业废水的处理。它用膜分离系统代替普通活性污泥法中的二沉池,取得可直接回用的出水水质;而且有利于增殖缓慢的微生物如硝化细菌的截留和生长,增强硝化作用[1]。按照膜组件的设置位置,可分为分置加压式和一体抽吸式两类[2,3]。一体式膜-生物反应器装置占地省、能耗少,近年来有关它的应用研究在国外受到关注[3~5],而国内有关研究还很少,作者曾在实验室小试条件下对一体式膜-生物反应器工艺用于处理并回用中国生活污水的可行性进行了研究,获得了令人满意的效果[6]。为推进这种新型高效工艺在我国污水资源化中的应用,本研究进一步开展了中试试验,证实了处理效果,探讨了系统长期稳定运行的控制条件和装置放大规律,并进行了经济评价,为一体式膜-生物反应器工艺在我国污水处理与回用中的应用提供了技术经济条件。
1试验装置与试验方法
1.1试验装置与流程
一体式膜-生物反应器的中试工艺流程如图1所示。
生物反应器容积为2.7m3,内置中空纤维膜组件11个。每个膜面积4m2,组件总面积44m2,膜材料为聚乙烯,膜孔径为0.1μm。为供给微生物分解有机物所需氧气,同时在中空纤维膜面造成一定的循环流速,膜组件下设有穿孔管曝气,曝气量为35~50m3/h。进水经0.9mm的不锈钢筛网过滤后进入生物反应池,其中的污染物经活性污泥中微生物分解,混合液在出水泵的抽吸作用下经膜过滤后得到处理出水。出水泵采用间歇抽吸运行,抽吸频率为13min开,2min关。压差计和压力传感器用于测定抽吸泵在工作过程中施加在中空纤维膜上的过滤压力,hp75000用于控制生物反应器液面恒定并监控和自动记录膜组件过滤压力。
生物反应器自接种后,开始进水运行。目前已运行110余天。在此期间,没有人为排泥。
1.2试验用水
试验用水取自清华大学一号楼后污水泵站,并投加了适量的工业葡萄糖。具体水质情况如表1所示。
1.3分析项目及方法
日常分析测定的项目包括进出水和污泥上清液的cod、进水ss、污泥ss和vss、氨氮浓度等。测定方法采用标准方法。
scod*即经过滤纸过滤后的cod。
2试验结果与分析
2.1污染物去除效果
从图2可以看出:(1)系统总cod去除率除开始运行前12天以外,均保持在90%以上,而生物反应器cod去除率波动较大。在开始运行前12天,由于微生物尚未充分生长,生物反应器的cod去除效率较低,在60%以下。之后,随着微生物的增殖,生物反应器的cod去除效率逐步增加,最高达96%。相应地膜分离对cod的去除效率随生物反应器性能的好坏而变化,在3%~35%之间波动。膜分离对部分有机物的截留作用弥补了生物反应器处理性能的不稳定,使系统总的cod去除效率稳定保持在较高水平;(2)活性污泥对cod的去除起到了重要作用。在进水cod变化较大的情况下,生物反应器内活性污泥的效能仍发挥得很好。除个别情况外,生物反应器上清液的cod浓度可维持在80mg/l以下;(3)膜对系统的稳定出水起到了决定性作用。尽管系统进水水质变化极大,cod浓度从100mg/l变化到700mg/l,上清液cod浓度也随之有较大的变化,但膜出水cod浓度始终稳定在30mg/l以下,满足中水回用水质标准的要求。
从图3可以看出:(1)运行基本稳定后,系统对氨氮的去除率可达98%以上;(2)氨氮的去除主要靠生物反应器中微生物的作用,膜对氨氮的截留作用很小;(3)在开始运行的头一周,系统基本上没有硝化作用发生;运行两周后,系统的氨氮去除率达44%;运行三周后,系统的氨氮去除率达98%。这说明膜的分离作用可使世代时间较长的硝化细菌逐渐在系统中积累,使废水中的氨氮得以发生充分的硝化反应,系统出水氨氮浓度在0.5mg/l以下。
此外,小试其它测定指标表明,出水无ss和大肠杆菌检出、无色无嗅,满足建设部颁布的《生活杂用水水质标准》(cj25.1-89)。
2.2污泥增殖情况
图4表示出一体式膜-生物反应器中试系统中生物反应器内的污泥增殖情况。运行前20天,由于进水cod浓度较低(参见图2),污泥生长缓慢。为刺激污泥的生长,在进水中投加了相当于100~200mgcod/l的葡萄糖以增加进水cod浓度,污泥浓度表现出明显的上升趋势。运行第33~42天,由于反应器水力循环条件不好而对系统进行改造,致使部分污泥流失,污泥浓度有所下降。运行第42天后污泥浓度仍有降低现象是因为停止投加葡萄糖所致。第58天以后,再次投加葡萄糖,污泥浓度出现回升,vss在4.5g/l左右。
生物反应器污泥的vss/ss的比值在试验期间内基本无变化,在0.7~0.8之间,说明污泥中没有无机物积累。
2.3膜过滤压差的变化
图5表示一体式膜-生物反应器中试系统运行过程中膜过滤压差与膜通量随时间的变化。在膜通量保持恒定时,膜过滤压差的变化反映了运行过程中污染物在膜面的积累,即膜过滤阻力的变化情况。本试验为减缓启动阶段的膜污染与堵塞,采用了膜通量分阶段由小到大的运行方式。首先将膜通量控制在4l/(m2.h)运行一段时间,然后逐步增大至8.7l/(m2.h)稳定运行。然而,运行第21天后,由于膜过滤压差(即阻力)增长很快,为达到长期稳定运行的目的,再次将膜通量降低至5l/(m2.h)运行。
