前言:本站为你精心整理了有机农业低碳发展趋势范文,希望能为你的创作提供参考价值,我们的客服老师可以帮助你提供个性化的参考范文,欢迎咨询。
1有机和常规生产中的温室气体排放比较
农业生态系统的温室气体产生是一个复杂的过程,气候、植被、土质及农田管理诸条件中任何一个因子的微小变化,都会改变CO2、N2O、CH4的产生和排放。相对于常规农作,有机农业禁止合成的化学品投入,一定程度上影响着温室气体的产生和排放。
1.1二氧化碳(CO2)排放
农业源CO2的排放主要有两个途径:化石燃料燃烧引起的直接排放和能源间接消耗的排放(如化肥和农药的生产和运输)[57],其中合成化学氮肥的能耗造成的CO2间接排放达0.4~0.6Gt[89],相当于全球农业直接排放的10%。有机农业的原则之一是减少不可再生资源的使用,相对于常规农作,有机农业不使用合成的农药和化肥。研究表明,有机生产比集约化常规生产能够明显减少能源的消耗[67,1011]。不同地区农产品在有机和常规农作间CO2的排放差异。由表1可知,冬小麦的有机种植比常规生产减少46%~57%的CO2排放量,而种植有机土豆则减少13%~33%的CO2排放量[1214]。其中,农药和化肥合成造成的CO2间接排放占据一定比例:例如,英国常规小麦生产中,化肥和农药占总能耗的比例分别为56%和11%[8];美国的常规小麦和玉米生产则是30%~40%和9%~11%[22];中国常规梨生产化肥占总能耗的29%~41%[20]。因此,从单位面积(每公顷)CO2排放量看,有机农业CO2总排放量低于常规农作,主要是与有机农业的标准有关,例如,有机农业禁止高能耗的化学氮肥和农药的投入以及较少喂养高能耗的动物饲料。然而,如果从另一角度——单位产量来比较有机和常规生产CO2排放的差异,不同农作排放的研究结果则不尽相同。例如:种植1hm2有机土豆比生产常规土豆CO2排放量低,但生产1t有机土豆CO2排放量则比常规土豆高[1314];同样有机牧场的养殖研究表明,生产1kg有机牛奶的平均CO2排放量比常规牛奶高[16];与常规梨生产相比,生产1t有机梨的CO2排放量在不同地区结果不同,有高有低[20]。不同农作单位产量CO2排放量变化范围从+81%到50%,主要影响因素是产量和机械耕作的强度[1221]。从耕作角度研究有机农业CO2的排放,有研究人员提出一些地区的有机生产中,因禁止使用除草剂而大量使用机械除草,导致燃油消耗产生的CO2排放量增多。但大多数研究表明机械耕作的能耗通常少于合成化肥和农药的能耗[5,2324]。总体来说,相对于常规农作,有机农业通过减少投入品的使用,作物轮作,尤其是和大豆的轮作,提高了肥料使用效率,减少了虫害管理的农业措施,从而直接(使用成本)和间接(化学生产和运输)地减少了使用化肥投入品的能源消耗[5,11,2526]。
1.2氧化亚氮(N2O)排放
农业源N2O的排放占全球人类活动排放的60%[2](N2O的温室气体当量值为CO2的298倍[2]),主要来自于化肥和有机氮肥的使用及豆科作物种植;排放量取决于肥料的种类以及肥料的处理和施用方式。有机农业禁止化肥的施用不仅能够减少生产化肥的能耗,而且减少化肥使用过程中NOx排放。文献报道在1960~2000年期间,随着化肥施用量的增多,全球作物氮的利用效率从80%降到30%,从而增加了NOx排放的风险[27]。同样,在中国,化肥投入和有机物质投入对农田直接NOx排放的贡献份额分别为77.64%和15.57%[28]。按照目前每年生产化学氮肥的数量计算,排放N2O的总量是农业上人为温室气体排放的10%[9]。因此,有机农业在一定程度上能够减少N2O的排放风险。基于单位面积计算N2O排放,有机农业比常规耕作低[2930],而Syvsalo等[31]指出有机牧场产生的N2O排放比常规耕作低,但没有明显差异。如果基于单位产量计算N2O的排放,两种农作系统则相似[67,32],或有机农作略高,例如Lundstrm[16]研究了奶牛场的NOx排放量,发现生产单位产量(1kg)有机牛奶的NOx排放量略高于常规牛奶生产。与此同时,有研究表明生产管理措施能够减少有机农业中N2O的排放率,如耕作方式、粪肥的使用、种植豆科作物(N来源)及牧场和草地管理等。Unwin等[33]认为,通过改进排水,减少耕作和机械除草(而不是除草剂的使用),有机耕作可以减少N2O的排放。也有研究表明一些因素会提高有机农业上N2O的排放[34],比如豆科作物的高比例种植,堆肥过程N2O的排放,高强度的耕作导致土壤氮的矿化和N2O的排放。
