首页 > 文章中心 > 正文

地理信息在农业中的作用

前言:本站为你精心整理了地理信息在农业中的作用范文,希望能为你的创作提供参考价值,我们的客服老师可以帮助你提供个性化的参考范文,欢迎咨询。

地理信息在农业中的作用

1地理信息技术

地理信息技术是以现代信息技术为技术基础,以全球卫星定位系统(GPS)、地理信息系统(GIS)、遥感(RS)等空间信息技术为手段,以计算机、现代网络和通讯技术为技术支撑,为实现快速、高保真、大容量地获取、处理、分析、应用、传输、存储和管理与空间位置有关的数据而建立起的一个技术体系。地理信息技术的快速发展为农业数字化建设和自动化、智能化管理提供坚实的技术基础,并逐渐成为以可持续发展为目标的精准农业技术体系的核心技术。然而,国内外关于地理信息技术应用于精准农业的研究基本上仍是集中于面向大田作物生产的精准农作中的3S技术应用,而没有较全面地研究地理信息技术在整个精准农业体系中的地位和作用。本文旨在探讨地理信息技术在精准农业中的应用前景和问题,为3S技术在精准农业中应用提供思路。

2地理信息技术发展现状

以GPS/GLONASS,以及欧盟即将通过“伽利略”计划建立起的导航卫星系统为代表的全球卫星定位技术具有快速、方便地获取高精度位置信息的优势。目前,差分定位(DifferentialGPS,简称DGPS)系统的定位精度可达到亚米级水平,实时动态差分(RealTimeKine-matic,简称RTK)技术能够在野外实时得到厘米级的定位精度,特别是美国政府取消GPS数据精度选用政策(SA),GPS的民间用户将能够使定位精度提高10倍。因此,全球卫星定位技术将在很多领域逐渐取代常规的光学和电子测量定位仪器。卫星定位技术与现代通讯技术的结合,使空间定位技术发生巨大变革,为信息化农业获取高精度定位信息提供了技术保障。遥感技术蓬勃发展,能够获取多传感器、多时相、高分辨率(空间分辨率、时间分辨率、光谱分辨率)的直接或间接反映地球表层地物光谱特征的遥感数据。极高分辨率的卫星遥感影像(如0.61m分辨率QuickBird)民用化和商业化,能够满足大比例尺的农业、资源环境等领域的应用,将成为信息获取的重要数据源。高光谱遥感的发展,展现出遥感在农业中应用的蓬勃生机。在遥感影像处理方面,引入多源信息融合技术和智能专家系统使遥感信息提取迈上一个新的台阶[9]。地理信息系统正向网络化、组件化发展[10],GIS逐步融入IT主流,其应用正走向企业化和社会化。GIS传统功能日臻完善,如查询统计、空间分析、编辑、地理数据可视化、制图等;系统分析和设计全面采用面向对象技术(OOA&OOD),以及空间数据库技术的发展等都为GIS在农业中应用提供很强的理论和技术基础[11]。所有这些核心地理信息技术的发展为精准农业田间信息获取、分析、管理和决策,以及系统集成研究与实践提供了技术基础。

3精准农业技术思想

3.1精准农业的技术思想

上世纪80年代初期,根据农田内以米为单位的小区作物产量、生长环境条件等具有明显的时空差异性,国外学者产生了对农作物实施定位管理(Site-specificManagement)、根据实际需要进行变量投入(VariableRateTechnology)等农业生产的精准管理思想,进而提出了精准农业(PrecisionAgriculture)的概念。精准农业的思想实质就是通过各种技术手段来获取农田内不同单元小区的农作物具体生产环境信息,并根据这些信息确定各个小区内的最为经济和科学合理的农业生产投入,达到获得经济、环境等方面最高回报的目的,从而实现农业生产的精准管理[2,3]。

