前言:本站为你精心整理了医学图像处理教学经验分析范文,希望能为你的创作提供参考价值,我们的客服老师可以帮助你提供个性化的参考范文,欢迎咨询。
1结合学科专业特点精选教学内容
我们开设的《医学图像处理》课程是以《数字图像处理》为基础,结合医学院校的特点和教学要求进行课程设计J。《医学图像处理》作为一门医科院校的工科课程,有其自身的优势和劣势。优势在于医科院校有大量的医学图像资源及相关科研项目,便于根据临床和科研实际要求,进行动手操作,通过理论联系实际的方式增加学员学习热情。劣势在于医科院校相关工科课程开设不足,学员基础理论知识存在脱节的现象,不够扎实牢固,在听课过程中遇到困难后容易失去学习兴趣,从而导致不能很好地掌握相关知识。另外,由于医学图像处理技术涉及面很广、学习内容繁多,要求学员在短时间内完全掌握医学图像处理具有一定难度。对于实验技术专业的学员,我们要求学员通过对本课程的学习能够掌握医学数字图像处理的基本概念、方法及原理,重点讲解图像的运算、图像灰度变换、直方图处理、图像的空域增强及频域增强等内容;对于生物医学工程专业的学员则适当增加课程难度,重点讲授医学图像增强、医学图像分割、医学图像配准等知识,并适当增加图像复原、图像压缩编码、形态学处理等内容。
2教学案例充分利用多媒体教学优势
通过具体的医学图像实例进行直观生动的课堂演示,可以提高学员的学习兴趣,让学员积极参与到教学过程中来,成为教学中的主体。比如讲解图像灰度变换时以CT开窗技术为实例,讲解图像代数运算时以数字减影、精子细胞活动度检测等为实例。教学案例的选择要结合实际,除了让学员掌握理论外,还要让他们知道学到的知识可以用到什么方面、怎么用。图像处理课程涉及面广、跨度大、内容多,且具有较强的工程性,因此在教与学上都存在一定难度。由于图像处理课程的实例较多,可演示性好,因此可充分利用多媒体技术来进行教学。多媒体教学具有图文并茂、知识密集、动态显示等优点,能向学员传输大量的信息J。在医学图像处理课程中讲述的算法较多,但这些算法最终都要在计算机上实现,并且图像处理算法中的参数选择不同,处理的效果也不同,因此图像处理课程教学不能脱离计算机。通过引入Matlab、Photoshop等软件讲述算法流程、算法的具体实现及处理结果。
3注重实践教学培养学员的动手能力
医学图像处理课程要特别注重实践环节,要科学合理地安排实验内容、实验时间与实验工具。实验内容的选择要与课堂上讲授的理论知识紧密相连,以加深学员对理论的理解。为了使学员在学习医学图像处理基本原理的同时尽快掌握典型算法,我们要求学员采用Matlab语言进行编程。因为Matlab只有一种数据类型,一种标准的输入输出语句,不用指针、不需编译,还具有强大而简易的绘图功能。利用Matlab图像处理工具箱在数学运算和算法验证上的优势,结合教学实际,使学员在学习和实践中充分体验医学图像处理的内涵和魅力。我们根据教学大纲的要求,从实验学时数(20个学时)出发,设计了一系列的实验,这些实验由易到难,同时兼顾了学员理解医学图像处理基本概念和自己动手设计算法的要求。实验包括图像的直方图均衡、图像的基本灰度变换、采用求和取平均的办法对噪声图像进行增强、空域平滑滤波器、空间锐化滤波器、图像的频率域滤波(低通、高通、同态滤波)等,基本覆盖了教学大纲的内容。总之,医学图像处理技术在课程体系的设计上,紧紧抓住理论与实践并重的原则,在课程教学中注重教学内容的可实践性及学员的参与性,尽量体现教与学的趣味性。实践证明,这种教学方法可以有效提高学员各方面的素质,有助于生物医学工程等专业学员更好地掌握医学图像处理的基础理论和基本技能,从而培养出高素质的复合型人才。