首页 > 文章中心 > 人工神经网络

人工神经网络范文精选

前言:在撰写人工神经网络的过程中,我们可以学习和借鉴他人的优秀作品,小编整理了5篇优秀范文,希望能够为您的写作提供参考和借鉴。

人工神经网络

人工神经网络肺癌诊断

肺癌的诊断问题各国医学界已作了一些研究,并取得了某些实际的成果。但是,由于肺癌的多种类型以及多种相关因素,使得现有的诊断在准确性和实用性方面都存在着相当的局限性,如建模复杂困难。由于对影响罹病与否的各种因子的作用机制了解得不是很清楚,如何建立诊断模型,以及如何确定新建立的模型在何种程度上与实际情况相吻合还是一个问题;容错能力不强,适用范围不广;依赖于某个病例库新建立起来的医学模型往往具有很强的局限性,用于新的病例库时误差有时较大。另外,由于医学方面的原因,我们收集到的数据有时不完整,而现有的研究方法所建立起的医学模型由于容错性差,对这些不完整的数据通常都难以处理。以非线性大规模并行分布处理为特点的人工神经网络理论突破了传统的线性处理模式,以其高度的并行性,良好的容错性和自适应能力成为人们研究其赖以生存的非线性世界,探索和研究某些复杂大系统的有力工具。

原理与方法

神经网络是一个具有高度非线性的超大规模连续时间动力系统。是由大量的处理单元(神经元)广泛互连而形成的网络。它是在现代神经科学研究成果的基础上提出的,反映了脑功能的基本特征。但它并不是人脑的真实描写,而只是它的某种抽象、简化与模拟。网络的信息处理由神经元之间的相互作用来实现;知识与信息的存储表现为网络元件互连间分布式的物理联系;网络的学习和计算决定于各神经元连接权系的动态演化过程。因此神经元构成了网络的基本运算单元。每个神经元具有自己的阈值。每个神经元的输入信号是所有与其相连的神经元的输出信号和加权后的和。而输出信号是其净输入信号的非线性函数。如果输入信号的加权集合高于其阈值,该神经元便被激活而输出相应的值。在人工神经网络中所存储的是单元之间连接的加权值阵列。

神经网络的工作过程主要由两个阶段组成,一个阶段是工作期,此时各连接权值固定,计算单元的状态变化,以求达到稳定状态。另一阶段是学习期(自适应期,或设计期),此时各计算单元状态不变,各连接权值可修改(通过学习样本或其他方法),前一阶段较快,各单元的状态亦称短期记忆(STM),后一阶段慢的多,权及连接方式亦称长期记忆(LTM)〔1〕。

根据网络的拓扑结构和学习规则可将人工神经网络分为多种类型,如不含反馈的前向神经网络、层内有相互结合的前向网络、反馈网络、相互结合型网络等〔2〕。本文的人工神经网络模型是采用BP算法的多层前馈网络。

该模型的特点是信号由输入层单向传递到输出层,同一层神经元之间互不传递信息,每个神经元与邻近层所有神经元相连,连接权用Wij表示。各神经元的作用函数为Sigmoid函数,设神经网络输入层的p个节点,输出层有q个节点,k-1层的任意节点用l表示,k层的任意节点用j表示,k+1层的任意节点用l表示。Wij为k-1层的第i个神经元与k层的第j个神经元相连接的权值。k-1层的节点i输出为O(k-1)i,k层节点j的输出为:

点击阅读全文

人工神经网络技术的维护及实践研究论文

摘要:根据现代控制技术的人工神经网络理论提出了一种保护原理构成方案,并分析了原理实现的可行性和技术难点。

人工神经网络(AartificialNeuralNetwork,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家WarrenS.Mcculloch和数学家WalthH.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,BackPropagation),它的网络结构及算法直观、简单,在工业领域中应用较多。

经训练的ANN适用于利用分析振动数据对机器进行监控和故障检测,预测某些部件的疲劳寿命[2]。非线形神经网络补偿和鲁棒控制综合方法的应用(其鲁棒控制利用了变结构控制或滑动模控制),在实时工业控制执行程序中较为有效[3]。人工神经网络(ANN)和模糊逻辑(FuzzyLogic)的综合,实现了电动机故障检测的启发式推理。对非线形问题,可通过ANN的BP算法学习正常运行例子调整内部权值来准确求解[4]。