3.2精准农业技术体系

精准农业强调经济、生态和社会效益的统一,实现定位、定量、定时的最优化生产管理,由此可见,精准农业是一种基于空间信息管理和变异分析的现代农业管理策略和农业操作技术体系,以地理信息技术为主体的信息技术是精准农业的技术核心,基于知识和先进技术的现代农田精准农业技术体系至少包括以下方面:地理信息技术(GIS、RS、GPS)、生物技术、农业专家系统(ES)、决策支持系统(DSS)、工程装备技术等[13]。通常所说的精准农业的核心是强调减少种植管理过程中的农业投入,因此研究将精准农业分为田间信息获取、信息分析处理、决策分析、精准实施4个过程[12]。精准农业的目标不单是尽量减少投入,更重要的是要获得经济、环境等方面的最高回报,因此笔者认为整个精准农业种植循环过程应该经过产前规划、产中种植管理、产后分析、产后加工和产后销售等5个环节。其中产中种植管理是体现精准农业核心思想的重要环节,几乎涉及精准农业技术体系中的所有技术。目前,国内外研究的核心在于种植管理中的时空变异信息获取与提取(传感器、遥感软硬件研制)技术、信息处理与分析方法、决策分析集成系统,以及携带DGPS的智能农机系统,这些正是精准农业实施和推广必须解决的关键技术。

3.3精准农业发展现状

20世纪90年代以来,发达国家许多学者着力于研究运用高新技术提高农业劳动生产率和农资利用率,以达到经济效益、生态效益和社会效益的最大统一,最终实现农业生产可持续发展。他们的研究取得了令人瞩目的成果,并建立了若干支持精细农业技术的示范应用系统[1,4~7],如美国CaseIH公司的AFS(AdvancedFarm-ingSystem)、英国MasseyFerguson的FieldStar、美国JohnDeree公司的GreenStar等。在实践过程中,也已经获得较好的效果,精准农业在大农场生产中已得到较广泛的应用,并且许多成熟的技术已经形成。据统计,到1995年,美国约有5%的作物面积上不同程度地应用了精准农业技术[12],在西方发达国家,精准农业技术思想也逐渐被农场管理人员了解和接受,并且成立了许多以精准农业为基础的服务机构。近年来不仅西方发达国家对精准农业的技术实践引起重视,在日本、韩国、巴西、马来西亚等国亦已开始了试验示范研究[8]。在我国,从事农业研究的人员首先开始了精准农业研究,随后生物技术、信息技术、地理科学和生态学研究人员对此表示了浓厚的兴趣,并且先后开展了关于技术体系、发展策略等方面的研究[14~23]。但从总体上我国对精准农业的研究还处在引进和消化吸收阶段,还没有形成较为系统的学术思想和技术体系。目前已经在北京和上海建成两个精准农业示范区。

4地理信息技术在精准农业中应用

精准农业实施的前提是及时采集分析土壤肥力和作物生长状况的空间差异信息,生成田间管理处方,以实现精准的定位和定量的田间管理,因此,地理信息技术应在精准农业中扮演重要的角色。国外关于精准农业的研究基本上仍是集中于利用3S空间信息技术和作物生产管理决策支持技术(DSS)为基础的、面向大田作物生产的精准农作技术,而没有较全面地研究地理信息技术在整个精准农业体系中的应用。

4.1全球定位系统应用

GPS技术为土壤类型、土壤肥力特性、水分、作物生长发育状况、病虫草害及农作物产量等田间信息采样和决策方案的田间实施提供准确的空间位置信息。在精准农业中,GPS作用主要有三点:控制测量、农田信息采集定位(采样定位和遥感信息定位)和控制导航。目前,GPS应用研究主要在研制基于移动电脑或掌上电脑的农田信息采集系统和携带GPS接收机的智能农机系统两个方面。如美国FieldWorker公司的基于掌上电脑的信息采集软件FieldWorker能很好地满足精准农业农田信息采集的需要;美国Trimble公司的AgGPS160PortableComputer能实现田间成图、各种作物及其生长环境属性信息记录、获取来自各种田间环境传感器的信息。智能农业机械在田间进行农作生产时通过GPS获取的精确定位信息实施导航监控,同时能够实时获得农作物生长状态信息和与之相关的空间位置信息。目前智能农机应用研究最为成功的是带有GPS定位系统的能够获取田间作物产量信息的联合收割机[24]。变量施用机具是精准农业的田间实现,国内外的研究均很多,如变量施肥机、变量播种机、变量灌溉和喷药机等,其中变量施肥是精准农业变量施用技术的第一项内容,也是研究最多的项目,但无论如何,单纯用于农田信息采集的软件系统将随着遥感在农田信息获取应用的不断深入而被淘汰,取代它的将是集成GPS的遥感系统与智能农机系统。可以预见,集成GPS的遥感成像系统将在获取田间“空间差异”信息方面发挥巨大作用。