与小试试验时膜过滤压差的上升情况[6]相比较,发现中试试验条件下膜过滤压差的增长速度较快。初步分析主要是由于以下三个原因造成的:
(1)初始设计时反应器内水力循环条件不够好,导致膜面冲刷不够,膜面污染物易于积累。运行第35天至第41天时对反应器进行了改造,增强了反应器内的水力循环,情况有所改善。
(2)在生物反应器尚未达到稳定运行时即开始了膜的分离运行,启动阶段污泥浓度太低,ss不足0.5g/l。污泥浓度太低,进水中的有机物分解不完全,致使生物反应器上清液中有许多未降解的溶解性cod有机物存在。这些有机物易引起膜面堵塞,导致膜过滤阻力(即膜过滤压差)上升很快。有研究报道直接用膜过滤原污水比与生物反应器联用膜更易堵塞[7]。建议以后启动时先间歇运行一段时间,待污泥增长到一定浓度、生物反应器运行基本达稳定后再开始膜过滤。
(3)在操作过程中的粗心造成了一部分微生物流入膜内部通道,使膜内表面受到污染。
为尽量延长膜的稳定运行时间,本试验尝试了许多方法来减缓膜过滤阻力的上升。
(1)高压水龙头冲洗膜表面和停止抽吸出水空曝气。如图5的点1所示,对降低膜过滤压差有一定的作用,分别使膜过滤压差降低了6.58kpa,之后膜过滤压差的增长速度也有所减缓。分析原因可能是由于膜表面附着的泥饼很厚,空曝气和膜面高压水冲刷去除了膜表面上的泥饼,从而引起膜面阻力的降低。
(2)在线药洗。采用5%的次氯酸钠溶液,清洗了12h,膜过滤阻力压差由52.63kpa降至44.74kpa(如图5的点2所示),而后其变化很小,基本达到稳定。
2.4膜长期稳定运行的主要控制条件
根据以上试验及运行操作经验,总结维持膜长期稳定运行的主要控制条件如下:
(1)保持生物反应器内良好的水力循环条件。为维持膜面良好的水力冲刷作用,反应器升降流通道的设计要合理,曝气量要适当。
(2)做好膜-生物反应器的启动运行工作。应提高接种污泥的浓度,待生物反应器运行基本稳定后再开始膜分离的运行。
(3)注意膜的日常维护。可采取空曝气、在线药洗等一些简单的手段来减缓膜过滤阻力的增长速度,延长膜运行时间。
(4)当膜污染极为严重、日常维护作用不大时,可将膜组件放到碱液和酸液中浸泡一定时间,以恢复膜的过滤性能。
(5)保持操作条件的稳定。操作条件的经常变化会促进膜的堵塞过程,加速膜污染。
3技术经济性评价
将该工艺与传统中水处理工艺(二级生物处理加混凝、沉淀、过滤)进行了技术经济比较,
4结论
(1)一体式中空纤维膜-生物反应器工艺用于处理我国生活污水,达到回用水质在技术上是可行的。110天以上的连续试验表明,无论进水水质如何变化,均能得到优质而稳定的膜过滤出水:cod<30mg/l、nh3-n<1mg/l,且无色无味、无ss,并未检出大肠杆菌,完全符合建设部颁布的《生活杂用水水质标准》(cj25.1-89)。
(2)系统总cod去除率达90%以上,大部分是在生物反应器中去除的,膜分离截留部分cod,对维持稳定的系统出水起到了决定性作用。
(3)系统对氨氮的去除率达98%以上,主要靠生物反应器去除,膜的去除作用很小。
(4)生物反应器的水力循环条件是影响膜稳定运行的重要因素之一。
(5)应做好系统的启动运行,注意膜的日常维护,采用在线药剂清洗和空曝气等简单的手段减缓膜过滤阻力的上升,延长稳定运行时间。
(6)以经济性评价表明,一体式膜-生物反应器用于处理生活污水实现回用,在经济上是可以接受的。其基建费用较低,能耗与传统中水处理工艺相差不多。
参考文献
1岑运华.膜生物反应器在污水处理中的应用.水处理技术,1991,17(4):23~26
2yamamotok,hiasam,mahmoodtandmatsuot.directsolid-liquidseparationusinghollowfibermembraneinanactivatedsludgeaerationtank.watscitech,1989,21:43~54
3tatsukiuedaklnjihataetal.effectsofaerationonsuctionpressureinasubmergedmembranebioreactor.watres,1997,31(3):489~494
4hkishino,hishidaetal.domesticwastewaterreuseusingasubmergedmembranebioreactor.desalination,1996,106:115~119
5boranzhangandkazuoyamamoto.seasonalchangeofmicrobialpopulationandactivitiesinabuildingwastewaterreusesystemusingamembraneseparationactivatedsludgeprocess.watscitech.,1996,34(6):295~302
6刘锐,汪诚文,钱易.影响一体式膜生物反应器膜清洗周期的几个因素.环境科学,1998,19(4)
7邢传宏.清华大学博士论文,1998.93~94