首页 > 文章中心 > 正文

探讨大麦种植业与遗传育种的发展形式

前言:本站为你精心整理了探讨大麦种植业与遗传育种的发展形式范文,希望能为你的创作提供参考价值,我们的客服老师可以帮助你提供个性化的参考范文,欢迎咨询。

探讨大麦种植业与遗传育种的发展形式

我国大麦产业发展现状大麦在全世界各地广泛栽培。随着全球经济的发展与农业生产结构的调整,大麦需求量不断增长。

1我国是世界大麦的主要起源地之一,大麦遗传资源丰富,种质类型多样,蕴藏着丰富的基因资源,但我国目前大麦产业发展与国际相比,还有很大差距。1.1大麦种植持续下降1945年以来,全球大麦种植面积增加了近一倍,总产增加了3倍多,种植面积和总产的相对增长比例均居禾谷类作物的首位。欧盟各国、俄罗斯、加拿大、乌克兰、澳大利亚和美国是世界主要大麦生产和出口国。与20世纪90年代相比,2000年以后世界大麦种植面积由原来的6000万hm2减少为5500万hm2,但总产量仍维持在1.4亿t左右。多年来世界各地产量比例基本保持稳定,欧洲占50%以上,亚洲、美州、非洲、大洋州依次分别占20%~25%,10%~15%、6%、5%左右[7,8]。我国种植大麦的历史悠久,早在新石器时代中期,古羌族就已在黄河上游开始栽培,距今已有5000年的历史。20世纪初,我国大麦总种植面积曾达到800多万hm2,约占世界总种植面积的1/4左右,直到40年代总种植面积和总产量还分别为654万hm2和626万t,分别占世界总量的13.4%和12.6%,居世界各国之首[9]。随后,大麦总体生产持续下滑,从80年代初的333万hm2降到90年代初的200万hm2,再下降为目前的100万hm2左右,年均种植面积减少10%以上,造成了国产专用大麦原料供应的严重不足。1.2大麦需求不断增加回顾近代全球大麦生产的历史,有两点值得注意:一是随着啤酒和畜牧饲养业的发展,对原料大麦的需求的不断增加,刺激了大麦生产,二战后全球大麦种植面积由4533万hm2发展到70年代末的8733万hm2,总产由5000万t增加到17200万t;二是除耕地严重缺乏需依赖进口的日本之外,生活水平较高的发达国家在啤酒和饲料工业快速发展时期都大力发展大麦生产[9],重视大麦育种等基础研究,作为产业发展的支撑。尽管20世纪80年代以后,发达国家的大麦发展高峰已过,但发展中国家啤酒和饲料工业的发展速度,仍是对大麦需求能否增加的决定因素。随着我国国民经济的持续发展和人们生活水平的不断提高,我国啤酒工业发展迅速,年产量已从1980年不足10万t猛增到2009年的3824.23万t,连续6年净增量居全球首位,已成为世界第一啤酒消费大国。即使如此,我国人均消费量仍然不及世界平均人均消费量的一半,发展空间巨大。同时,我国的畜牧业也表现持续发展,随着人们生活质量的不断提高,膳食结构的改善,肉、蛋、啤酒等副食产品的需求量不断增加,以玉米和大豆(豆粕)为主体的饲料原料已不能满足畜牧业发展的要求,市场饲料大麦的需求也在持续增加[8,11]。据专家分析,至少需要种植350万hm2的大麦才能保证我国对专用型啤酒和饲料大麦原料每年超过1000万t的巨大需求。目前我国啤酒大麦原料60%以上依靠进口,2009年进口量已猛增到173.8万t,超过全球啤酒大麦净贸易量的二分之一,年耗费外汇4亿美元以上[12,13]。假如大麦这种需求与生产背向而驰的状况持续发展,那么我国整个啤酒工业则将更加严重地依赖并受制于国外进口。1.3造成大麦生产下滑的因素造成大麦生产总体下滑的因素很多,如市场和政策导向层面的影响,准入后进口价格的冲击,我国一家一户小规模生产和收购方式难以保证原料质量要求以及金融危机对世界经济的影响等[10]。然而目前国内大麦无论是遗传研究还是实际育种成果均不能为大麦生产发展提供有力的技术支撑,不能提供能与国外优良大麦品种一争高下的国产优质品种,难以在推动生产中担当科技引领的重任也是不容忽视的重要原因。