4.2遥感应用

田间时空变异信息获取方式有传统田间采样测试、GPS田间信息采集、智能农机系统作业采集和多平台遥感信息采集系统。然而遥感能够以“无损测试”方式方便、及时、准确地获取反映较大面积内的“面状”地物性质与状态信息。而其它方式获取的“点状”信息显然不足以了解全局,而且人工采样都会对作物造成不同程度上破坏。因此遥感将在实现大面积情况下作物长势与营养实时诊断中发挥不可替代的作用。目前遥感应用研究主要集中在对地面光谱测量数据和采样测试相关数据的分析,建立遥感数据与土壤状况或作物生物物理化学参数(如叶面积指数、叶绿素含量、土壤特性等)之间的相关关系,结合作物生态生理过程间接获取作物农学特性(作物冠层营养水平、籽粒与生物质产量、质量等信息)。在大面积农作物宏观长势监测、农作物宏观估产、农情宏观预报、农业资源调查等方面,遥感已经发挥其应有的作用,而且研制出了可行的技术路线[28,29],如东北玉米、华北小麦和南方水稻估产精度达到90%以上。高光谱遥感是遥感发展的一个重要趋势,光谱分辨率达到纳米级的高光谱遥感数据可以很好地描述作物的“红边”特性(红边位置、红边斜率、“红移”、“蓝移”),区分作物叶片生化成分、含量及其变化[27],还可以用来减弱土壤对作物光谱的影响,作物具有一些明显的、独特的吸收特征。作物生物物理和生物化学信息是研究理解植被生态系统过程和生理机制的重要参数,是诊断植物营养状况的重要依据,国内外许多学者已经涉足高光谱遥感在植被生物物理信息和生物化学信息提取方面的研究[25,26]。高光谱遥感以其高光谱分辨率特性所携带的丰富光谱信息为遥感应用带来了强大的活力,通过分析高光谱植被指数与农作物特征的关系,选择表征农作物特征的特定波段和光谱参量可以较好地反演作物生物物理和生物化学信息。在精准农业体系中,遥感(特别是高光谱遥感)将为精准农业实施提供大量的田间时空变化信息,遥感技术将成为监测土壤和作物养分变化、水分胁迫和病虫害等的主要数据源。由于航空、航天遥感成本较高,而且受信息获取的滞后性、信息分析处理方法等因素的限制,目前许多学者开始研制基于地物光谱特征,并用于田间低成本间接测定作物养分和生化参数的仪器和工具,如NDVI测量仪、LAI测量仪、谷物品质测量仪等,这在卫星和航空遥感技术进一步发展和成熟前,正在被发展为高密度获取农田信息的技术手段。

4.3地理信息系统应用

GIS在精准农业技术体系中的地位举足轻重,其作用不仅在于从田间信息采集、信息处理与管理、信息分析,到田间决策方案实施的整个种植管理过程,而且贯穿规划、种植管理、产后分析、产后加工及销售的整个种植循环过程。这要归功于精准农业实施对空间信息的依赖性。在精准农业体系中,GIS不再是一个孤立的系统,而是围绕精准农业核心思想而提供较全面的地理信息服务的平台,而且该平台与其它系统或用户之间通过信息交换而紧密联系。概括来说,这种地理信息服务主要包括信息管理服务、信息交换与更新服务、信息决策分析服务和信息服务等4项,如图2所示。

