首页 > 文章中心 > 正文

农业土壤中重金属的污染探析

前言:本站为你精心整理了农业土壤中重金属的污染探析范文,希望能为你的创作提供参考价值,我们的客服老师可以帮助你提供个性化的参考范文,欢迎咨询。

农业土壤中重金属的污染探析

目前,有关路桥土壤中重金属污染的研究还少见报道.本文通过采集路桥区土壤样品,对其中重金属的污染水平、来源进行探讨,并做出生态风险评价,为当地环境保护提供重要的科学依据.

1材料与方法

1.1样品采集与处理2010年7月采集了路桥区38个农业表层土壤样品(0~10cm),采样点分布如图1(P295)所示.农业土壤既受到人类灌溉、施肥活动的影响,又可能受到大气沉降的影响,污染带有点源和面源结合的特征,具有一定复杂性.为使样品具有代表性,本次采样采用网格法布局,每个样品在100m×100m的采样范围内,取表层土3-5份样品经过均匀混合而成.将采集的样品用聚乙烯塑料袋密封后立刻送到实验室,在室温条件下风干,磨碎并过1mm的筛子,装入经过铬酸洗液清洗过的棕色广口瓶中,避光低温保存.

1.2样品处理与分析参照美国EPA的方法对样品进行消解[10]和仪器分析[11].准确称取0.2500g(精确至0.0001g)土壤样品于微波消解罐,分别加入4mL硝酸、5mL氢氟酸和2mL高氯酸,放入微波消解仪,先在50℃预消解30min,然后按设定的消解程序进行消解.消解结束后,将温度降至40℃以下后取出,放在电加热板上于180℃赶酸约1h.赶酸后,依据少量多次原则,用超纯水清洗消解罐,将样品转移至样品瓶内,定容至20mL.土壤样品中Cu、Pb、Ni、Ag、As、Cd、Zn、Sn、Sb和Hg用ICP-AES测定.所用仪器为PE7000DV型电感耦合等离子体发射光谱仪.仪器参数:雾化气15L•min-1;载气0.8L•min-1;辅助气0.2L•min-1;功率1300W;聚流速1.5mL•min-1.采用标准曲线法定量.在重金属的分析过程中采用土壤标准样品进行过程质量控制,10种元素的测定值均在国家标准参比物质的允许误差范围之内.元素检出限介于0.01~0.17mg•kg-1,加标回收率为73.1%~108.0%,平行样品精密度为0.45%~5.34%.

1.3评价方法

1.3.1内梅罗综合污染指数法内梅罗综合污染指数法能够全面、综合地反映受多种重金属污染的土壤污染状况,得到广泛的使用[3,。

1.3.2地积累指数法Muller提出的地积累指数法利用一种重金属的总含量与其地球化学背景值的关系,能够定量研究重金属的污染程度[14],能够直观反应外源重金属在土壤、沉积物中的富集程度,目前被广泛使用。

1.3.3潜在生态风险指数法Hakanson提出的潜在生态危害指数法[19].同时考虑了土壤中金属浓度、金属污染物的种类、金属毒性水平和水体对金属污染的敏感性四个影响因素.目前有较多的学者采用该方法进行土壤中重金属的生态危害评价。本文结合其他研究[23],将Ni也做了风险评价.参比值的选择是评价重金属生态风险的关键,不同的参比值会造成结果差异,本文参考荷兰土壤目标值作为参比值,评价路桥土壤中重金属的潜在生态危害指数.根据公式(3)计算土壤中重金属的生态危害指数,结合评价标准进行危害程度分析。.4数据分析与整理用SPSS13、Surfer8.0、origin8.0软件进行数据分析和整理.采用SPSS的主因子分析法做来源分析,Surfer的等高线功能绘制浓度分布,origin的作图分析金属生态风险水平.

2结果与讨论

2.1土壤中重金属的分布表3(P297)为路桥区土壤中重金属的统计结果,与《土壤环境质量标准》GB15618-1995二级标准相比[25],路桥区表层土壤中重金属Cd超标最严重,超标率为89.5%,其次是Hg和As,超标率分别为57.9%和39.5%,Pb没有超标.荷兰制定了规范的土壤中重金属的风险基准值[26],本文引用荷兰土壤标准中有关重金属控制水平的目标值和限值进行对比.与荷兰土壤中重金属目标值相比,台州土壤中所有重金属都超标,其中Sb超标最严重,超标率为92.1%,其次是Cd和Hg,超标率均为86.8%,Cu和Zn超标也较高,超标率分别为81.6%和71.1%,Pb、Ni和As超标率都在40%以内.当与荷兰土壤中重金属限值相比,As、Cu、Zn和Sb分别有18.4%、15.8%、13.2%和2.6%的超标率.以上结果表明,台州土壤已经受到普遍的人类活动干扰,其中As、Cu和Zn对环境可能造成影响.从表3中10种重金属的变异系数可知,Cu、Zn、As、Sb和Sn的值大于1,表明受到较强的人类活动干扰,其他5种金属的变异系数较小,受人类干扰较轻.本研究以《土壤环境质量标准》GB15618-1995二级标准值作为基准,按照公式(1)计算10种重金属的内梅罗综合指数,图2为根据计算结果制作的路桥土壤污染情况等高线图.路桥土壤只有2个采样点的P综<1,表明受重金属污染较轻,其他采样点的P综>1,表明已经受到重金属轻度污染以上.其中31.6%的采样点受到重金属轻度污染,26.3%的采样点受重金属中度污染,36.8%的采样点受到重金属严重污染,点7、22和32污染最严重,P综达到5以上.路桥地区63.2%的土壤受到重金属中度污染以上,因此,内梅罗综合污染指数评价再次表明路桥地区土壤已经广泛受到重金属的污染.