1.3甲烷(CH4)排放
农业源CH4的排放占全球人类活动排放的50%[2](CH4的温室气体当量值是CO2的25倍)[2],主要来自于牲畜养殖、水稻种植以及废弃物分解(包括动植物废弃物和垃圾),其中将近80%的CH4排放来自牲畜肠道消化代谢,而20%来自排泄物,并且,液态排泄物释放CH4的可能性比固体排泄物大。动物粪肥的储藏和处理以及饲料的种类均会影响农业CH4的排放。研究表明:CH4排放的效果主要和堆肥的产生和使用有关系。如果有机系统的堆肥进行发酵,经常通风能够减少厌氧产生的CH4。此外,有机养殖通常在牧场和稻草房内进行;而常规养殖通常使用粪池进行粪肥处理,在这种厌氧环境下极易产生大量的CH4[24]。然而,相对于常规养殖的粮食喂养,有机养殖的牲畜通常摄取低质量的粗饲料,增加了CH4排放的可能,研究发现有机养殖粗粮的高投入导致CH4的排放量增加8%~10%[7,16,35]。如果研究单位面积CH4的排放,重要的影响因素主要包括牲畜放养的密度、每头牛喂养的周期、粪肥系统、反刍牲畜的比例等。Cobb等[29]、Unwin等[33]、Lampkin等[36]研究发现有机农场单位面积的CH4排放比常规低。原因主要是有机养殖的牲畜密度通常比常规低,而喂养周期比较长,其中非产奶期的比例比常规喂养低,从而产生较少的CH4排放;但有机农场反刍牲畜的比例为80%而常规则为60%,这一因素造成的CH4排放量增加与有机农场的低密度养殖减少CH4排放可以相互抵消。而单位产量的CH4排放量,尤其是奶牛场,有机和常规没有明显的区别[67,37];而Unwin等[33]和Piorr等[34]研究发现有机农场的产奶量比常规低20%,从而有机奶场单位牛奶的CH4排放比较高。土壤能够氧化CH4,从而减少CH4排放而成为CH4库。有研究发现有机管理的土壤CH4自身调节的效率比常规管理的土壤高,施有机肥的土壤CH4氧化能力是施化肥土壤的两倍[3839]。然而,由于缺乏CH4排放研究,有机农业环境资源利用很少评估CH4的净平衡及其他定量数据。专家根据文献推导出以下结论:有机农业中单位面积CH4的排放可能较少,而单位产量的CH4排放则比常规农作高(仅限于牛奶生产研究)。
2有机农作土壤固碳潜能分析
另一个减少温室气体排放的措施是提高土壤的固碳能力。实例研究表明有机农业不仅能够减排,而且通过施入有机投入品(生物质和粪肥),采用保护地耕作(覆盖耕作)、大豆轮作等农业措施,提高土壤有机碳的含量[4,25,40]。不同地区的专家针对有机管理的农田土壤固碳潜能开展了研究,发现有机管理的土壤每年每公顷固碳量为0.2~0.4t(C),每年固定0.9~2.4Gt的CO2,相当于全年农业排放温室气体总量的15%~47%[4145];同样,有机管理土壤的每年每公顷固碳量为300~600kg[10]。一系列有机和常规农田土壤固碳比较研究也显示,有机管理的土壤中有机质含量比常规管理土壤的有机质含量高[45],有机农田的土壤固碳高于常规农田。例如,Pimentel等[11]开展了22年的试验发现,有机管理的土壤有机碳含量提高15%~28%,而常规耕作则仅提高9%;美国中部35组有机和常规耕作的比较研究也发现,有机管理措施下的土壤有机碳含量比常规耕作高很多[46]。瑞士专家经过长期(21年)试验表明,有机管理系统土壤碳含量稳定,而常规管理系统中碳含量减少15%;Clark等[47]8年长期试验表明,有机低投入系统的土壤有机碳含量比常规农作提高10%。同样,在荷兰,70年有机管理的农场土壤有机碳含量明显高于常规管理[4849]。