4.3.1农田信息管理

农田信息具有多源性,具体表现在存储格式多样性、多尺度性、获取方式多样性,另外还包括系统或数据库数据组织的复杂性。通过GIS平台,在融合多源数据的基础上建立农田管理系统,实现对多源、多时相农田信息的有序管理和分析,这是精准农业实施的基础,其作用表现在数据组织和集成管理、空间分析查询、空间数据更新与综合处理、可视化分析与表达。GIS为田间信息采集提供基础信息,也为田间变量实施决策分析提供信息源,因此农田地理信息系统是精准农业实施的信息管理员。目前GIS在国外精准农业应用中还处在农田边界图管理、土壤肥力管理、产量分布图管理分析和GIS制图阶段,并没有充分发挥GIS应有的作用,相应的管理软件也不成熟。虽然经过几十年的发展,国外许多GIS产商开发了诸如ArcGIS产品系列、MapInfo系列等通用GIS软件,但这些软件与农业生产有关的功能只是很小一部分,而且它们价格昂贵。然而,应用于精准农业的GIS应用系统应该是小型廉价且适用的农场信息系统FIS(FarmInformationSystem)。因此根据农业信息采集、存储和处理分析的特点,研发功能针对性强的FIS是农业GIS发展的一个方向。

4.3.2信息更新与交换

信息更新与交换服务是服务平台的重要组成部分。数据是系统的血液,平台的生命力在于信息的现势性及可更新性。信息更新一般分为两个层次:一是不定期的局部数据更新;二是周期性的全局数据更新。信息交换是信息进出服务平台的通道,解决服务平台与各种数据采集系统、应用系统之间的数据交换问题。遥感信息的特点决定了它必将成为农田信息获取的主要手段,然而从遥感获取的不是直接用于精准农业的信息,如土壤水分、作物冠层生化参数等,而需要通过分析建立遥感信息与土壤和作物生长状态相关的参数之间的关系,这是限制遥感信息应用与农业信息获取的“瓶颈”。GIS的参与将为遥感信息提取提供新的思路,提供背景数据和分析方法。遥感和地理信息集成研究,脱离庞大昂贵的遥感影像处理系统,开发服务于具体应用的遥感和GIS集成系统,是GIS应用于农业的又一个重要方向。

4.3.3决策分析

决策分析服务是整个地理信息服务平台的核心部分,利用已有的信息,根据不同应用目的,集成相应的知识和模型,分析生成供决策服务的知识,这是地理信息技术在精准农业应用中的首要目的。信息分析服务是一个知识挖掘的过程,其关键是GIS与专家系统、模型库系统集成,其集成程度决定分析效率和分析结果的可靠性。决策分析可以归纳为产前规划评价分析、产中监测与控制分析,以及产后分析与销售管理。规划评价主要利用区域自然要素、社会经济要素、产量历史数据、作物品种特性等进行农业区的规划、种植区划、作物种植适宜性评价和作物品质区划,这方面的GIS应用研究取得了一定的进展[32,33]。实现以高产、高效、优质和实时管理为目标,为农业生产提供一个合理、详细、完整的农田作业规划,它是精准农业实施的基础。如通过分析产量数据、肥力水平和作物生长的适宜性,选择合适的品种、肥料和农业机械设备,制定合理的耕作计划。监测与控制分析是信息分析决策服务的一个重要内容,是最能体现精准农业核心思想的内容。将GIS作为决策分析的平台为精准农业实施提供决策和控制的依据是其在精准农业中的另一个发展方向。通过GIS集成作物栽培管理辅助决策支持系统与作物生产管理与长势预测模拟模型、投入产出模拟模型和智能化农作专家系统,根据作物长势和其背景状况做出诊断,提出科学处方,调控操作。将不同类型的地理数据,如土壤、作物、气象和土地历史等,与水分运动、溶质运移、农药渗漏、作物生长、土壤侵蚀等各种模拟模型和专家知识和推理机整合,产生支持定位实施的“农作处方”,这一切都需要集成模拟模型和专家系统的GIS应用服务平台的支持。也正是GIS的这一功能才使得用于变量作业的农艺处方生成得以实现,同时也能够通过专家系统实现精准农业实施中的自动控制。国内有学者开始研究采用GIS进行施肥推荐处方生成[30,31]。

