前言:本站为你精心整理了网络模型中的神经网络算法范文,希望能为你的创作提供参考价值,我们的客服老师可以帮助你提供个性化的参考范文,欢迎咨询。
摘要:随着经济的不断发展,科技的提高,开阔了各个行业的发展前景,计算机网络得到良好改善。随着社会经济的发展,计算机成为人们日常生活必备用品,但是要想计算机网络迅速发展,还需要提高运行能力和整体性能,使计算机不断满足当下社会的需求。计算机网络模型具备储存信息、使信息规划等不同特点,保证使用人员能够快速搜索所需要信息。同时,计算机网络还具备优化的优势,使信息联想,计算机神经网络算法可以构造全面的信息储存库,保证信息储存和信息处理。
关键词:计算机网络模型;神经网络算法
计算机网络在人们日常生活越来越重要,被广泛应用到各个行业。随着社会不断发展,人们需求不断加高,使计算机得到良好改善,目前,计算机网络运用集线式服务器来实现网络互连,促进网络发展。但是也有很大弊端,过多的联想信息虽然满足人们需求,但是对技术的要求也更加苛刻,现有的技术满足不了计算机网络运行,使人们日常操作不方便。为了解决这一问题,研究人员需要全面优化计算机网络,提高运行能力和性能,运用神经网络算法,使计算机更加适合现代社会发展,储存更多信息。
1神经网络算法概论分析
1.1神经网络算法整体概论神经网络算法是按照人体大脑的思维方式进行模拟,根据逻辑思维进行推理,将信息概念化形成人们认知的符号,呈现在显示屏前。根据逻辑符号按照一定模式进行指令构造,使计算机执行。目前,神经网络被广泛使用,使直观性的思维方式分布式存储信息,建立理论模型。优化网络的神经网络主要是Hop?eld神经网络,是1982年由美国物理学家提出的,它能够模拟神经网络的记忆机理,是全连接的神经网络。Hop?eld神经网络中的每个神经元都能够信号输出,还能够将信号通过其他神经元为自己反馈,那么其也称之为反馈性神经网络。
1.2优化神经网络基本基础Hop?eld神经网络是通过能量函数分析系统,结合储存系统和二元系统的神经网络,Hop?eld神经网络能收敛到稳定的平衡状态,并以其认为样本信息,具备联想记忆能力,使某种残缺信息进行回想还原,回忆成完整信息。但是Hop?eld神经网络记忆储存量有限,而且大多数信息是不稳定的,合理优化计算机联想问题,使Hop?eld神经网络能够建设模型。
1.3神经网络算法优化步骤简述人工神经网络是模拟思维,大多是根据逻辑思维进行简化,创造指令使计算机执行。神经网络算法是按照人体思维进行建设,通过反应问题的方法来表述神经思维的解;利用有效条件和能量参数来构造网络系统,使神经网络算法更加可靠;大多数动态信息需要神经网络来根据动态方程计算,得出数据参数来进行储存。
2神经网络算法的特点与应用
2.1神经网络主要特点神经网络是根据不同组件来模拟生物体思维的功能,而神经网络算法是其中一种程序,将信息概念化,按照一定人们认知的符号来编程指令,使计算机执行,应用于不同研究和工程领域。神经网络在结构上是由处理单元组成,模拟人体大脑神经单元,虽然每个单元处理问题比较简单,但是单元进行组合可以对复杂问题进行预知和处理的能力,还可以进行计算,解决问题能力突出,能够运用在计算机上,可以提高计算机运算准确度,从而保障计算机运行能力。而且一般神经网络有较强容错性,不同单元的微小损伤并不阻碍整体网络运行,如果有部分单元受到损伤,只会制约运算速度,并不妨碍准确度,神经网络在整体性能上能够正常工作。同时,神经网络主干部分受到损伤,部分单元会进行独立计算,依然能够正常工作。
2.2神经网络信息记忆能力神经网络信息存储能力非常强,整体单元组合进行分布式存储。目前,神经网络算法是单元互相连接,形成非线性动态系统,每个单元存储信息较少,大量单元互相结合存储信息大量增加。神经网络具备学习能力,通过学习可以得到神经网络连接结构,在进行日常图像识别时,神经网络会根据输入的识别功能进行自主学习,过后在输入相同图像,神经网络会自动识别。自主学习能力给神经网络带来重要意义,能够使神经网络不断成长,对人们未来日常工作能够很好预测,满足人们的需求。
2.3神经网络的突出优点近年来,人工神经网络得到越来越多人重视,使神经网络得到足够资源进行良好创新。人工神经网络是由大量基本元件构成,对人脑功能的部分特性进行模仿和简化,人工神经网络具备复杂线性关系,与一般计算机相比,在构成原理和功能特点更加先进,人工神经网络并不是按照程序来进行层次运算,而是能够适应环境,根据人们提供的数据进行模拟和分析,完成某种运算。人工神经系统具备优良容错性,由于大量信息存储在神经单元中,进行分布式存储,当信息受到损害时,人工神经系统也可以正常运行。人工神经网络必须要有学习准则制约来能够自主学习,然后进行工作。目前,人工神经网络已经逐步具备自适应和自组织能力,在学习或训练过程中改变突触权重值,以适应周围环境的要求。通过一定学习方式和某些规则,人工神经网络可以自动发现环境特征和规律性,更贴近人脑某些特征。采用并行分布处理方法,使得快速进行大量运算成为可能。神经网络的一个很大的优点是很容易在并行计算机上实现,可以把神经的节点分配到不同的CPU上并行计算。钱艺等提出了一种神经网络并行处理器的体系结构,能以较高的并行度实现典型的前馈网络如BP网络和典型的反馈网络(如Hop?eld网络)的算法。该算法以SIMD(SingleInstructionMultipleData)为主要计算结构,结合这两种网络算法的特点设计了一维脉动阵列和全连通的互连网络,能够方便灵活地实现处理单元之间的数据共享。结合粒子群优化算法和个体网络的并行学习机制,提出了一种基于粒子群优化的并行学习神经网络集成构造方法。
3结束语
全球化的发展,信息交流不断加快,促使各个行业相互融合。神经网络算法具备简单、稳定等不同优势,神经网络研究内容相当广泛,神经网络算法能够与其它算法相互结合,在一定程度提高计算机网络模型运算能力。但是计算机网络模型中神经网络算法学习能力比较低下,梯度下降法不准确,所以需要有关人员进行深度研究,探索神经网络算法,使其更加完善,从而保证计算机整体性能的提高。
参考文献:
[1]陈竺.计算机网络连接增强优化中的神经网络算法[J].电子技术与软件工程,2014(19).
[2]史望聪.神经网络在计算机网络安全评价中的应用分析[J].自动化与仪器仪表,2016(06).
作者:王阳 单位:吉林工程职业学院