2大麦遗传育种基础研究状况大麦作为一种集粮食、饲料和工业原料三位一体的重要禾本科作物,世界各国一向对其基础研究给以高度重视。大麦栽培、育种、抗病、抗逆遗传、起源、区域分布等方面的研究已有悠久历史。同时大麦作为一个完全自交的简单二倍体物种,还有染色体数目少且形态大、遗传多样性丰富、种质资源收集全面和遗传图构建完备等特点,是植物遗传和生理研究的理想模式物种[1,14,15]。

2.1国际大麦研发趋势2.1.1遗传育种理论创新与遗传资源发掘以大麦细胞遗传学为核心,世界各国大麦研究工作者从生理性状分析、染色体工程、连锁群建立、资源调查、远缘亲本杂种优势利用、花药及小孢子培养等一系列研究出发,广泛应用化学和辐射诱变等方法,不断为大麦遗传改良研究增添新的技术手段,在一定程度上拓展了大麦改良的途径和方法[16~18]。种质资源创新及新型育种理论与体系的构建是长期以来全球大麦研究的重点。经典遗传图和大量分子标记遗传图谱的成功构建,推动了大麦单基因和复杂基因的遗传定位研究和分子标记辅助筛选的利用[1,19~21]。大麦种质资源鉴定与评价及有益基因的发掘与利用一直备受重视。以日本生物资源所为主的一些研究者通过多年研究,从我国西藏野生大麦中鉴定到籽粒化学组成和相关酶活性特异的材料,为品质改良提供了良好的遗传资源[22];Roy等[23]在318份来自于中东、北非、中亚及高加索地区的野生大麦材料中,筛选到302份斑枯病抗性材料,并利用群体关联作图(associationmapping,AM)分析技术在大麦七条染色体上找到23个斑枯病抗性基因位点,为解决目前商业大麦品种斑枯病易感问题提供了更多的可用基因。美国学者通过转基因技术,培育出了一系列具有抗虫、抗病、耐逆、高β-葡聚酶活性的大麦品系,为大麦增产增收、品质改良创造了新的种质[24,25]。Murray等[25]通过在大麦中过量表达转录因子HvGAMYB,提高了糊粉细胞中水解酶的含量,从而可以增加啤酒大麦麦芽得率。研究人员通过对啤酒大麦麦芽品质的研究发现决定麦芽品质高低的因素有20多种,并对包括总蛋白含量、籽粒饱满度、糖化力、麦芽浸出率和多种淀粉酶和蛋白酶活力等开展了广泛研究,与19个麦芽品质决定要素相关的至少168个QTL被定位[26],为分子标记辅助育种和多基因聚合育种奠定了基础。此外,大麦还被用作生物反应器,表达乳铁传递蛋白及用于防治仔猪ETEC腹泻的FaeG蛋白等[25]。2.1.2基因组研究目前,全球大麦研究已进入基因组学时代[27]。过去十几年间已建立完整大麦EST数据库,可作为基因发掘和功能研究的重要基础。美国、芬兰、德国、日本和苏格兰的五大研究组及其他多国的大麦科学家从近百个包括不同组织器官、不同发育时期、受不同逆境处理的独立cDNA文库获得了超过50万条EST数据,TimClose及他的同事们在现有的EST序列中,发现了约22000个SNP,构建了大麦基因组的SNP图谱[28],而stergaard研究组和Bak-Jensen研究组,用2D电泳分别分离了pI区间为4~7和6~11的103和37个活性蛋白[29~31]。包括生物信息学分析平台、对公众开放的网上数据库、进行基因表达谱分析的商品化大麦DNA芯片、用于基因功能分析和大麦转基因研究的转基因操作体系、能快速获取并鉴定突变体的方法等技术和手段的发展,使大麦基因组学研究的技术平台已逐渐形成,目前已经获得了近千份有精确表型变异描述的T-DNA插入突变体以及大量还没有鉴定检测的突变群体[24];通过图位克隆的方法,已经进行了包括抗白粉病、锈病等真菌病害及多个大麦重要农艺性状控制基因的克隆研究[20,32~34]。

