前言:在撰写人工智能的过程中,我们可以学习和借鉴他人的优秀作品,小编整理了5篇优秀范文,希望能够为您的写作提供参考和借鉴。
常识推理中的某些弗协调、非单调和容错性因素
AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。[②]“次协调逻辑”(ParaconsistentLogic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。
在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立:
?(Aù?A)
Aù?A→B
A→(?A→B)
摘要:随着人工智能的深入发展,其应用的领域越来越广,对于某些行业有着深刻的影响。笔者研究的是人工智能对会计行业的影响及对会计人员的建议,主要利用对比分析法,通过横向和纵向对比分析人工智能下的会计行业。到我国人工智能在会计行业的应用现状和展望,再到人工智能对会计行业的影响,最后分析出会计人员如何应对人工智能时代的到来。
关键词:人工智能;会计行业;影响
一、研究背景及意义
在刚刚过去的2016年,围棋领域的“人机大战”掀起一股人工智能的浪潮,以“阿尔法狗”为代表的人工智能战胜了韩国的围棋高手李世石,由此人工智能的发展引人深思。很多人会觉得人工智能是一个很遥远的事情,始终抱以一种怀疑的态度去看待人工智能。其实不然,人工智能从上世纪40年展至今,且不说现在家家都在使用,但是在我们的生活中至少是随处可见的,比如,计算机行业、银行业、会计业等都在使用的智能处理系统,而且范围越来越广,技术越来越具有深度。在传统的会计行业中,会计核算工作从凭证到报表都是由人工来完成的,但是现如今财务会计中的大部分工作都可以由财务软件来完成,大大的解放了会计中的人力。也是在去年的3月份,著名的会计师事务所德勤对外宣布将人工智能引入会计行业,这一宣布也是几家欢喜几家愁。虽然人工智能让会计实务变得更加便捷、精准,但是传统会计行业中那些被人工智能替代的手工记账人员将何去何从?笔者从一个会计人的角度对人工智能时代下的会计行业进行探讨,目的是明晰人工智能对会计行业的影响,以及传统的会计人员如何应对人工智能时代的到来。
二、我国人工智能在会计行业的应用现状和展望
(一)我国人工智能在会计行业的应用现状会计行业主要涉及的是企事业单位、政府机构和会计师事务所,这三大类是有会计核算系统的主要主体。就我国来说,很多涉及会计工作主体对于人工智能的应用仅限于会计系统,而且在会计系统中一些类似于审核、判断等主观行为还是要财务人员手工进行操作。目前市场上已经存在各种可以满足不同类型组织结构会计主体业务需求的会计软件,可以说应用已经十分广泛了。但是就会计师事务所来说,作为主要业务之一的审计业务在人工智能方面应用的稍微较少,因为对于上市公司审计业务而言,需要填制大量的审计工作底稿,包括电子版和纸质版,这些数据的录入目前还是依赖于手工。
摘要:围绕人工智能课程教学中存在的问题,将“吊牌识别”案例引入人工智能课程实践教学,以此提高人工智能课程理论教学质量,激发学生学习人工智能技术的兴趣,从而更好地培养学生在人工智能领域的实践能力与创新能力。
关键词:人工智能;实践教学;吊牌识别
人工智能融合了计算机、控制学、语言学、数学、心理学、神经学等多学科专业知识[1-3]。2017年7月,国务院发布了《新一代人工智能发展规划》[4-5]。2018年4月,教育部印发《高等学校人工智能创新行动计划》,其核心是推动人工智能领域人才的培养[6-7]。《2020—2026年中国人工智能行业市场竞争格局及未来发展趋势报告》的统计数据显示[8],2018年中国人工智能市场规模为339亿元,增长率达56.2%,而2019年中国人工智能市场规模增长到516亿元。人工智能技术发展突飞猛进,伴随而来的是人工智能领域人才需求激增。近三年,越来越多的高校开设了人工智能专业,并在计算机、信息科学和自动化等专业开设人工智能课程,还有部分高校将人工智能课程纳入通识课程体系。但人工智能理论知识具有抽象性、复杂性和涉及面广等特点,教学过程枯燥乏味,使得学生在学习的过程中很难保持热情。如何更好地将人工智能理论知识与实践教学相结合[9-10],是本文研究的重点。本文结合笔者的教学经验,将综合性较强的案例融入实践教学,再以实践教学促进人工智能课程理论教学,激发学生的学习动力,培养学生运用相关理论知识解决实际问题的能力。
1人工智能课程教学中存在的问题
1.1师资力量不足
目前,很多高等院校开始开设人工智能专业,但能够承担该专业授课任务的教师不多,且部分教师是从计算机专业转到人工智能专业的,很多知识也是“现学现卖”,在讲授过程中很难把握好知识的难度和学生的接受程度。