因此,对于电力系统这个存在着大量非线性的复杂大系统来讲,ANN理论在电力系统中的应用具有很大的潜力,目前已涉及到如暂态,动稳分析,负荷预报,机组最优组合,警报处理与故障诊断,配电网线损计算,发电规划,经济运行及电力系统控制等方面[5]。

本文介绍了一种基于人工神经网络(ANN)理论的保护原理。

1、人工神经网络理论概述

点击阅读全文

财务管理体系探究

1财务管理决策支持系统的研究现状

决策支持系统经过二十多年的发展,形成了如图l所示公认的体系结构。它把模型并入信息系统软件中,依靠管理信息系统和运筹学这两个基础逐步发展起来。它为解决非结构化决策问题提供了相应的有用信息,给各级管理决策人员的工作带来了便利。从图1可以看出决策支持系统体系结构可划分为三级,即语言系统(LS)级、问题处理系统(PPS)级和知识系统fKS)级。其中问题处理系统级包括推理机系统(RS)、模型库管理系统(MBMS)、知识库管理系统(KBMS)及数据库管理系统(DBMS)。知识系统级包括模型库(MB)、知识库(KB)及数据库(DBo九十年代中期,兴起了三个辅助决策技术:数据仓库(DW)、联机分析处理(0LAP)和数据挖掘(DM)。联机分析处理是以客户,服务器的方式完成多维数据分析。数据仓库是根据决策主题的需要汇集大量的数据库,通过综合和分析得到辅助决策的信息。数据挖掘顾名思义,是为了获得有用的数据,在大量的数据库中进行筛选。人工智能技术建立一个智能的DSS人机界面,可进行图、文、声、像、形等多模式交互,人机交互此时变得更为自然和谐,人们能沉浸其中,进行合作式、目标向导式的交互方法。从目前情况来看,财务决策支持系统的研究还处于初级发展阶段,财务数据的保密性、特殊性决定了财务决策不能全部公开化、透明化,但随着中央及国务院相关部门财务预决算数据的公开,财务决策系统及其支持系统和过程也将随之公开,这就要求决策者充分利用财务知识和决策支持系统的知识“聪明”决策、合理决策、科学决策、规范决策。

2财务管理神经网络智能决策支持系统总体研究框架

2.1神经网络运行机制神经网络的着眼点是采纳生物体中神经细胞网络中某些可利用的部分,来弥补计算机的不足之处,而不是单单用物理的器件去完整地复制。第一,神经网络中的链接的结构和链接权都可以通过学习而得到,具有十分强大的学习功能;第二,神经网络所记忆的信息是一种分布式的储存方式,大多储存在神经元之间的权中;第三,神经网络部分的或局部的神经元被破坏后,仍可以继续进行其他活动,不影响全局的活动,因此说,神经网络的这种特性被称作容错性;第四,神经网络是由大量简单的神经元组成的,每个神经元虽然结构简单,但是它们组合到一起并行活动时,却能爆发出较快较强的速度来。我们可以利用神经网络的上述特点,将之应用于模式识别、自动控制、优化计算和联想记忆、军事应用以及决策支持系统中。

2.2财务管理神经网络集成智能财务DSS的必然性在企业经营管理、政府机构财务活动中,人们时常面临着财务决策。人们往往需要根据有关的理论及经验制定出一系列的衡量标准。这种评价是一个非常复杂的非结构化决策过程,一般都是由内行专家根据一定的专业理论凭经验和直觉在收集大量不完全、不确定信息基础上建立起多级指标体系。但在这种指标体系中,各种指标之间的关系很难明确,而且还受评价者的效用标准和主观偏好所左右。因此,很难在指标体系和评价目标间建立起准确的定量或定性模型。因此,我们需要采用一种可处理不确定性、不完全性信息的评价方法以支持决策。自然,利用人工神经网络构造系统模式来支持这类评价决策问题是目前财务管理智能决策支持系统的一种发展趋势和必然趋势圈。

2.3财务管理神经网络集成智能DSS系统框架神经网络智能决策支持系统主要以知识、数据和模型为主体,结合神经网络进行推理与数据开采。图2给出了神经网络智能决策支持系统研究框架『2I。研究中有两个重点,即神经网络推理系统和神经网络数据开采系统。

点击阅读全文

网络模型中的神经网络算法

摘要:随着经济的不断发展,科技的提高,开阔了各个行业的发展前景,计算机网络得到良好改善。随着社会经济的发展,计算机成为人们日常生活必备用品,但是要想计算机网络迅速发展,还需要提高运行能力和整体性能,使计算机不断满足当下社会的需求。计算机网络模型具备储存信息、使信息规划等不同特点,保证使用人员能够快速搜索所需要信息。同时,计算机网络还具备优化的优势,使信息联想,计算机神经网络算法可以构造全面的信息储存库,保证信息储存和信息处理。