分析有机管理土壤有机碳含量比常规高的原因在于,有机农田系统投入较多的动植物残体增加土壤的碳含量,或者减缓土壤有机碳的分解率,即碳投入率超过了分解率。研究表明相对于常规和免耕操作而言,有机农户通常施入较多的有机碳或者含有机碳的投入品,通过投入合适碳氮比的多种有机物质创造一个相对稳定的有机物质库[50];同样,USDA在马里兰进行了长期的有机生产和免耕常规生产比较研究,发现长期有机耕作的土壤明显优于常规免耕,原因在于使用粪肥和覆盖作物能够弥补耕作引起的碳损失[51]。Drinkwater等[52]在宾夕法尼亚州开展有机和常规玉米大豆种植系统的比较试验,发现与豆科植物的长期轮作,不仅可减少土壤有机质投入,降低土壤碳氮比,同时可提高土壤有机碳含量,改善土壤的物理性质。同样,有机农作比常规农作确实能增加15%~28%的有机碳。因此,动物粪肥、有机物质的多样性以及碳氮比、腐烂率等因素都可能对这个过程产生很重要的影响[45]。Rodale研究所的科学家们研究认为,如果在所有可耕种的土地上开展有机农作,则能够减少40%的CO2排放。
尽管目前的研究证实有机管理在土壤固碳方面存在很高潜力。然而,测量一定时期内碳存储具有一定的复杂性和不确定性,例如地区多样性,测量不确定性,过程不确定性,实际的突发性,以及减少渗漏和储存碳的适当定价等[53];同时,从长期看,通过土壤固碳减少大气温室气体是有限的,不可能无限制地提高土壤有机质的水平,到一定程度会达到一个平衡,视土壤和气候条件以及管理措施而定[54]。例如,Foereid等[42]对有机管理的土壤固碳进行了模拟,发现第1个50年的土壤有机碳含量增长很快(每年碳增长率为10~40g•m2),之后趋于平稳,100年后几乎达到饱和状态。尽管上述研究表明土壤固碳的潜能不是无限制的,但一定程度趋于平稳并达到饱和。也有研究表明,有机碳长久稳定的状态取决于土壤管理以及避免碳减少的措施,例如李玉娥等[55]研究发现退耕还草后土壤CO2排放通量明显减少;通过改进的管理措施,全球农业土壤的固碳能力能够达到21~51Gt碳,相当于2~3年大气的温室气体排放(参照2004年的排放量)[40]。因此,从长期看,相对于常规农作,有机管理方式在减少能源消耗和提高土壤固碳能力方面有一定的优势和潜力。
3结论与展望
综上所述,有机农业在减排方面符合IPCC的标准(IPCC,InternationalPanelonClimateChange,联合国政府间气候变化工作小组),不使用合成的农药和化肥,存储较多的碳,减少温室气体的排放,消除非生物源的N2O排放,减少粪肥厌氧消化产生的CH4。尽管全球不同地区的生产环境不同,管理措施各异,减排的总量很难进行定性和定量分析,但如果所有的农田系统都转换为有机生产,则由减少化肥生产和施用减少的排放量大约是农业温室气体排放量的20%,其中10%N2O的排放,10%低能耗的需求。再加上农田和牧场土壤固定的碳,能够减少目前每年农业温室气体排放的40%~72%。目前,发达国家已经开展大量的有机农业减排固碳的研究,并已经有长期的试验数据支撑,研究成果也已在实际生产减排中开始付诸于实际,得到政府和民众的支持。然而,发展中国家(包括中国)目前依旧缺少有机农业温室气体减排和土壤固碳的相关研究,能够为实际减排管理提供科技支撑或数据量化衡量的研究成果更是少之又少。尽管中国有机管理的土地面积已经在全世界名列第二,但政府和公众将更多的焦点则是放在有机食品的安全、品质和经济效益上,关于有机农业环境效益方面的系统研究尚未引起足够的重视,相关的研究报道则很少,仅见Liu[56]对有机农产品生产链的环境评估做了案例研究;而有机农业环境效益方面的政策支持则更少。因此,在中国特定的气候、土壤和耕种方式下实施有机农业,禁止合成的化肥和农药投入,对有机农业减排和土壤固碳开展系统研究,掌握有机农业生产体系中温室气体的排放和固碳机理,一方面有利于推广优化农业生态系统的农业措施,缓解温室效应,改善土壤质量,提高农业生产力和整个环境质量;另一方面也有助于提升我国在未来全球变暖谈判中的地位和权威性,为节能减排政策的制定和措施的实施提供科学依据。