2.2我国大麦研究状况我国大麦科学家从20世纪30年代就开始了对大麦遗传育种的研究,“七五”至“九五”期间,我国大麦遗传育种研究在野生种质资源调查、大麦中国起源中心的推定、大麦品种的引进改良、重要农艺性状的遗传分析、杂种优势的开发利用、细胞工程育种方法的创建与应用等方面做出了出色的工作,使同期我国大麦总体研究水平与国外先进水平逐渐靠拢。由细胞工程育种获得的大麦花培品种在大麦生产中成功推广应用,体现了以生物技术为基础的新型育种方法的技术优势和应用潜力[9]。但“十五”以来,我国大麦研究的地位和水平明显下降,从事大麦研究的单位和人员急剧减少,而且大部分集中在大麦常规育种。由于缺乏遗传育种研究上的源头创新,尽管分布于我国几个大麦主产区的大麦育种研究人员仍然在继续育种实践,但由于育种手段单一,种质资源狭窄陈旧,各地近年来育成的大麦品种推广范围不大,优势特色不明显,没有真正能与国外优良大麦品种很小比例。然而研究证明,作为一种药食同源性植物,大麦不含胆固醇,脂肪含量低,含有可溶性纤维、抗氧化剂及各种维生素和矿物质,食用大麦可降低血压、血中总胆固醇和低密度脂蛋白胆固醇水平。随着各种大麦保健食品的不断推出,用于食用的大麦比例可能有所增加[4~6]。

由此可见,大麦产业具有广阔的发展前景。加强大麦遗传育种研究,培育产量高、性状优的品种是保证供需平衡、促进大麦产业可持续发展的科学基础。本文围绕我国大麦的生产和育种技术研究现状,一争高下的有影响力的国产优质品种,很难为国产大麦生产提供强有力的技术支撑。我国饲料与啤酒工业发展迅速,对饲用及啤用大麦的需求快速增加,但相应的大麦品种研发落后,尤其是在啤用大麦品质方面,直至20世纪末尚缺少相关研究,从而影响了啤用大麦的遗传改良、优质栽培和加工生产,导致国产啤用大麦品质不佳、缺乏市场竞争力。鉴于此,自1999年起,国家自然科学基金委员会农学学科逐步加大对大麦基础研究的支持,1999-2010年共资助大麦相关研究课题56项(其中重点1项),资助领域以遗传育种(包括资源评价和创新)和作物生理及栽培为主,计34项,植物保护领域15项,其他领域7项。这些项目的实施与完成,显著提升了我国大麦基础研究水平,缩短了与发达国家的研究水平差距,促进了大麦的遗传改良和优质生产。现已鉴定与创制了一批株型、麦芽品质和逆境胁迫耐性特异的种质资源,获得了矮杆、耐酸、耐盐、耐旱、耐湿以及麦芽品质性状特异的珍贵种质材料,明确了多个株型、产量、品质及耐逆相关特异基因的位点和遗传多样性,促进了我国大麦种植资源的发掘和利用。目前我国科学家在野生大麦资源收集和利用、大麦品质性状遗传定位、大麦组培和遗传转化体系、大麦耐盐代谢组学研究和大麦条纹花叶病毒抗病机理等方面取得了较好的研究进展,并得到国际同行的高度认可。2012年4月,我国成功举办了第11届国际大麦遗传学大会,进一步推动了各国大麦研究者之间的交流和合作,有利于进一步提升我国大麦科学的研究水平和人才培养。

3加强大麦基础研究的重要性和迫切性不断增长的啤酒和饲料工业对我国原料大麦的巨大需求是促进我国大麦生产更快更好发展的良好机遇和严峻挑战。事实上我国也完全具备发展扩大大麦生产的优越条件。首先,作为世界大麦的主要起源地之一,我国幅员辽阔,生态条件迥异,大麦类型多样,遗传资源丰富,蕴藏着各种特异基因资源可供育种选用。其次,大麦在我国大量种植古已有之,尽管我国现有耕地急剧减少,但大麦在南方地区历来是与小麦复种,大量冬闲田可供大麦种植,与其他作物的种植不发生冲突。因此,发展大麦生产不但能有效解决我国啤酒、饲料原料的自主供应,也是优化作物种植结构,提高对土地、光温等自然资源利用率,实施生态农业的有效举措。但目前我国缺乏功能强大、技术先进、高效率的创新研究平台,既阻碍了对我国丰富大麦基因资源的开掘利用,也限制了对大麦重要农艺性状的遗传分析。由于不能提供在常规方法之外更高效的大麦育种新方法,因而难以解决长期以来大麦育种中的实际难题,选育不出高产、抗逆、优质的大麦品种,无法推动我国大麦生产的快速发展,这正是目前我国大麦科研水平低下,不能有效为大麦生产快速发展提供科技支撑和服务的主要原因。因此,加大对大麦科研的投入,通过大麦遗传育种成果的引领作用,建立起生产和科研二者之间良性互动,对于提高我国大麦科研水平、实现大麦生产健康发展意义重大。