关键词:计算机网络模型;神经网络算法

计算机网络在人们日常生活越来越重要,被广泛应用到各个行业。随着社会不断发展,人们需求不断加高,使计算机得到良好改善,目前,计算机网络运用集线式服务器来实现网络互连,促进网络发展。但是也有很大弊端,过多的联想信息虽然满足人们需求,但是对技术的要求也更加苛刻,现有的技术满足不了计算机网络运行,使人们日常操作不方便。为了解决这一问题,研究人员需要全面优化计算机网络,提高运行能力和性能,运用神经网络算法,使计算机更加适合现代社会发展,储存更多信息。

1神经网络算法概论分析

1.1神经网络算法整体概论神经网络算法是按照人体大脑的思维方式进行模拟,根据逻辑思维进行推理,将信息概念化形成人们认知的符号,呈现在显示屏前。根据逻辑符号按照一定模式进行指令构造,使计算机执行。目前,神经网络被广泛使用,使直观性的思维方式分布式存储信息,建立理论模型。优化网络的神经网络主要是Hop?eld神经网络,是1982年由美国物理学家提出的,它能够模拟神经网络的记忆机理,是全连接的神经网络。Hop?eld神经网络中的每个神经元都能够信号输出,还能够将信号通过其他神经元为自己反馈,那么其也称之为反馈性神经网络。

1.2优化神经网络基本基础Hop?eld神经网络是通过能量函数分析系统,结合储存系统和二元系统的神经网络,Hop?eld神经网络能收敛到稳定的平衡状态,并以其认为样本信息,具备联想记忆能力,使某种残缺信息进行回想还原,回忆成完整信息。但是Hop?eld神经网络记忆储存量有限,而且大多数信息是不稳定的,合理优化计算机联想问题,使Hop?eld神经网络能够建设模型。

点击阅读全文

计算智能在机械制造中的应用

1计算智能概述

计算智能(ComputationalIntelligenee,简称CI),又称软计算,该词于1992年被美国学者J.C.Bezdekek首次提出,1994年全计算智能大会明确提出了计算智能的概念,标志着计算智能作为一门独立学科的诞生。传统的人工智能问题的处理、结论的得出都需要在建立精确的数字模型的基础上才能实现,但现实中有很多的数据都是模糊的,无法建立精确的模型,使得人工智能的应用范围相对狭窄,而计算智能则突破了人工智能的瓶颈,以模型为基础,模拟人的理论与方法,只需要直接输入数据,系统就可以对数据进行处理,应用范围更加的广泛。计算智能的本质是一类准元算法,主要包括进化计算,人工神经网络、模糊计算、混沌计算、细胞自动机等,其中以进化计算、人工神经网络及模糊系统为典型代表。

1.1进化计算

进化计算是采用简单的编码技术来表示各种复杂的结构,并通过遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向,具有操作简单、通用性强、效率高的优点,其工作原理是通过种群的方式进行计算,借助生物进化的思想来解决问题,分为遗传算法、进化规划及进化策略三大类。

1.2人工神经网络

人工神经网络是一个高度复杂的非线性动力学系统,具有模糊推理、并行处理、自训练学习等优势,其工作原理是仿照生物神经网络处理信息方式,通过不同的算法和结构,将简单的人工神经细胞相互连接,通过大量的人工神经单元来同时进行信息的传播,并将信息储存在改革细胞单元的连接结构中,快速地得到期望的计算结构。生物神经网络的细胞是在不断的生成和更新着的,即部分细胞坏死,整个神经网络仍能维持正常的运转秩序而不会骤然崩溃,同样人工神经网络也有着这样的特性,即使部分神经细胞发生问题,整个网络也能够正常的运转。人工神经网络按照连接方式的不同分为前馈式网络与反馈式网络,前馈式网络结构中的神经元是单层排列的,分为输入层、隐藏层及输出层三层,信息的传播是单向的,每个神经元只与前一层的神经元相连,即信息只能由输出层传向隐藏层再传向输入层,而不能由输出层直接传向输入层;反馈式网络结构中每个人工神经细胞都是一个计算单元,在接受信息输入的同时还在向外界输出着信息。不同的行业和领域可以根据自身的需要将不同的网络结构和学习方法相结合,建立不同的人工神经网络模型,实现不同的研究目的。

点击阅读全文