国际简称:MACH LEARN-SCI TECHN 参考译名:机器学习-科学与技术
主要研究方向:Multiple 非预警期刊 审稿周期:约Submission to first decision before peer review: 3 days; Submission to first decision after peer review: 49 days; 13 Weeks
《机器学习-科学与技术》(Machine Learning-science And Technology)是一本由IOP PUBLISHING LTD出版的以Multiple为研究特色的国际期刊,发表该领域相关的原创研究文章、评论文章和综述文章,及时报道该领域相关理论、实践和应用学科的最新发现,旨在促进该学科领域科学信息的快速交流。该期刊是一本开放期刊,近三年没有被列入预警名单。该期刊享有很高的科学声誉,影响因子不断增加,发行量也同样高。
Machine Learning: Science and Technology™ is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories:
i) advance the state of machine learning-driven applications in the sciences,
or
ii) make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
Particular areas of scientific application include (but are not limited to):
• Physics and space science
• Design and discovery of novel materials and molecules
• Materials characterisation techniques
• Simulation of materials, chemical processes and biological systems
• Atomistic and coarse-grained simulation
• Quantum computing
• Biology, medicine and biomedical imaging
• Geoscience (including natural disaster prediction) and climatology
• Particle Physics
• Simulation methods and high-performance computing
Conceptual or methodological advances in machine learning methods include those in (but are not limited to):
• Explainability, causality and robustness
• New (physics inspired) learning algorithms
• Neural network architectures
• Kernel methods
• Bayesian and other probabilistic methods
• Supervised, unsupervised and generative methods
• Novel computing architectures
• Codes and datasets
• Benchmark studies
CiteScore | SJR | SNIP | CiteScore 指数 | ||||||||||||||||
9.1 | 1.506 | 1.403 |
|
名词解释:CiteScore 是衡量期刊所发表文献的平均受引用次数,是在 Scopus 中衡量期刊影响力的另一个指标。当年CiteScore 的计算依据是期刊最近4年(含计算年度)的被引次数除以该期刊近四年发表的文献数。例如,2022年的 CiteScore 计算方法为:2022年的 CiteScore =2019-2022年收到的对2019-2022年发表的文件的引用数量÷2019-2022年发布的文献数量 注:文献类型包括:文章、评论、会议论文、书籍章节和数据论文。
Top期刊 | 综述期刊 | 大类学科 | 小类学科 | ||
否 | 否 | 物理与天体物理 | 2区 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 计算机:人工智能 MULTIDISCIPLINARY SCIENCES 综合性期刊 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS 计算机:跨学科应用 | 2区 2区 3区 |
Top期刊 | 综述期刊 | 大类学科 | 小类学科 | ||
否 | 否 | 物理与天体物理 | 2区 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 计算机:人工智能 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS 计算机:跨学科应用 | 3区 3区 |
按JIF指标学科分区 | 收录子集 | 分区 | 排名 | 百分位 |
学科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | SCIE | Q1 | 36 / 197 |
82% |
学科:COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | SCIE | Q1 | 23 / 169 |
86.7% |
学科:MULTIDISCIPLINARY SCIENCES | SCIE | Q1 | 15 / 134 |
89.2% |
按JCI指标学科分区 | 收录子集 | 分区 | 排名 | 百分位 |
学科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | SCIE | Q1 | 43 / 198 |
78.54% |
学科:COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | SCIE | Q1 | 40 / 169 |
76.63% |
学科:MULTIDISCIPLINARY SCIENCES | SCIE | Q1 | 21 / 135 |
84.81% |
Author: Xue, Tingting; Li, Xu; Chen, Xiaosong; Chen, Li; Han, Zhangang
Journal: MACHINE LEARNING-SCIENCE AND TECHNOLOGY. 2023; Vol. 4, Issue 1, pp. -. DOI: 10.1088/2632-2153/acc007
Author: Liang, Xiao; Li, Mingfan; Xiao, Qian; Chen, Junshi; Yang, Chao; An, Hong; He, Lixin
Journal: MACHINE LEARNING-SCIENCE AND TECHNOLOGY. 2023; Vol. 4, Issue 1, pp. -. DOI: 10.1088/2632-2153/acc56a
Epl
中科院 4区 JCR Q2
Japanese Journal Of Applied Physics
中科院 4区 JCR Q3
Infrared Physics & Technology
中科院 3区 JCR Q2
Optics Express
中科院 2区 JCR Q2
Journal Of Nonlinear Mathematical Physics
中科院 4区 JCR Q2
Journal Of Low Temperature Physics
中科院 3区 JCR Q4
Photonics
中科院 4区 JCR Q2
Chinese Physics Letters
中科院 2区 JCR Q1
若用户需要出版服务,请联系出版商:IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL, ENGLAND, BS1 6BE。