首页 > 文章中心 > 砌体结构论文

砌体结构论文范文精选

前言:在撰写砌体结构论文的过程中,我们可以学习和借鉴他人的优秀作品,小编整理了5篇优秀范文,希望能够为您的写作提供参考和借鉴。

砌体结构论文

砌体结构工程施工论文

一条文编写原则及主要技术规定

1条文编写原则

鉴于现行国家标准《砌体结构工程施工质量验收规范》GB50203的编写原则是“验评分离、强化验收、完善手段、过程控制”,将不可避免地导致两本标准在有关施工过程的质量控制条文内容上的一些重复.对此,在编写时考虑了以下原则:1)标准不同适用范围原则:在编制《砌体结构工程施工质量验收规范》GB50203过程中,在“过程控制”的相应条文编写时,只针对为实现施工质量合格验收的某些重要施工环节作出基本要求;而对于《砌体结构工程施工规范》,则对施工全过程的质量控制作出较具体的规定.2)条文细化原则:由于现行国家标准《砌体结构工程施工质量验收规范》GB50203遵循“验评分离、强化验收、完善手段、过程控制”的编制原则,因此,与之配套使用的《砌体结构工程施工规范》的个别条文内容不可避免地要涉及规范GB50203中的“过程控制”的相应条文.对此,在编写《砌体结构工程施工规范》条文时,着重对砌体结构工程施工过程中的操作技术要求进行细化,作出详细规定,以区别于规范GB50203针对施工过程控制的原则要求.3)标准完整性原则:对《砌体结构工程施工质量验收规范》GB50203“过程控制”涉及的部分内容,在施工规范中不需要再细化时,考虑到其内容的重要性和标准编写的完整性,同时也是为了保证两本规范间的协调一致,对GB50203的相关条文进行了引用.

2关于湿拌砂浆、干混砂浆及专用砂浆使用时间的规定

砌体施工中的砂浆使用时间是特指砂浆的可操作时间,即砂浆从加水拌合后到仍能施工而不影响其性能的最长时间间隔,而非等同于砂浆的凝结时间.湿拌砂浆是由专业生产厂将加水拌合后的砂浆运到施工现场的成品砂浆.由于砌体施工速度较慢,为使砂浆在一定时间内能保持其可操作性,生产厂一般通过掺加不同种类添加剂及控制添加剂用量等方法调节砂浆的凝结时间,实际上也是调整了砂浆保持可操作性的使用时间,且通过试验保证所提供的砂浆在可操作时间内不会影响砂浆性能.因此对湿拌砂浆的使用时间应按厂房提供的说明确定.干混砂浆是专业厂家生产的除拌合水外的砂浆粉状混合物,在加水拌合后即可使用的砂浆.为了解干混砌筑砂浆使用时间与强度的关系,规范编制组对西安市3个不同生产厂家的干混砌筑砂浆进行了试验分析.试验所采用砂浆类型均为DMM5,分别放置0、2、4、6、8h后,适量加水使得砂浆稠度保持在约70mm,通过制作砂浆试块对其强度进行试验,结果表明,随着使用时间的延长,砂浆强度有所降低,其中不同厂家的砂浆在0~8h强度损失最小约12%,最大超过30%,因此,施工过程中对干混砂浆的使用时间应按厂方提供的说明书确定.专用砂浆中的外加剂种类、用量存在差异,其凝结时间也不同,因此,其使用时间应以厂方提供的说明书为准.

3关于现场搅拌砂浆使用时间3h、2h的规定

点击阅读全文

城市道路改造过程裂缝问题防治措施探讨

编者按:本论文主要从产生纵向裂缝的原因;纵向裂缝的防治措施等进行讲述。包括了由于土基地质差,导致新老路基底部土基因荷载的增加发生沉降、新路基本身所用的填筑材料、压实度等设计施工中存在一定问题,造成新路堤本身出现沉降、因施工工期短,土基及新路基的固结下沉未到位,工后沉降大、施工后新老路基出现差异沉降,路基失去稳定、新老路基结合部结合强度不足、市政道路拓宽改造路基是关键、市政道路改造拓宽路面结构的施工关键技术、路面纵向裂缝的养护维修等,具体材料请见:

论文关键词:市政道路改造纵向裂缝裂缝防治纵向裂缝

论文摘要:随着我国市政道路事业的发展,既有市政道路逐渐不能满足交通需求,需要进行拓宽改造,但在改造过程中容易产生纵向裂缝。文章结合市政道路改造施工经验,分析了产生纵向裂缝的原因,并从路基施工、路面结构的施工、路面纵向裂缝的养护维修等方面探讨了纵向裂缝的防治措施,为工程实践提供经验。

近年来随着我国市政道路事业的发展和国民经济水平的快速增长,既有市政道路逐渐不能满足交通要求,需要对旧路进行拓宽改造,扩大通行能力。旧路加宽改造后,由于新旧路基间存在着沉降和变形差异,可能造成路面结构层的层底脱空,从而使路面结构开裂。为改变路面结构的这种不利受力状态,通常可从以下两方面进行考虑:一是采取可靠而有效的地基和路基处治措施,以减小新旧路基间的沉降和变形差异;二是加强路面结构层的设计,以改善路面结构的不利受力状态。本文结合笔者参与的城市既有道路改造施工经验,分析了路基的受力变化对路面结构纵向开裂的影响,并提出相应的防治措施。

一、产生纵向裂缝的原因

导致旧路拓宽改建工程路面出现纵向开裂的原因很多,其中原路基底部地基土的沉降固结状态、拓宽处土基的水文物理力学性能、路基拓宽后土基新增的作用力对沉降变形的影响等为主要因素。这些因素间的作用也比较复杂。通过定性分析可知,原市政道路因增设补强层和铺筑新面层,增加了下部土基的压力,拓宽部分地基相应外加的压力分别使地基沿路基横断面发生不均匀沉降,其中拓宽部分的沉降量大于下部土基,当路基压力大于地基极限承载力时还会使路基坡脚附近(可能在坡脚内,也可能在坡脚外)发生沉降,若路基压力大于土基极限承载力,还会引起路基坡脚附近区外的拓宽区地基隆起,这时路堤将因沉降变形过大使市政道路发生严重的损坏。笔者通过对纵向裂缝的调查观察和定性分析,可知新老路基出现差异沉降是最终使路面产生纵向裂缝的根本原因,具体而言,产生纵向裂缝的可能因素包括以下几个方面:

点击阅读全文

钢筋砼结构裂缝

论文关键词:建筑结构钢筋砼结构裂缝产生原因;预防措施

论文摘要:建筑结构产生裂缝是很普遍的现象,其中最常见的要数钢筋砼构件以及砖墙裂缝。本文分析了钢筋砼结构裂缝产生的八种原因,并给出了七种预防措施。

建筑结构产生裂缝是很普遍的现象,从理论上说,混凝土结构尤其是受弯构件总是带裂缝工作的,在使用荷载不大的情况下,没有裂缝隙或这类结构性裂缝隙非常细微,不易为肉眼所察觉。但在现实的建筑中,混凝土结构会出现各种各样的裂缝,其中最常见的要数钢筋砼构件以及砖墙裂缝。在这里主要讨论钢筋砼梁出现裂缝的原因很复杂,主要有材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等,通常可归纳为以下几种:

1钢筋砼常见裂缝原因分析

1.1材料质量

材料质量问题引起的裂缝较常见的原因是水泥、砂、石等质量不好,若工程上用了这等不合格的材料就会产生“豆腐渣工程”。所以说只有材料的质量关把好了,工程质量才会在根本上得到保证。

点击阅读全文

住宅墙壁渗漏

1.渗漏原因

1.1钢筋混凝土墙体本身渗漏。

钢筋混凝土墙体本身由于设计的原因,如结构的造型尺寸、受力情况、构造等因素考虑不周,使钢筋混凝土墙体产生凝结前的贯穿干缩裂缝、温度裂缝,受梅雨侵蚀也会造成混凝土墙体发潮现象。在外墙剪力墙浇筑过程中,墙板混凝土按缝由于表面没有进行凿毛处理或凿毛未清理干净,就在原混凝土的接缝之间形成一道缝隙,梅雨季节由于外墙开裂引起外墙渗漏现象。