4我国水稻功能基因组计划结合水稻育种改良所取得的成果是基础研究和育种应用密切结合的典范[35]。大麦遗传育种研究要学习借鉴水稻的成功经验,充分利用大麦与水稻之间在遗传上的高度同源性,针对大麦育种中的实际问题,以基因组学为引导,以分子育种平台建设为基础,重点在以下方面开展研究:①基因组学引导下的分子育种平台建设,包括:基因组规模的水稻/大麦同源基因的搜索及利用;禾本科主要作物间主要农艺性状的比较基因组学研究;大麦重要农艺性状相关基因的克隆和功能分析等。②新种质/基因资源的开掘利用,如中国特有野生大麦种质资源的征集、鉴定与系统进化研究;优质、抗逆大麦种质资源的鉴定与相关基因的分离及功能研究;核心种质资源的特异性状等位基因座位多态性的比较分析等。③重要农艺性状的遗传解析,包括:大麦品质(重点为麦芽品质)的形成机理及其调控技术研究和大麦抗病(赤霉病、白粉病等)基因的遗传定位和分子标记开发等。④高效安全的现代育种体系建立,在理论创新上注重大麦综合高效育种和多基因聚合育种的理论和技术研究,“超级”大麦的分子设计及其培育途径研究,并开发高通量、低成本的分子标记辅助育种方法。

5澳大利亚、加拿大、美国、英国等一些国家联合启动了大麦农业合作研究计划(BarleyCAPbarley-cap.cfans.umn.edu/index.htm)。英国、澳大利亚和以色列等国的学者利用现代分子生物学技术共同鉴定大量来自中东“肥沃月湾”(大麦主要起源中心之一)的地方种和野生种以发现抗非生物逆境(抗旱、耐盐)和抗病的种质并应用于育种。鉴于目前我国大麦研究力量分散、基础薄弱,加大项目投入力度、加强资源整合共享就显得更为重要。建议从以下方面采取措施:5.1加大投入力度,建立合作网络通过组织实施基础与应用密切结合的研究项目,整合研究力量,拓展研究领域,使得大麦遗传改良基础研究与遍布全国各地的大麦育种单位更紧密的结合,建立更广阔的网络平台。在国家863育种研究专项之外,若能再启动几个重大研究课题,将有助于建立国内合作网,在促进遗传研究与实际育种结合的基础上,着力培育影响力大、推广面广、能与国外品种抗衡的国产优良大麦新品种。5.2借鉴水稻基因组学研究平台,推动比较基因组学研究近年来,在国家的大力扶助下,通过国家973、国家自然科学基金、863等一系列项目的支持,国家水稻基因组研究聚集了国内外植物科学研究的骨干力量,发展迅猛,卓有成效。借助水稻基因组研究的强大平台、丰硕成果和成功经验,利用大麦与水稻的高度同源性,通过比较基因组学研究,必定会带动我国大麦研究较快发展和水平的较大提高。大麦研究成果反过来又可以为水稻、小麦及其他禾谷类作物借鉴利用,从而推动对禾本科作物共性的认识和理解,进一步提高我国作物科学的总体研究水平和国际竞争力。5.3加强国际合作,充分利用海外智力资源目前在欧洲、北美、澳大利亚以及其他主要大麦科研机构有为数不少的华裔科学家参与从基因组学到遗传育种等不同大麦科研项目,在第10届国际大麦遗传会上,分别代表美国、德国、加拿大、澳大利亚、加拿大、以色列等几乎所有大麦科研发达国家参加会议的就有十多位。这批活跃的海外学者,有着从事大麦研究的丰富经验和创新思路,他们在为任职单位创立科研业绩的同时,也都非常希望能为中国的大麦研究做出贡献,这是我国大麦研究重要的资源和财富。建立专门的国际合作平台或通道,最充分地发挥这批海外专家对我国大麦研究的指导和建设作用,无疑是提高我国大麦科技水平切实有效、意义深远的重要举措。

作者:边秀秀、李志兰、任红艳、王道杰、杨新泉单位:甘肃农业大学图书馆、浙江省自然科学基金委员会、国家自然科学基金委员会生命科学部、河南大学生命科学学院

文档上传者

相关期刊

理论探讨

CSSCI南大期刊 审核时间1-3个月

中共黑龙江省委党校

现代经济探讨

CSSCI南大期刊 审核时间1-3个月

江苏省社科院

物理教学探讨

省级期刊 审核时间1个月内

西南师范大学