2.2重金属的来源分析土壤中重金属来源有地球化学成因、工业生产造成的大气和废水排放污染、交通燃煤排放污染.为了分析路桥土壤中重金属的来源,采用因子分析法进行源解析.表4是路桥土壤中10种重金属因子载荷.4个因子的累计方差为86.2%,第1和第2因子分别解释了总方差的33.5%和26.9%,第3和第4因子分别解释了总方差的17.2%和8.6%.Cu、Pb、Sn和Sb在第1因子上具有较高的载荷,研究表明,Cu主要来源于电子、冶金及工业废料,Pb是机动车污染源的标识元素[27],Sn和Sb及其化合物主要来源于各类制造业污水的排放[28-30].因此,因子1代表了工业污染.Ag、As和Zn在第2因子上具有较高的载荷.3种金属都是土壤中重要的重金属元素,含量及空间分布受成土母质及人类活动的影响[31],As主要存在于农药和工农业废水中[32],Zn的含量较高,且变异系数大,受工业污染较严重,因此,因子2代表了工业和农业复合污染影响.Ni和Cd在因子3上具有较高的载荷,两种金属的变异系数都小于1,Cd一般可作为使用农药和化肥等农业活动的标识元素[33-34],因此,因子3代表农业污染.Hg在因子4的载荷高,环境中的Hg主要来源于化石燃料297刘红等:台州市路桥农业土壤中重金属的污染分析煤和石油产品的燃烧[35],这些Hg主要从污染源释放于大气,然后沉降下来,路桥土壤各点之间Hg的变异系数较小,表明Hg主要来源于大气沉降.

2.3重金属的潜在生态风险毒性分析本研究选用全国土壤环境背景值调查中浙江省土壤背景值的几何均值作为参比值[36],根据计算路桥土壤中10种重金属的地积累指数如表3所示.由表可知,Cd、Hg、Sb的Igeo均大于0,污染最普遍.Cd平均Igeo为4.5,有78.9%的采样点为强污染以上;其次是Hg,平均Igeo为2.4,65.8%的采样点处于中-强污染;Ag、Cu、Zn和Sb的污染也较严重,平均Igeo分别为1.6、1.9、1.2和1.3,均为中等污染,44.7%的点Ag介于中-强污染;36.8%的点Cu介于中-强污染;15.8%的点Zn介于中-强污染;只有2个点的SbIgeo大于2,但有1个点达到极严重污染.As、Pb和Sn的污染较轻,平均Igeo均小于1,属轻度污染,只有少数点为中等污染.Ni的平均Igeo为0以下,基本对环境没有污染.综合分析上述重金属的地积累指数分级,路桥土壤中10种重金属的污染程度由强至弱依次为:Cd>Hg>Cu>Ag>Sb>Zn>As>Pb≈Sn>Ni.通过计算路桥土壤中7种金属的潜在生态危害系数(Ei)和潜在生态危害综合指数(RI),结果见图3和图4.由图3评价结果可知,路桥土壤中7种重金属生态危害系数均值为190.9,63.2%的点为中等生态危害,7.9%的点为强生态危害(点11、22和32),这与内梅罗综合污染指数法得到的结果较为一致.3个生态危害较高的采样点(点11、22和32的RI分别为:308.1,346.8和388.0)位于乡镇附近,这些地区以电子废物处理为主的小型加工活动较多,使得高毒性重金属直接或者间接地进入土壤.路桥土壤中Hg的生态危害最大,潜在生态危害系数平均值为85.1,为强生态危害.由图4可知,10.5%的点(点11、13、32、37)会对环境产生很强的生态危害,有39.5%的点对环境产生强的生态危害,有13.2%的点(点2、5、7、10、29)对环境产生轻微的生态危害.Cd的生态危害也较大,潜在生态危害系数平均值为70.2,为中等生态危害,其中,有5.3%的点(点22、32)会对环境产生很强的生态危害,有28.9%的点对环境产生强的生态危害,有15.8%的点(点1、5、8、10、13、21)对环境产生轻微的生态危害.综合路桥土壤38个采样点金属平均Ei值,可知各金属对路桥生态风险影响程度从高到低依次为Hg>Cd>Cu>As>Ni>Pb>Zn.Hg和Cd对路桥的生态影响应该受到重视.

3结论

(1)与国内研究相比,台州土壤中重金属污染已经处于中等水平,对照荷兰土壤标准限值和国家土壤质量标准二级标准,台州土壤已经受到普遍的人类活动干扰,其中As、Cu和Zn对环境可能造成影响.2)来源分析表明,当地的重金属主要来源于人类的工业和农业生产活动.3)潜在生态风险评价表明,Hg、Cd和Cu是主要的生态危害因子,应该受到重视.

作者:刘红贾英方明江敏孜王学彤单位:上海市化工环境保护监测站上海大学环境与化学工程学院