1.2钢筋混凝土外墙填充墙渗漏。

钢筋混凝土外墙填充墙渗漏主要发生在混凝土墙与填充墙结合部位,特别是上层楼板梁底与填充墙顶部位置,是渗漏的主要部位。其主要原因由于混凝土与砖砌体两种材料的温度膨胀系数不同,在温度作用下材料变形值不同引起开裂导致渗漏;梁底由于施工困难难以实心实实,在温度、材料收缩等外力作用下容易产生裂缝。填充墙在墙体砌筑时,砖没浇水或没浇透、砖砌缝的砂浆饱满不够、砖顶头空缝、砌体通缝、未按要求设置拉结筋、用泥砂及建筑粉料代替中砂拌制砂浆使之和易性差、收缩大都会引起墙体开裂导致渗漏。

1.3外墙装饰面渗漏。在外墙粉刷施工中,由于抹灰砂浆所用的砂含泥量大、颗料较细、含水量大、降低了抹灰砂浆粘结强度,使抹灰层出现干缩裂缝引起外墙渗漏。外墙面的装饰层及基层,由于刮底糙产生的空鼓和裂缝以及大气温度引起反复的热胀冷缩,装饰层及基层发生裂缝,雨水便由缝隙渗入墙体表面引起外墙渗漏。外墙装饰多采用面砖,由于其施工缝较小,一般只有5mm,而且镶贴随意,在大面积粉缝、擦缝时容易造成漏擦或擦缝时砂浆脱落,当遇到雨水时易造成外墙渗漏。外墙装饰常设凹槽分格缝,而饰面本身的胀缩裂缝集中在这些凹槽内,由于设计、施工措施不当雨水沿凹槽中的缝隙渗入墙体内,造成室内渗漏。

点击阅读全文

我国工程结构检测分析论文

摘要:由于各种因素的影响以及工程材料的耐久性等原因,往往引起建筑物不同程度的损坏。因此需要正确评价结构的可靠等级,以便进一步采取措施,这就离不开完善的结构检测与评价技术。因此就需要我们充分了解检测技术的应用现状及发展前景。

1检测技术

传统的检测手段(如人工目测)和无损检测技术(如超声波、声发射、x-射线等)均是结构局部损伤的检测方法,难以预测预报结构整体的性能退化,无法实现实时的健康监测和损伤诊断。一个不可忽略的事实是:结构损伤的出现势必导致结构性能参数(如刚度、频率、阻尼或质量)的变化,如果这种变化能够很好的被检测和分类的话,就可以用来进行结构损伤诊断与健康监测,显然。这是整体的检测方法。

1.1整体结构监测

整体结构监测的主要内容包括沉降观测,位移观测、挠度观测、裂缝观测和振动观测等。每一种建筑物的观测内容,应根据建筑物的具体情况和实际要求综合确定测量项目。健康监测方法与测量仪器的发展密切相关。目前,GPS定位技术已经在区域性变形观测和大型工程变形监测中应用,并具有实时、连续、自动监测的优点,甚至与远程数据传输相结合,实现监测与决策智能化。监测的准确性取决于监测方案的科学性、监测点布置的合理性及测量仪器的精确度。

结构监测的方法可分为四类:(1)空间域方法,(2)模态域方法,(3)时域方法,(4)频域方法。其中空间域方法是根据质量、阻尼和刚度矩阵的改变来检测和确定损伤位置I模态域方法根据自振频率、模态阻尼比和模态振型的改变来检测损伤;在时域方法中。系统参数通过在一定时间内采样的数据来直接确定,精度较高,但很费时,在频域方法中,模态参数如自振频率、阻尼比和振型等是确定的,谱分析和频率响应函数被广泛应用。上述方法各有其优缺点。如频域方法和模态域方法使用转换的数据,数据转换存在误差和噪声。在空间域方法中,质量和刚度矩阵的建模与修正还存在问题,并且难以精确。将两三种方法结合起来检测和评估结构的损伤具有很强的发展趋势,比如将静载测试和模态测试的数据结合起来诊断损伤,这样可以克服各自方法的缺点并相互检查。与损伤检测的复杂性相适应。

点击阅读全文