4.3.4产后分析与销售管理

从精准农业实施的经济效益和产业化角度考虑,GIS在精准农业中的应用并没有随着精准农业田间实施全过程的结束而终止,它还在后续工作中起着重要作用。利用产后产量分析为下一种植循环的规划提供决策信息,这是当前国外精准农业体系中注意得比较多的一项内容,但仅此而已,它们并没有从市场销售角度考虑GIS的应用。目前,作物生产已开始由单纯追求高产模式向优质、专用和高效的方向转变,利用品质监测信息可用于指导粮食分类加工,大幅度提高加工品质和附加值,这是产后基于GIS分析的又一个内容。市场分析是根据作物产量和品质,以及社会经济要素进行分析,用于指导粮食销售价格和销售方向,从而提高粮食生产的经济效益。销售管理主要对客户和粮食配送的管理,分为客户关系管理和物流管理,它是提高粮食销售管理效率的必要前提。因此研发为精准农业服务的产后市场分析和销售管理的应用软件是GIS应用于精准农业中的一个重要补充,具有较大应用前景。

4.3.5空间信息

利用GIS进行空间信息服务是精准农业体系中“空间变异信息”的重要消费者,它通过Internet或无线(有线)通讯向公众原始和分析结果信息。的空间信息可以包括农田作物长势监测信息、作物产量及品质监测和预测信息、产品供需分布信息等,空间信息将使地理信息技术在精准农业中的应用走向社会化,这是产业化发展的重要方向。

5应用前景与产业化发展

实施精准农业不但可以最大限度提高农业现实生产力,而且是实现优质、高产、低耗和环保的可持续发展农业的有效途径。因而精准农业技术被认为是21世纪农业科技发展的前沿,是科技含量最高、集成综合性最强的现代农业生产管理技术之一。它的应用实践和快速发展将使人类充分挖掘农田最大的生产潜力、合理利用水肥资源、减少环境污染、大幅度提高农产品产量和品质成为可能。实施精准农业也是解决我国农业由传统农业向现代农业发展过程中所面临的确保农产品总量、调整农业产业结构、改善农产品品质和质量、资源严重不足且利用率低、环境污染等问题的有效方式,将在世纪之交成为我国农业科技革命的重要内容。

地理信息技术在精准农业中的广泛应用为地理信息技术应用开拓了一个领域,也为地理信息技术产业化发展孕育了新的增长点。精准农业要从“示范基地”走向实用化和产业化,“精准农业”示范工程研究是地理信息技术应用于精准农业研究的切入点。在精准农业应用中,地理信息技术的产业化必需从以下几个方面着手:1)利用GIS技术建立农业基础地理信息系统,这是农业信息化的基础;2)加强地理信息技术相关理论和技术研究,如多源数据融合、从遥感影像中作物理化参数快速提取、GIS与专家系统及专业应用模型集成、GIS、GPS与专家系统集成智能作业系统;3)开发针对性强、成本低廉的实用系统,如农田信息管理系统、农田变量施肥处方生成系统等,这是产业化的最佳途径,精准农业产业化不可能是将整个体系作为一个整体提供给用户;4)成立遥感信息服务机构,集中人才优势,充分利用遥感影像信息提取所需的昂贵软硬件,降低信息提取的成本,为广大农田管理或粮食收购工作人员提供信息服务。目前,精准农业技术体系基本上是面向农田作物的,更确切的说是一种“精细农作(PrecisionFarming)”,整个技术要进一步转向包括养殖、加工、市场服务等在内的大农业领域,因此地理信息技术将具有更加广阔的前景。