人工智能技术分析1
摘要:目的:探讨人工智能(AI)在年龄相关性黄斑变性诊断中的影响因素。方法:选择2018年1月1日—2019年12月31日在我院筛查且已诊断明确的年龄相关性黄斑变性的100张眼底照相,由AI进行解读。按照位置、对焦、准确、曝光程度、睫毛伪影、中心暗影、周边暗影等对眼底图像进行质量评价,分析眼底图像质量与AI诊断准确性的影响。结果:在现实应用场景中,100例黄斑变性图像,其中拍摄位置不标准为最常见问题占30%,其次为边缘漏光,占27%,现实场景中AI诊断阳性率86%,AI诊断正确率与眼底照相周边是否有暗影具有统计学相关性(P<0.05)。结论:在现实应用场景中AI诊断正确率受眼底图像质量影响,改善眼底照相拍摄质量是提高诊断准确率的重要途径。
关键词:人工智能;黄斑变性;眼底照相;图像质量
年龄相关性黄斑变性(AMD)是发达国家年龄超过50岁人群不可逆转视力丧失的主要原因[1]。AMD疾病逐渐进展,从早期和中期,几乎没有或仅有微妙的视觉变化,最终患者会发生中心视力损伤,早诊断、早干预是防治AMD的重要手段。多种因素参与AMD的疾病进程。多项国内外研究发现,年龄、性别、种族、遗传等是AMD发生的重要影响因素[2]。目前,人工智能(ArtificialIntelligence,AI)基于医疗数据的深度学习已经在眼病领域进行了一系列探索。2016年初,GoogleDeepMind与英国国家健康体系(NHS)开发了一款用于辅助医生快速查看血液测试结果的软件,以辅助决策并提高效率。同年JAMA刊登了gulshan团队研究成果,通过深度学习,AI辅助的软件系统对眼底病检测准确率96%[3]。2018年我国张康团队在Cell刊文,开发出诊断眼病和肺炎的AI系统[4],主要对糖尿病性视网膜病变进行AI辅助诊断。AI已经被应用于老年黄斑变性的检测中,其原理是能够通过观察眼底图像所呈现的玻璃膜疣及视网膜微血管病变体征等,实现对AMD玻璃膜疣的自动检测和量化系统,能够对疾病的客观记录描述,帮助识别和分类AMD患者。目前,相关研究集中在玻璃膜疣的诊断准确率和敏感度的提升方面[5]。但AMD是一个长期、慢性进展的过程,病情复杂,现实场景中的眼底照相质量并不均一,往往受限于场地环境、设备以及受培训人员的技术水平,在真实世界实际应用场景中,获得完美的照相质量相对困难[6],从而影响人工智能辅助诊断。笔者拟通过此次研究,探索图像质量的差异与AI诊断准确率的关系,寻找影响诊断的主要因素,改善医疗技术,进一步提高AI的诊疗准确性,从而提高医疗服务质量。
1资料与方法
1.1一般资料选择2018年1月1日—2019年12月31日在我院筛查的100例年龄相关性黄斑变性患者。本研究经本院医学伦理委员会批准。
摘要:随着广东烟草的高速发展向高质量发展的转变,在深入推进行业“互联网+”行动计划,有效发挥信息化管理的战略支撑作用,提升财务智能化水平的引领下,在计算机技术高度发达的今天,通过借助最先进的科学技术,对传统的财务管理模式进行一场现代化的变革,将人工智能技术和大数据算法引入,搭建财务智能咨询平台,解决大家在财务咨询上面临的共同问题,实现财务会计向管理会计的转型升级。
关键词:人工智能技术;财务管理;烟草企业;高质量发展
一、前言
人工智能就是制造智能的机器,更特指制作智能的程序。人工智能通过研究人类大脑的思考、学习和工作方式,模仿人类的思考方式使计算机能智能的思考问题,然后将研究结果作为开发智能软件和系统的基础。计算机算法,与数据和计算能力并称为人工智能的三大基石。是计算机科学中非常重要的基础科目,常用于计算、资料处理和自动推理。通过借鉴人工智能的技术,搭建财务智能咨询平台,建立自主学习案例及知识库的复杂算法,实现计算机平台咨询交互中的度量权,实现财务咨询的快速、实时、准确的回答,提升效率的同时,为创建智慧财务,促进财务业务融合,充分发挥财务的职能作用,有效发挥财务管理对企业经营的基础性支撑作用走出关键性的一步。
二、传统的财务咨询活动
在日常工作中,市局(公司)财务管理中心直接对接市局(公司)所有部门及各分公司、子公司,并且涉及的财务工作模块、工作环节多。财务人员在完成自身工作职责内容外,还需要对各类重复的财务基础问题的咨询进行解答,占用了财务人员的大量的工作时间,降低了工作效率。而从财务咨询者的角度出发,由于财务业务的严谨性,在处理财务问题中都希望得到最专业的财务人员指导,从而确保财务相关工作的准确性。目前传统的财务咨询方式包括电话咨询、现场咨询、微信咨询、邮件咨询等,遇到被咨询财务人员忙碌,外出,开会,请假等原因,咨询者不能得到及时回复,就需要等待或是再次咨询,这时耗费的时间会更长,效率更低。传统的咨询方式的局限性制约了相关人员工作效率的提升。