首页 > 文章中心 > 数据挖掘

数据挖掘范文精选

前言:在撰写数据挖掘的过程中,我们可以学习和借鉴他人的优秀作品,小编整理了5篇优秀范文,希望能够为您的写作提供参考和借鉴。

数据挖掘

数据挖掘会计

一、数据挖掘技术的含义

数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。

二、数据挖掘的方法和基本步骤

(一)数据挖掘的主要方法

常用的数据挖掘方法主要有决策树(DecisionTree)、遗传算法(GeneticAlgorithms)、关联分析(AssociationAnalysis)、聚类分析(ClusterAnalysis)、序列模式分析(SequentialPattern)以及神经网络(NeuralNetworks)等。

(二)数据挖掘的基本步骤

点击阅读全文

Web数据挖掘技术

[摘要]随着Internet的发展,Web数据挖掘有着越来越广泛的应用,Web数据挖掘是数据挖掘技术在Web信息集合上的应用。本文阐述了Web数据挖掘的定义、特点和分类,并对Web数据挖掘中使用的技术及应用前景进行了探讨。

[关键词]数据挖掘Web挖掘路径分析电子商务

一、引言

近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。数据挖掘是面向发现的数据分析技术,通过对大型的数据集进行探查。可以发现有用的知识,从而为决策支持提供有力的依据。

Web目前已成为信息、交互和获取的主要工具,它是一个巨大的、分布广泛的、全球性的信息服务中心。它涉及新闻、广告、消费信息、金融管理、教育、政府、电子商务和其他许多信息服务。面向Web的数据挖掘就是利用数据挖掘技术从Web文档及Web服务中自动发现并提取人们感兴趣的、潜在的有用模型或隐藏的信息。

二、概述

点击阅读全文

数据挖掘技术

[摘要]本文主要介绍了数据挖掘的基本概念,以及数据挖掘的方法。

[关键词]数据挖掘数据挖掘方法

随着信息技术迅速发展,数据库的规模不断扩大,产生了大量的数据。但大量的数据往往无法辨别隐藏在其中的能对决策提供支持的信息,而传统的查询、报表工具无法满足挖掘这些信息的需求。因此,需要一种新的数据分析技术处理大量数据,并从中抽取有价值的潜在知识,数据挖掘(DataMining)技术由此应运而生。

一、数据挖掘的定义

数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。

二、数据挖掘的方法

点击阅读全文

数据挖掘技术

6.遗传算法。遗传算法是一种受生物进化启发的学习方法,通过变异和重组当前己知的最好假设来生成后续的假设。每一步,通过使用目前适应性最高的假设的后代替代群体的某个部分,来更新当前群体的一组假设,来实现各个个体的适应性的提高。遗传算法由三个基本过程组成:繁殖(选择)是从一个旧种群(父代)选出生命力强的个体,产生新种群(后代)的过程;交叉〔重组)选择两个不同个体〔染色体)的部分(基因)进行交换,形成新个体的过程;变异(突变)是对某些个体的某些基因进行变异的过程。在数据挖掘中,可以被用作评估其他算法的适合度。

7.粗糙集。粗糙集能够在缺少关于数据先验知识的情况下,只以考察数据的分类能力为基础,解决模糊或不确定数据的分析和处理问题。粗糙集用于从数据库中发现分类规则的基本思想是将数据库中的属性分为条件属性和结论属性,对数据库中的元组根据各个属性不同的属性值分成相应的子集,然后对条件属性划分的子集与结论属性划分的子集之间上下近似关系生成判定规则。所有相似对象的集合称为初等集合,形成知识的基本成分。任何初等集合的并集称为精确集,否则,一个集合就是粗糙的(不精确的)。每个粗糙集都具有边界元素,也就是那些既不能确定为集合元素,也不能确定为集合补集元素的元素。粗糙集理论可以应用于数据挖掘中的分类、发现不准确数据或噪声数据内在的结构联系。

8.支持向量机。支持向量机(SVM)是在统计学习理论的基础上发展出来的一种新的机器学习方法。它基于结构风险最小化原则上的,尽量提高学习机的泛化能力,具有良好的推广性能和较好的分类精确性,能有效的解决过学习问题,现已成为训练多层感知器、RBF神经网络和多项式神经元网络的替代性方法。另外,支持向量机算法是一个凸优化问题,局部最优解一定是全局最优解,这些特点都是包括神经元网络在内的其他算法所不能及的。支持向量机可以应用于数据挖掘的分类、回归、对未知事物的探索等方面。

事实上,任何一种挖掘工具往往是根据具体问题来选择合适挖掘方法,很难说哪种方法好,那种方法劣,而是视具体问题而定。

三、结束语

目前,数据挖掘技术虽然得到了一定程度的应用,并取得了显著成效,但仍存在着许多尚未解决的问题。随着人们对数据挖掘技术的深人研究,数据挖掘技术必将在更加广泛的领域得到应用,并取得更加显著的效果。

点击阅读全文

数据挖掘在营销中的运用

1数据挖掘的任务

数据挖掘的任务常见的有4种类型:

分类用于预测事件所属的类别.其中样本数据中包含标识样本事件所属类别的数据项,类别是已知的,由数据挖掘根据样本数据构建对这些类别的模式的描述,再利用所发现的模式,参照新的数据的特征变量,将其映射入已知类别中.如在医疗应用中,可根据患者的各种特征进行疾病诊断等.

聚类用于描述和发现数据库中以前未知的数据类别.其中样本数据中不包含类别变量,数据挖掘将具有共同趋势和模式的数据元组聚集为一类,使类内各元组相似程度最高,类间差异最大.常用于市场细分,可根据已有顾客的数据,利用聚类技术将市场按顾客的消费模式的相似性分为若干细分市场,以进行有针对性的市场营销.

关联用于发现给定事件或纪录中经常一起发生的项目,由此推断事件间潜在的关联,识别有可能重复发生的模式.关联分析的典型例子是市场篮子分析,描述顾客的购买行为.如尿布与啤酒的故事就属于关联分析,可帮助零售商决定商品的摆放和捆绑销售策略.序列模式与关联分析类似,只是扩展为一段时间的项目集间的关系,常把序列模式看作由时间变量连接起来的关联.序列分析可分析长时期的相关纪录,发现经常发生的模式.

2数据挖掘过程

点击阅读全文